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summary

Active mobility becomes a more prominent transportation option in the urban environment because of its
benefits in terms of sustainability and population health (Donaire-Gonzalez et al., 2015). An increase
in volumes of cyclists and pedestrians could result in more frequent and severe conflicts, especially
when they share narrow designed spaces (Huyghebaert, 2021). For accommodating pedestrians and
cyclists, proper infrastructure needs to be designed, but this requires knowledge on the behaviours
that these two modes perform. This study gives a description of the interactive behaviour between
pedestrians and cyclists, providing input for the social forces model MassMotion, developed by the
company Arup. More specifically, the focus is on the movement changes a pedestrian performs when
confronted with a cyclist on bike paths, because often times the pedestrian is at a disadvantage in these
cases considering its vulnerability (Letsel & Schade, 2025). The study aims to address the research
question:

In what way do pedestrians change their movements when approaching and crossing bike paths with
oncoming cyclists?

Previous studies on interactive behaviour between pedestrians and cyclists focus on head-on or rear-
end conflicts, but not many studies focus on sideways crossing scenarios. Yet these are often the most
critical for pedestrians, as crossing a dedicated bike path sideways typically offers the quickest route to
exit the area designated for cyclists. Many studies describe conflict severance either by time-to-collision
(TTC) or by post-encroachment time (PET). While TTC quantifies how soon two traffic participants
would collide if they maintain their current trajectories, PET is used in this study because it captures a
broader range of crossing scenarios, including situations where paths intersect but are not strictly on a
collision course. Furthermore, the literature shows that simulation of movements for both pedestrians
and cyclists operates best if a prediction of movement is taken into account.

This study uses trajectory data collected by smart sensors of two intersections at the TU Delft campus
for a behavioural analysis. In total, 289216 trajectories were detected in a full month. Speeds, loca-
tion with respect to the environment, and origins and destinations are determined for all trajectories
to determine the type of mode and to distinguish approach cases. Sideways crossing cyclists and
pedestrians within a time frame (PET) of 0 to 5 seconds are studied. The movements of a total of 7310
pedestrians have been detected of which 4780 crossed with a single cyclist. A classification is made
between pedestrians crossing before and after the cyclist to compare the outcomes of the behaviours
in both scenarios, both with each other and with reference trajectories of non-crossing pedestrians.
Conflicts that are in close range (0 - 3 seconds of PET) in general show more stopping movements for
pedestrians than interactions that happen further away from each other (3 - 5 seconds of PET). This
second classification from a PET of 3 seconds threshold allows further analysis to distinguish whether
pedestrians behave differently when the interaction is near compared to when there is more time in
between the two modes.

Stopping behaviour is analysed for pedestrians that cross with a cyclist and compared with pedestrians
that do not cross with a cyclist. From the four conflicting scenarios that were analysed, three considered
pedestrians crossing straight and one scenario, the pedestrian crossed the path after walking along the
cycling path. In the straight walking scenarios, the pedestrians in the category of 0 to 3 seconds of PET
that cross after the cyclist stop around 35% of the time. The stopping percentage decreases with an
increasing PET, indicating that the closer in time a pedestrian crosses after a cyclist, the more likely it
is that the pedestrian will stop. The average distance that pedestrians tend to keep measured from the
instant the pedestrian stops to the eventual crossing point in this close range scenario is slightly more
than 3 meters. The average distance in the scenario where the pedestrian walked along the cycling
path was 2.5 meters. The stopping distance where the pedestrian crosses after the cyclist within a PET
of 0 to 3 seconds follows a normal distribution.

Apart from the actual PET value of a conflict, this study presents a method to derive a predicted PET
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value per time step. The predicted PET provides insight into how an approach towards a potential
conflicting situation is handled. From these predicted PET values, it is found that when a collision or
near collision is predicted (PET between 0 and 1 seconds), the pedestrian is more likely to stop or slow
down to let the cyclist pass. In many other cases where no collision is predicted, the pedestrian often
maintained a steady course.

Furthermore, deviating behaviour is analysed for pedestrians that need to cross straight and that have
a conflict with cyclists. This is determined based on the overall and maximum deviation of a trajectory
from the straightest path. Whether a trajectory shows notable deviation is determined based on the
common difference with non-crossing trajectories. The findings suggest that pedestrians that cross
behind a cyclist that approaches from the side, deviate about 20% of the time. This deviation is often
directed towards the cyclist, because the pedestrian can cross the cyclist earlier.

This study shows that pedestrians adapt their behaviour in response to approaching cyclists by stopping,
deviating, slowing down, or combining these strategies, when yielding is needed. These adaptations
are anticipatory and depend on the relative timing, approaching side, and available space of the in-
teraction. The findings suggest pedestrians often act more cautiously, implicitly recognising cyclists’
speed advantage. This behavioural distinction highlights the need for infrastructure that reflects these
dynamics and supports safe, intuitive interactions at active-mode crossings.

The findings of this study can fit into the simulation model MassMotion by implementing a combination of
adaptation to the social forces for the direction of movement and overruling these forces when stopping
or slowing down behaviour needs to be performed.

The findings could refine the behavioural assumptions that are made in future research on pedestrians
stopping and deviating movements towards approaching cyclists, but are also required as input for
behavioural models. This study furthermore shows that the implemented method for a prediction of PET
can capture more nuanced pedestrian avoidance behaviours outside stopping and deviating behaviour,
thereby broadening the scientific understanding of conflict measures beyond traditional PET.

More testing of the MassMotion model is necessary to eventually implement a proper cyclist agent into
the model by calibrating the parameters and implementing terms with stochasticity. Further research
could be done in the movement changes that the cyclists tend to make when interacting with the pedes-
trian, especially by focussing on longer ranges.

The results of this study can inform urban planners to develop evidence-based decisions on designs,
implementing the knowledge on pedestrians hesitancy when crossing a bike path. The findings can be
used by policymakers to develop intervention methods at busy pedestrian-cyclist crossings.
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Introduction

With the need for more sustainable transportation options, the urban environment will undergo a modal
shift from the car to cycling and walking, among other modalities (Ng et al., 2024). An additional benefit
of this shift towards active mobility is the increase in physical activity of a population accompanied
by improved health (Donaire-Gonzalez et al., 2015). This transition to active modes comes with the
challenge of facilitating sufficient and high-quality infrastructure that meets the needs of pedestrians
and cyclists. While active modes are associated with significantly lower external costs compared to
motorized transport, the remaining costs are largely linked to traffic accidents (Pisoni et al., 2022). An
increase in the number of cyclists and pedestrians may lead to more frequent and severe accidents,
particularly in areas where they share narrow spaces (Huyghebaert, 2021).

Consequently, infrastructure should be designed properly, so it not only encourages walking and cycling
but also promotes behaviours that are safe and consistent with the intended use of the space. However,
the movements of cyclists and pedestrians differ significantly in terms of speed and agility. While Dutch
legislations make a clear distinction between motor vehicle drivers and active modalities, labelling the
latter group as vulnerable road users which affords them greater legal protection in traffic incidents
(ARAG, 2025), no legal distinction is made between cyclists and pedestrians (Letsel Hulp Service, n.d.).
At the same time, the general higher speed of the cyclist might suggest that the pedestrian is a more
vulnerable road user (Letsel & Schade, 2025) and behaves accordingly by a more cautious attitude
(Huyghebaert, 2021 and voetgangersvereniging Nederland, 2021), yet it is unclear in what way exactly
this conflict avoidance behaviour between pedestrians and cyclists takes place. In addition, transport
planners will need insight into this behaviour when creating policies that should contribute to active
mobility needs. Therefore, there is a need for knowledge about this behaviour, especially considering
that the limited number of studies that focus on this interactive behaviour do not specify all the typical
encounters that take place in areas dedicated to active modes.

1.1. Research Problem

Despite the growing need for sustainable transportation, there is a significant gap in understanding the
interactions between cyclists and pedestrians, which this research aims to address. Predominantly,
studies have been conducted on the interaction in pedestrian crowds (Shahhoseini and Sarvi, 2019),
which is an enormous challenge for festivals and events Klipfel (2014). However, only a handful of
studies have been performed to simulate the interactive behaviour between cyclists and pedestrians,
of which the interactive cases have been outlined by W. Wang et al. (2024), Dias et al. (2018), Beitel
etal. (2018), Yuan et al. (2019), and Afghari et al. (2014). These studies consider different approaching
cases between a cyclist and a pedestrian. The studies of W. Wang et al. (2024) and Dias et al. (2018)
focus on the trajectories of pedestrians and cyclists in a head-on conflict or an approach from behind.
And while Beitel et al. (2018) also considers the approaching scenario of a sideways interaction, it
only makes an assessment of the safety of different interactions and does not analyse movements
or movement changes based on the interactive cases. The study of Yuan et al. (2019) performs an
analysis on cyclist and pedestrian interactions based on data collected from a shared space. Although



1.2. Research Objective 2

shared space is a concept that is widely applied and tested within the urban area, general intersection
cases occur even more frequently. Afghari et al. (2014) performs a study at a bike path with a pedestrian
crossing, yet after filtering only 17 interactions were analysed to detect general movement patterns.

Thus, there is a knowledge gap on the general behaviours that cyclists and pedestrians show, when
in conflict with each other at crossings. Not only could the general knowledge on cyclist-pedestrian dy-
namics be advanced, also the particular behaviours of individuals and its variance are of interest both
for scientists and practitioners. If insights on the behaviours of pedestrians and cyclists are gathered,
these could form a fundament for studies on safety, for example by developing methods to assess the
risks involved in the interactions. Urban planners or policy makers could use the behavioural informa-
tion on interactions to create design interventions that reduce conflicts or improve flows. A suitable
way to develop design ideas, would be to implement behavioural rules into a simulation model to be
able to test these designs. This is a preferred method rather than applying designs directly in real-life
situations, because several scenarios can be tested in simulation software with relatively low costs,
while it is also possible to detect severe risk issues at an early stage.

The company Arup and their software development branch Oasys have a simulation model, MassMo-
tion, in which the movements of pedestrians and cyclists can be analysed. MassMotion operates under
the conditions of social forces that direct agents to their respective goals. Although the development
of the pedestrian is already in a far stage of development, the cyclist is only at the beginning. Some
general modifications have been made to the pedestrian agent to resemble a cyclist agent, yet when
interacting with pedestrians, this new cyclist and subsequently the pedestrians still show behaviour
that is not realistic. Transforming a pedestrian agent into a cyclist involves rethinking how the agent
behaves and interacts with its environment. Cyclists move and respond differently and occupy more
space compared to pedestrians. Modelling these differences presents a challenge, as it requires adapt-
ing both the shape and functional characteristics of the original agent to reflect cyclists. Moreover, when
cyclists are correctly adapted into the model, the responses of pedestrians need to be tuned to these
cyclists as well to mimic real-life responses. These responses are pivotal for the implementation when
the pedestrian is considered a more vulnerable party in the the interaction with a cyclist.

1.2. Research Objective

The aim of this research is to investigate how pedestrians adapt their movement when approaching cy-
clists in crossing scenarios, with a focus on identifying behavioural patterns that contribute to collision
avoidance. With a data driven approach, this study analyses pedestrian responses of stopping and
deviating to a cyclist approaching on a bike path. The resulting insights are intended to provide a foun-
dation for future development of cyclists and pedestrians in simulation models, such as MassMotion.

The first objective is to conduct a literature review by identifying distinct types of cyclist-pedestrian in-
teractions. The studies should differentiate in approaching scenarios and what consequences these
approaches have on the behaviours that are performed. Furthermore, it should be clarified how pedes-
trian and cyclist behaviours have been incorporated into social force models.

The second objective is to define a structured list of data requirements that is needed to study pedestrian-
cyclist interaction. This list should follow from a developed framework that clarifies the factors influenc-
ing cyclist and pedestrian behaviour.

The third objective is to implement a data preprocessing method to prepare for the analysis on be-
haviours, while retaining a significant amount of the pedestrians and cyclists. The purpose of this
method is to extract the parameters that explain behavioural traits and distinguish types of interactions.

The fourth objective is to analyse significant pedestrian-cyclist interaction trajectories and qualitatively
and quantitatively assess the stopping and deviating behaviour that pedestrians tend to perform in
different conflicting situations.

The last objective is to detect possible deviations when implementing cyclists in a social forces model,
focussing on the movement changes that pedestrians perform towards these cyclists. These move-
ments should be compared in a test case to the movements that have been detected in the data, to
determine what resulting behaviour needs to be adapted in the simulation model.
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1.3. Research Scope

This research focusses on the interaction between a pedestrian and a cyclist, specifically examining
how pedestrians react to the presence of cyclists approaching from cycling paths with no other modes
of traffic involved. There should be a pavement separation between the two modes in the form of
distinction by either kerbs, different (coloured) pavement or ribboned pavement.

The individual characteristics of the participants are not considered as influencing factor of the be-
haviour. This study only distinguishes between a cyclist and pedestrian, without further distinctions
into different types, e.g. runners or e-bikes, and different demographics such as gender, age and
fitness. This is because focussing on a broad categorisation enables the findings to be more generalis-
able to pedestrian-cyclist interactions, rather than limiting them to specific subgroups. Additionally, this
research prioritises the quantity of data over detailed individual profiling, as the aim is to provide a first
insight into pedestrian behavioural adaptations during encounters with cyclists. As a result, nuances in
how different subgroups might react to conflicts remains undetected and the conclusions drawn may
overlook the influence of individual characteristics.

The study will analyse individual interactions between a single pedestrian and a single cyclist, excluding
any group dynamics. While general cyclist characteristics will be considered for modelling purposes,
the primary emphasis remains on pedestrian behaviour. This focus is chosen because accurately
modelling cyclist adaptation in MassMotion would require significant adjustments, which is beyond the
scope of this study.

The interactive cases that this study focusses on are pedestrians and cyclists crossing each other
sideways, because these are often the most critical for pedestrians, as crossing a dedicated bike path
sideways typically offers the shortest and therefore fastest path to exit the area designated for cyclists.
Therefore, no head-on or rear-end conflicting situations are considered.

Lastly, weather circumstances and lighting conditions are not taken into account to generalise behaviour
of pedestrians and cyclists in all weather circumstances and lighting conditions. Although the study
does not include lighting conditions, the visual range of pedestrians and cyclists on site is sufficient due
to the application of lampposts.

1.4. Research Questions

To achieve the aim and the corresponding objectives presented in this thesis, it is necessary to explore
how the behaviour towards cyclists affects pedestrian movements. Therefore, this research seeks to
address the following question:

In what way do pedestrians change their movements when approaching and crossing bike paths with
oncoming cyclists?

First, the different possible interactive behaviours in existing research will need to be studied and the
main takeaways for social force-based modelling of the studies need to be described. Second, the
interactions should be chosen that could contribute to describing general movement cases of cyclists
and pedestrians and then data requirements need to be determined. Third, the data needs to be
processed to make an analysis of the behaviour possible. Fourth, the behavioural patterns need to
be detected that explain the movement of pedestrians when interacting with cyclists. Lastly, this study
aims to translate some of the findings into a social forces model. Therefore, the sub-research questions
become:

1. What types of movement patterns between cyclists and pedestrians have been identified in exist-
ing research, and how have these been implemented in social force-based models?

2. What data is needed to describe the movements of pedestrians towards cyclists?

3. Which data processing and enrichment methods are required to prepare pedestrian and cyclist
data for a behavioural analysis?

4. What movement changes does a pedestrian perform when approaching a cyclist in a sideways
conflict?
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5. What adaptations can be done to the social forces model to mimic the behaviour of pedestrians
towards approaching cyclists?

These sub-questions will be answered in their respective chapters. The main research question will be
answered in the Conclusion.

1.5. Contribution to Science and Practice

This study contributes to both scientific understanding and practical application of cyclist—pedestrian in-
teractions by extracting and analysing data-driven behavioural patterns from trajectory data. Scientific
contributions are provided on the movement adaptations pedestrians make towards cyclists through
a framework that explains this concept, a method for deriving these adaptations by making a predic-
tion of paths, and a quantification of their various types. This methodology can find more use cases
not only limited to cyclist-pedestrian interactions. Furthermore, data-based classification methods are
presented that illustrate ways of organising interaction patterns. These findings are translated into
an empirically grounded behavioural description that can complement social force-based models to
demonstrate the feasibility of incorporating such behaviour. These insights provide a foundation for
further model calibration. This can eventually inform practitioners for developing designs that better
accommodate the needs of active modes. In addition, the behavioural insights that this study presents
could already provide practitioners with making substantiated design or policy choices

1.6. Outline of the Thesis

In this thesis, cyclist-pedestrian interactions will be analysed with the following approach. The Literature
Review examines existing research on various types of cyclist-pedestrian interactions and identifies
which behaviours have been studied. The Methodology outlines the complete approach to study the
movement changes of pedestrians towards cyclists. The Data Selection chapter motivates the choice of
data collection method and site selection. The Data Preparation details the enriching processes taken
to prepare the data for a behavioural analysis. The Results chapter presents the findings from the data
analysis and evaluates the outcomes of simulation tests. The Discussion addresses the limitations of
the study and reflects on the relation with other literature. Finally, the Conclusion gives an interpretation
of the most relevant findings, discussing pedestrian behaviours towards cyclists and areas for future
research.



[Literature Review

This chapter outlines the existing knowledge regarding cyclist-pedestrian interaction and discusses
what previous studies have done to analyse pedestrian and cyclist behaviour that could contribute
to microscopic modelling. The chapter aims to address sub-research question one: What types of
movement patterns between cyclists and pedestrians have been identified in existing research, and
how have these been implemented in social force-based models? Therefore, literature is studied that
explains the situations where interactions arise and describes what movements can be expected in
these situations.

First, studies on possible interactions between traffic participants are discussed. Second, the social
forces model utilised in MassMotion is examined in the literature by following the modelling approach
of each of the studies. Finally, a conclusion is provided that highlights the gaps in the literature and
how this research will build upon the existing knowledge.

2.1. Interactions

The interactions between cyclists and pedestrians are strongly influenced by the design of the infras-
tructure, as it shapes the space in which encounters occur. Certain types of infrastructure actively
facilitate these interactions, making them valuable settings for studying the behaviours of both modes.
Understanding how infrastructure influences encounters can help identify the conditions under which
pedestrian-cyclist interactions emerge. This section will first explore the types of infrastructure most
likely to induce such interactions. In the second part, an overview of existing research on pedestrian-
cyclist interactions will be presented, highlighting the approaches taken and identifying knowledge gaps
that remain to be addressed.

2.1.1. Infrastructure

Since infrastructure is intended to guide movements and manage flows, it inherently influences where
and how these interactions take place. Understanding these influences allows to identify the locations
where interactions are most likely to occur. Several studies have examined the impact of different
infrastructure layouts on movement patterns.

Duives et al. (2013) provides an overview of pedestrian flow dynamics, categorising them into uni-
directional and multi-directional flows. The pedestrian movement is shaped due to guiding infrastructure
consisting of solid walls, forcing flows in certain directions. Figure 2.1 illustrates various pedestrian flow
scenarios at different intersection layouts. In the context of this research, the focus is on scenarios F,
G, and H, where the infrastructure facilitates crossing flows. However, Duives et al. (2013) focusses
solely on pedestrian movement, and does not consider cyclists as a distinct group. If cyclists are taken
into account separately, several more conflicting categories could be distinguished.

W. Wang et al. (2024) considers both pedestrian and cyclist interactions, though not across all possible
interaction scenarios. In this study, itis mentioned that the directions that pedestrians and cyclists follow
are under influence of hard or soft separators. Hard separators, such as impenetrable walls, compel
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Figure 2.1: Pedestrian crowd flows from Duives et al. (2013).

cyclists and pedestrians to follow designated paths, following the flow scenarios described by Duives
et al. (2013). In contrast, soft separators allow pedestrians to step off the infrastructure, though this
research shows that they tend to stay near the separation edge, highlighting the role of infrastructure
in guiding active modes of transport. The study compares the number of conflicts that occur on a
straight road versus those at a T-intersection, while the flows of different modes are not separated.
The conflicting numbers appear to be higher for the T-intersection, suggesting that interactions between
cyclists and pedestrians tend to take place more often at intersections than on straight roads, as they
facilitate encounters between active modes of transport.

The research of Wei et al. (2021) provides different possible intersection layouts for the purpose of au-
tonomous driving strategies. Although this research focusses on motorised traffic, many of the intersec-
tion configurations it identifies can also be applied to active-mode interactions. Figure 2.2 presents an
overview of different crossing layouts that could serve as a foundation for observing cyclist-pedestrian
interactions, from Wei et al. (2021).

(a) Crossroad (b) X-intersection (c) Y-intersection

(e) Roundabout (f) Misaligned intersection (2) Ramp merge (h) Deformed intersection

Figure 1. Different types of intersections

Figure 2.2: Intersection possibilities according to Wei et al. (2021).

Drawing on these studies, active-mode intersections are locations to observe pedestrian-cyclist inter-
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actions more frequently compared to straight roads. Although, to the writer’'s knowledge, there are no
studies that distinguish all types of intersections suitable for various active modalities, the intersection
types provided in aforementioned studies can be considered as a foundation for this research. In sub-
section 4.1, a new configuration of active mode intersections with separations of modes is presented.
It is required for this research to make a selection of intersection locations to enhance the ability to
capture sideways interactions and the resulting movement patterns.

2.1.2. Approach Cases in the Literature

A cyclist-pedestrian interaction can occur in different approaching situations. These can range from
an approach that is head-on to one that is from behind and the approach can be in close range or
from further away. In this section, active mode interactions that can be found in previous studies are
highlighted, each focussing on different approach cases. In addition, the interactive scenarios that have
not yet been investigated are addressed in this section.

In the paper of W. Wang et al. (2024) the approach cases that are analysed are between electric bicycles
and pedestrians. The field study that has been conducted considers the approach cases to occur on
a 'shared road’, referring to a combined cycling and footpath, both in a straight road and T-intersection
scenario. The straight road has a layout that enforces traffic participants into a head-on or rear-end
conflict. Angled conflicts are considered in the sense that the time to collision is calculated, with which
the severity of the conflict risk is determined, yet a specific analysis on what the angled conflict does
to the movements of the pedestrian is missing.

A similar field study has been conducted by Dias et al. (2018) where, again, the focus was on a similar
shared road of about 4.2 metres wide in which the flows of pedestrians, cyclists, and Segway riders
were combined. In this case, site analysis was performed using an experimental setup. The movement
scenarios that were analysed considered the pedestrian-cyclist interaction, more specifically the cyclist
avoiding the pedestrian, and not vice versa.

Afghari et al. (2014) performed a field study of 158 minutes of video footage on pedestrian-cyclist
interaction behaviour in Montreal. The case considered a zebra crossing from a side walk to a bus
stop that crossed a bike path from the side, with a total number of 225 interactions, yet after filtering
processes, only 17 interactions were left. The findings suggest that cyclists tend to maintain their
speed and acceleration, whereas pedestrians make evasive actions by decelerating or accelerating or
changing their movements with respect to the approaching cyclist. It is not specified in what way these
movement changes occur. The bike path is furthermore under a slope, making a distinction between
cyclist going up or down necessary. The authors acknowledge that the relatively short observation
period and the limited number of close interactions restrict the generalisability of their conclusions and
point to the need for further research.

In the study of Beitel et al. (2018), the risk of the cyclist-pedestrian interaction is assessed in shared
spaces using video traffic data. Although this study does not provide information on the movements of
cyclists or pedestrians, the conflict analysis could be a valuable asset to this research when studying
the different types of conflict. Beitel et al. (2018) identifies three distinct types of conflicts between
cyclists and pedestrians, classifying them into head-on, angled, and rear-end conflicts. Both head-on
and rear-end conflicts consider one of the traffic participants approaching the other along the axis of
direction of the other participant with a + 30 degree angle. This leaves the angled approach to be a
crossing that is perpendicular to the axis of direction with a + 60 degree angle. In addition, the study
differentiates these scenarios based on whether the pedestrian or the cyclist arrives at the conflict point
first, leading to six different approaches. Figure 2.3 illustrates the different approach angles in a cyclist-
pedestrian crossing scenario.

However, the classification of this angle of approach does not result in a description of behaviour for
the cyclist or pedestrian. It is used to measure the safety risk of the type of conflicts that can occur. The
risk assessment is done by determining the relative risk of each conflict approach and combining this
with the risk of the value of the, so-called, post-encroachment time and the speed of the cyclist. The
speed of the cyclist influences the risk of the conflict in terms of the impact that a higher speed has on
the severity of a collision. The post-encroachment time is a measure to determine whether a conflict is
nearby and is explained in more detail in subsection 2.1.3.
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Figure 2.3: Categorisation of the possible crossings between cyclists and pedestrians with examples of a head-on (1),
rear-end (2) and angled (3) conflict. Based on the paper of Beitel et al. (2018).

Summarising, the approach cases that have been studied in existing literature show a description of
behaviour for head-on or rear-end conflicts, but often an analysis on sideways interactions is missing.
The studies that do consider these sideways interactions either focus on the severity of conflicts, only
inform on the movement changes that cyclists perform towards pedestrians, or in the case of Afghari et
al. (2014), the study has too little data to generalise or specify the findings of the pedestrian behaviour.

2.1.3. post-encroachment time

To study and categorise cyclist-pedestrian movement patterns, several metrics have been used in the
literature to assess the nature and intensity of their interactions. One of the adopted measures is the
post-encroachment time (PET). Although PET is commonly used as a safety indicator to quantify the
severity or proximity of conflict, it can also function as an indicator for identifying behavioural adapta-
tions, such as stopping or slowing down. For this research, PET serves not only to assess risk, but
also to classify behavioural responses based on the timing and spatial relationship between the two
road users. These behavioural interpretations tied to PET are therefore relevant when examining the
movement patterns that relate to pedestrian-cyclist interaction.

The PET is defined as the time it takes between the first traffic participant to leave the conflict area and
the second traffic participant to reach this same area. It is a measure to determine the proximity of a
collision with a small PET referring to a near conflict and vice versa. Beitel et al. (2018) prefers the
measure of PET to the measure of time-to-collision (TTC) in which the time it takes for both modes to
collide is calculated if their path continues. This preference is because PET considers more interactive
scenarios than TTC and no motion predictions have to be made. However, for studying adaptations
in the behaviour over time, these predictions could prove to be key for understanding the changes to
movements that pedestrians and cyclists tend to make.

The risk assessment based on the value of the PET is done by classifying the conflicts into two cate-
gories of a PET between 0 and 2 s (conflicting) and between 2 and 5 s (interacting). Several studies
use different threshold values for PET. For example, the paper of Tageldin and Sayed (2016) only con-
siders the most dangerous conflicts, up to 1.5 s, for pedestrians interacting with several other modes
when studying their evasive manoeuvres at a busy intersection. In the study of Afghari et al. (2014),
3 seconds is used as a PET threshold for safe interactions. A study of Zangenehpour et al. (2016)
considers similar thresholds (1.5, 3 and 5 seconds) for cyclist-vehicle interaction. The debate around
these different PET values explains that the circumstances of the crossing layout, intensities of the
traffic, and the modalities that are studied could influence the threshold values for classifying certain
interactions. However, the studies do agree that from a PET value above 5 s, it is not considered an
interaction.
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2.2. Social Forces

This section reviews the methodologies employed in previous studies that have applied the Social
Forces Model (SFM), or a variation of this model, to simulate the behaviour of cyclists and pedestrians.
It begins by outlining the core principles of the SFM, followed by an examination of how various studies
have adapted or extended the model to capture cyclist-pedestrian interactions. By comparing their
approaches, assumptions, and limitations, this section aims to identify both the required elements for
model implementation and the behaviours that remain underexposed in current research.

The social forces model was first introduced by Helbing and Molnar (1995) in which three main force
components are introduced: the driving, repulsive, and attractive forces. The driving force is the force
that has a direction towards the goal of the agent, which results in an acceleration to a certain desired
speed and direction. The repulsive forces are generated by objects or other agents that the agent in
question needs to avoid in order to complete its trip. The attractive forces are the forces that the agent
is drawn to during its trip, e.g. other persons or objects.

Helbing et al. (2002) refines the formulation of the social forces by introducing a term that monotonically
decreases the exerted force to another agent depending on the approaching angle, which is the highest
at the front of the pedestrian and zero at the back. Further enhancements of the social forces model
for pedestrians have been developed by Xi et al. (2010), in which vision fields and grouping behaviour
are included. The social forces model is being widely used when analysing pedestrian interactions on
a microscopic scale. Although there is a discussion about the applicability of the social force model
in crowd motion cases (Duives et al., 2013), the focus on individuals provides for mostly accurate
one-on-one interactions between pedestrians. With the advancement of the SFM, other modes of
transportation, including cyclists, have been attempted to be added to these models (M. Li et al., 2011,
LIANG et al., 2012).

However, it remains a challenge for the social forces model to incorporate cyclists. The model would
at least require the implementation of additional rules, as the social forces on an agent are induced
by traffic participants in the vicinity (Y. Li et al., 2021). For realistic cyclist movement or pedestrian
movement towards cyclists, this nearby range is not sufficient since the speed of cyclists force them
and other participants to make decisions on movements further ahead in time.

Y. Li et al. (2021) tackles this issue for the movement of cyclist agents by introducing a modified so-
cial forces model. The main research case focusses on the lateral dispersion of cyclist groups when
crossing an intersection following three (interactive) cases: freely moving, following, and overtaking.
The additional elements of the SFM introduced in this study are the dynamic boundary model and a
behaviour force that incorporates decision making. The model bases the behaviour force on the find-
ings of a decision model, in which these findings are then modified to a formulation of a social force.
This suggests that cyclists tend to follow a process of making their movements based on the choice
between a set of options, rather than a movement based on gradual changes in the (near) environment
as with the SFM.

W. Wang et al. (2024) uses a similar approach to model cyclist behaviour on e-bikes by introducing
a modified version of the SFM. This study introduces the modification of the SFM for both cyclists
and pedestrians and therefore also focusses on their interacting forces. For pedestrians, the study
assumes most of the forces introduced by Helbing and Molnar (1995) with its subsequent modification
(Helbing et al., 2002). An adjustment that is introduced is the force from soft separators which refers to a
passable border stepping off the infrastructure. For pedestrians, the goal force and the force from other
pedestrians remains similar. The force of cyclists is introduced as a force increased in size pointing
from the cyclist to the pedestrian. This force is enlarged by a scale factor, because the higher speed
and swaying characteristic of the cyclist make the pedestrian more reluctant towards cyclists.

Furthermore, W. Wang et al. (2024) proposes to significantly change the social forces exerted on
cyclists, with the introduction of a following or overtaking force, a boundary force and a modified
pedestrian-cyclist force. The pedestrian-cyclist force is based on a calculation of the cyclist predicted
to coincide with the personal safety buffer of the pedestrian. If the cyclist is predicted to collide with this
pedestrian or the space directly around it, the cyclist will adjust it's direction according to the closest
escape direction (in front or behind the pedestrian). It is notable that this study accounts for an ad-
justment in the cyclist's movement toward the pedestrian based on predictive movement. In contrast,
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pedestrian movement towards cyclists is influenced solely by a force exerted from the current position
of the cyclist to the pedestrian.

The study of Y. Wang et al. (2024) examines the safe space of pedestrians and e-bicyclists that they
prefer to maintain during crossing. The results show that pedestrians have a semicircular safe space
with uniform distance in all directions, while e-bicyclists require a semi-elliptical safety zone with greater
distance in the forward direction. As speed increases, the safe areas for both pedestrians and e-
bicyclists expand, with the forward travel distance of e-bikes being most significantly affected. This
examination of safe spaces shows that people tend to remain at a certain distance from each other and
that this distance is dependent on the speed of that particular person.

Other studies account for the speed and direction of movement as well when simulating pedestrian-
cyclist interaction. The paper of Yuan et al. (2019) analyses the interaction between pedestrians and
cyclists in a shared space and proposes a social force formulation that bases the movements of an
agent on the anticipated movement of other traffic participants. The study highlights that accounting
for the direction and speed of other traffic participants will improve the simulation of the interaction.

Dias et al. (2018) performs a similar approach in the interactions between cyclists, pedestrians and
segway riders on a shared road. Here, the interactive force is based on the relative position of two
agents and the relative velocity of these two. The final formulation considers a force exerted from one
agent to the other with the size of the force dependent on an elliptical shape with the major axis in the
movement of direction. This elliptical shape is combined with the formulation of Helbing et al. (2002) in
which the force monotonically decreases with the angle of approach, so backward forces are minimised.
However, this formulation is only tested by exerting the interactive force from the pedestrian towards
the cyclist and not the other way around.

Summarising, several studies propose adaptations to the original social forces model to incorporate
cyclists. The original SFM does not suffice to simulate cyclists in a proper way due to the difference
in characteristics, so adaptations of the social forces or the implementation of additional rules are
necessary. Many of the studies propose a highly adapted model for the movement of the cyclist, yet
in some studies the changes this induces to pedestrian behaviour is not or barely considered. Other
studies that do propose an adaptation of the forces exerted to both cyclists and pedestrians show that
the velocity and the prediction of movement has an impact on the social force formulation. Table 2.1
provides an overview of the adaptations that the different studies applied, what mode their focus is on,
and whether they make use of a prediction of movement.
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Table 2.1: Summarising table of the studies focussing on a social forces and the adaptations thereof.

) Movement
Social Forces Focus on iy
Study Adaptations ped/cyc prediction
(ped / cyc)
Helbing (1995) ]',”tmduc'”g three types of - b yestrian No / -
orces
Helbing (2002)  Angular dependence Pedestrian No /-
Xi (2010) X'S'O”.f'e'd’ grouping Pedestrian No / -
ehaviour
Duives (2013) - Pedestrian -
Li (2011) Border force Cyclist (& cars) -/ Yes
Trajectories choice model
Liang (2012) and Psychological-physical Cyclist No / -
force model
Dynamic boundary model,
Li (2021) behaviour force based on Cyclist -/ Yes
decision making
Force of soft separators,
W. Wang (2024) following or overtaking Pedestrian & cyclist No/ Yes

force

Y. Wang (2024) Pedestrian & e-bike -

Yuan (2019)

Force formulation based

on the next time step

Force based on elliptical

Dias (2018) shape in movement Pedestrian & cyclist No/ Yes
direction

Pedestrian & cyclist Yes/ Yes

2.3. Conclusion

The sub-research question corresponding to this literature review was: what types of movement pat-
terns between cyclists and pedestrians have been identified in existing research, and how have these
been implemented in social force-based models?

Some research has been performed in cyclist behaviour and much more in pedestrian behaviour, yet
the interaction between cyclists and pedestrians has been studied limitedly, both in quantities of studies,
as well as types of approaching cases. Approaches from behind and head-on have been studied in
several shared environments. However, an environment where cyclists and pedestrians are separated
by pavement and where they cross each other sideways is not considered extensively when observing
behaviour. Many of the studies follow an approach to classify the interactions based on the proximity of
the conflict. Post-encroachment time (PET) is a commonly used measure to create this classification,
but the studies do not seem to agree upon the exact threshold value for this classification. This study
seeks to address these missing links in the literature, which is further detailed in the Methodology.

Several adaptations of a cyclist model in social forces have been proposed to mimic certain behavioural
aspects of the cyclist towards pedestrians better. Many studies use modification of the social forces
or are even overruling the social forces suggesting that cycling behaviour cannot be modelled with
social forces alone, because the formulation requires major changes. With this focus on modifications
applied to the behaviour of cyclists, the behaviour of the pedestrian towards the cyclist is thereby often
underexposed. Because cyclists commonly have higher speeds, the simulated behaviour is adapted
in such a way that a prediction of movement is necessary for implementing cyclists and the behaviour
of pedestrians towards these cyclists properly.

In short, the gaps in the literature motivates a focus on finding a PET threshold value based on
pedestrian-cyclist interactions. It furthermore stresses that behavioural understanding is required for
modelling practice, especially in the context of pedestrian responses towards cyclists.



Methodology

This chapter discusses the methodology framework that is used to answer the research question: In
what way do pedestrians change their movements when approaching and crossing bike paths with
oncoming cyclists?. The framework, provided in Figure 3.1, explains how it addresses the sub-research
questions (SRQs) to describe movement changes from pedestrians towards cyclists on cycling paths.

From the Literature Review (Chapter 2), a literature gap was identified to answer the first sub-research
question (SRQ1), which involved reviewing existing studies on interactions between cyclists and pedes-
trians and the modelling thereof.

Next, the framework focuses on selecting the data from specific locations and crossing scenarios based
on a list of requirements. SRQ2: What data is needed to describe the movements of pedestrians
towards cyclists? is thereby answered by determining the types of data needed to describe pedestrian
movements towards cyclists.

Following this, SRQ3: Which data processing and enrichment methods are required to prepare pedes-
trian and cyclist data for a behavioural analysis? is addressed through a structured data preparation
process. The selected data undergoes enrichment to add meaningful variables. The preprocessing
step ensures that the dataset is sufficiently detailed to support a thorough behavioural analysis.

This analysis section involves classifying the data to organise it into meaningful categories. By find-
ing threshold values based on previous research, benchmarks for this classification are developed
together with findings in the data. This classification helps to understand different types of movements
that pedestrians exhibit when approaching cyclists in sideways conflicts. With this insight, SRQ4 can
be answered: What movement changes does a pedestrian perform when approaching a cyclist in a
sideways conflict?. Statistical testing is applied to the classified data to identify possible relationships.

In the final step, the model’s social force formulation is analysed and adapted on the basis of the findings
of the behavioural analysis and the literature. Thereby, SRQ5 is addressed: What adaptations can be
done to the social forces model to mimic the behaviour of pedestrians towards approaching cyclists?.

The framework as described is visualised in Figure 3.1, where the different steps with the related sub-
research questions are shown in a flow chart.

12
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Figure 3.1: Framework of the Methodology

This chapter starts by explaining the concept of behavioural treats that is expected to occur in the
interactions between pedestrians and cyclists. Next, it is clarified what the data requirements are to
enable a focus on the sideways interaction. Subsequently, the preprocessing steps behind the data
are explained. Hereafter, the method for deriving the behavioural insights from the data is presented.
Finally, the method for setting up a test case in MassMotion is provided.

3.1. Conceptual Framework

To create an overview of the behavioural aspects that determine the pedestrian and cyclist interac-
tion, a conceptual framework is constructed in which the different decision steps are highlighted that a
pedestrian and cyclist are confronted with during their interaction. With this conceptual framework, it
is clarified what specific types of variables need to be extracted from the data to be able to classify the
interactions of pedestrians and cyclists and the changes of movements that follow from this interaction.
The framework is highlighted in Figure 3.2. The process of interaction is schematised in a feedback
loop in which the changes in behaviour result in new behaviour for the next time-step.
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Figure 3.2: Conceptual framework of an interaction between a cyclist and a pedestrian.

The process consists of four types of variables: contextual, control, independent and dependent vari-
ables. The dependent variable is the focus of this research and follows from the outcomes of the
research. This dependent variable is affected by the independent variables, and this research aims to
explore the relationships between them. The independent variables are furthermore influenced by the
control variables. To reduce the impact of these control variables on the relation, these variables are
kept constant, or these will be used as variables for further categorisation. The interaction between
pedestrians and cyclists are lastly influenced by contextual variables that determine the (external) cir-
cumstances traffic participants are exposed to.

The control variables can be detected by observing movements. Both pedestrians and cyclists will
display initial movements that can be classified into speed and direction. Every pedestrian and cyclist
has a certain speed and direction for each time-step, but also a desired speed and direction, which might
deviate from the actual speed and direction due to the contextual variables listed in Figure 3.2. This
research will mostly not consider these variables so a more general result is provided. The speed and
direction combined determine the initial movement of both pedestrians and cyclists. This movement
could then be influenced by the presence of other traffic participants, yet this research only considers the
cyclist-pedestrian approaching scenario. This study distinguishes between the different approaching
sides and the intended destination between a cyclist and a pedestrian, which is explained in more detail
in 4.2. Once a pedestrian and cyclist approach one another, a change in the initial movement that was
intended can occur. The approach can either result in a situation where no physical interaction takes
place, therefore no significant movement changes have to be made, or an interaction does take place
and behaviour will likely be adapted.

The interaction can be classified into three distinct categories, following the study of Beitel et al. (2018):
a head-on, sideways and rear-end interaction are considered as the crossing scenarios between a
cyclist and a pedestrian, of which the sideways crossing is studied. The severity of the sideways
crossing can be expressed in the post-encroachment time, the measure to determine the time-wise
crossing proximity of two traffic participants. A second measure to determine the severity of the crossing
can be based on the mode that crosses first. The knowledge on the severity of the potential conflict
helps to determine the movement changes that can be expected from a pedestrian when in conflict
with a cyclist.

These movements can be categorised into several different behaviours, yet the actual physical result
of the decisions that are made by pedestrians in this research are distinguished into three categories:
stopping, deviating and accelerating/decelerating. For cyclists, the resultant behaviour can be divided
in breaking, steering and pedalling. How the movement changes for the cyclist during an interaction
is not considered, so these movements are assumed to be fixed or predetermined. Therefore, the
movements of the cyclists are relevant to study with respect to that of the pedestrian to see how the
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pedestrian acts towards the presence and movements of this cyclist.

The stopping and deviating behaviour for the pedestrians are the dependent variables in this study.
The occurrences of stopping and deviating are defined by threshold values. The relation towards the
independent variables is used to detect the extent that stopping and deviating behaviour occurs.

3.2. Data Requirements

Following the conceptual framework, the movements of individual pedestrians and cyclists need to
be captured accurately to be able to detail the behaviour towards each other. This should be done
in a paved environment with dedicated bike and footpaths. The interaction process described by the
conceptual framework should take place often enough so significant information is collected. This
reasoning shapes the following list of requirements that serves as a guide for selecting proper data to
analyse pedestrian-cyclist interactions:

Trajectories Pedestrian’s and cyclist's movements need to be analysed following their position in time
during interactions. Because in this study the focus is on individual interaction between a cyclist
and a pedestrian, the trajectories need to be precise to be able to detect the slightest movements
of both modes during their interaction. The data thus requires a high resolution (time and space-
wise). As noted in the Literature Review (Subsection 2.1.3), almost all interactive behaviour oc-
curs within a 5-second window before the other participant arrives. Therefore, pedestrian move-
ments should in general be recorded for at least this duration.

Individual data The pedestrians and cyclists need to be distinguished from one another either visually
or by registration of an ID.

Paved environment The environment that is analysed needs to have the proper infrastructure for both
modes to be able to perform their regular movements.

Sufficient quantities of active modes The location needs to have a sufficiently large group of pedes-
trians and cyclists to be able to analyse common behaviour. The study of Afghari et al. (2014)
with a quantity of 225 interactions was after a filtering process left with 17 interactions. This study
therefore aims to find data of at least double the amount of 225 interactions for a certain scenario.

Separation of modalities The environment should have an indicated separation between cyclists and
pedestrians by pavement, and it should induce the need for a pedestrian to cross the bike path,
following the Literature Review conclusion (section 2.3) on the lack of knowledge on interactions
at separated cycling paths.

No traffic control system The location should be free of any traffic control system that influences the
behaviour of pedestrians and cyclists.

The list is used in the process of the data selection in Chapter 4. This chapter discusses a method
for distinguishing intersection configurations and the possible crossing scenarios that could take place
thereon. From there, the definitive site and data selection is presented that stems from the chosen
crossing scenarios and the data requirements.

3.3. Data Enrichment

To categorise the data effectively, information must be extracted to distinguish between cyclist and
pedestrian trajectories, identify interaction cases, and classify different behavioural patterns in these
interaction cases. After the data and site selection, the data thus undergoes a process of enrichment.
Below, a list of necessary information that is extracted from the data is provided:

Speed This information helps to differentiate cyclists from pedestrians. It also offers insights into the
general behaviour, e.g. stopping, decelerating, accelerating, minimum and maximum speeds.
The speed of person is determined for each trajectory point based on the locations and timing of
the surrounding points.

Location The locations, x and y positions, are already provided in the data, yet with respect to the
layout of the crossing, the location is still unknown. When this is clarified, it contributes to deter-
mining the type of mode based on their position on the cycling or footpath. It can also provide
insight in adherence to pavement guidance. The location will be determined by fitting a blueprint
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of the crossing to a random sample set of trajectory points to match the pavement borders of the
area.

Origin and Destination Following the locations of the flows of people, the origins and destinations can
be determined, each referring to the branches of the crossing. These can specify the approach
between a cyclist and a pedestrian. The origin and destination are derived from the location and
direction of the first and last trajectory points.

Crossing Point The crossing point between the cyclists and pedestrians can be used to approximate
the conflict area and thus where the pedestrian and cyclist are in relation to this point. The
crossing point is estimated to be the point where the two segments of both trajectories cross,
calculated by linear interpolation.

Crossing Angle The trajectories of a pedestrian and a cyclist that cross each other from the side are
the trajectories that are being analysed. The crossing angle is based on the exact two segments
of the trajectories that cross each other and need to be at least 30 degrees.

Post-encroachment Time (PET) The PET provides information on the severity of the conflict between
a cyclist and a pedestrian with a lower PET resulting in a more dangerous conflict. The PET is
calculated by taking the difference in time it takes for both modes to reach the crossing point, the
time being calculated by linear interpolation.

First Crossing Mode The conflicts where pedestrians cross in front of cyclists, will result in different
behaviour than the crossings where cyclists cross first. The first crosser is determined by com-
paring the times that both modes reach the crossing point (same time for the PET calculation), of
which the lowest time corresponds to the first crosser.

Predicted post-encroachment time The predicted PET can contribute to determine how the move-
ment with respect to the approaching cyclist changes over time. The predicted PET is calculated
by considering a prediction of the movement direction combined with the speed, and follows a
similar approach as the actual PET.

The process of enriching the data with these values is explained in more detail in Chapter 5. The
acceleration and rotations of trajectories are not determined, because these do not provide information
on the gradual developments of a trajectory that are necessary to study the stopping and deviating
behaviour of pedestrians.

3.4. Behavioural Analysis

This section discusses the method for deriving the behaviour of pedestrians towards cyclists through
an analysis on the movement changes that pedestrians tend to make when being confronted with an
approaching cyclist. This section aims to describe how pedestrians adapt their movements to avoid
potential conflicts by specifically considering stopping and deviating behaviour. Also, a method is intro-
duced to highlight more nuanced movement changes by considering a prediction of PET.

To create insight into the pedestrians that interact with a cyclist, trajectory plots of pedestrians crossing
with cyclists are made that visualise the estimated speed at every measured time instant. The speed
is visualised with a colour plot. Through such trajectory plots, sections can be highlighted that show
stopping, slowing down, and deviating from the main direction. Two schematic examples are given in
Figure 3.3 of trajectories of a pedestrian that stops 3.3a and deviates 3.3b with respect to an oncoming
cyclist. The method for analysing the behaviour is further detailed in the subsections 3.4.1, 3.4.2 and
3.4.3
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Stopping region

(a) Pedestrian stopping trajectory (b) Pedestrian deviating trajectory

Figure 3.3: Two samples of a pedestrian crossing with a cyclist by performing stopping behaviour (a) and deviating behaviour

(b).

3.4.1. Stopping Behaviour

The interactions that are detected through the visualisation require a categorisation that comprises the
different severities of conflicts introduced in section 2.1.2. PET is used as a measure to distinguish
the severity of conflicts, however multiple studies differ in opinion on the exact threshold(s) for PET.
Therefore, this study performs a method for deriving this PET threshold using a data-based approach,
thereby assuming that the severity of the conflict has an influence on the exhibited behaviour found in
the data. In addition to PET, there is a distinction of conflicts where the pedestrian crosses before and
after the cyclist, following the categorisation of Beitel et al. (2018).

For all PET scenarios and both the scenarios of the pedestrian crossing in front of or behind the cyclist,
the stopping distances that pedestrians tend to keep are calculated. The stopping distance is in this
case defined as the distance between the crossing point of the two trajectories to the trajectory point
that gets below a threshold speed that is considered stopping. Because there is no clear reason to
assume that pedestrians tend to stop whenever they cross before a cyclist, the stopping distances that
are important for understanding pedestrians behaviour is in the case where the cyclist crosses first.

The pedestrians are assumed to maintain a certain amount of distance before they cross, with each
individual having a slightly different preference on the distance they keep to maintain a safe feeling. It
is for this reason that the stopping distance is assumed to follow a normal distribution. The stopping
distances for each individual are plotted in a histogram to visually explain the normal distribution as-
sumption and a statistical test is performed to determine its significance.

The statistical test follows a null hypothesis (Hj) that the distance that pedestrians tend to slow down
from is normally distributed. The alternative hypothesis (H;) is that this distance is not normally dis-
tributed. The performed test is a normality test which uses a combination of the D’Agostino and Pear-
son’s test (Strangman, 2002).

If the resulting p-value is more than 0.05, the null hypothesis cannot be rejected, and there’s no signifi-
cant evidence that the data is not normally distributed.

The distances that pedestrians tend to keep from cyclists can be translated into MassMotion. However,
itis unlikely that all pedestrians make the decision to stop when encountered with an approaching cyclist.
Therefore, it is essential to estimate how many individuals actually make the decision to stop. This
understanding helps clarify the range of behavioural options pedestrians consider in such situations.

3.4.2. predicted PET

Stopping is however only a part of how pedestrians could behave to eventually cross in front or behind
the cyclist. This eventual outcome can be the result of several movements along the path. By studying
a more gradual development of an approach between a cyclist and pedestrian, insights can be gained
in the different movements that are performed besides stopping.

The predicted PET is a measure to study the development of an approach between a cyclist and a
pedestrian. The actual PET is calculated for every crossing cyclist-pedestrian pair, and with some
assumptions on the future movements of the pedestrian and cyclist, this can be done similarly for the
predicted PET. A prediction of PET per time step provides the proximity of a conflict if two participants
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were to continue on their course. If this predicted PET changes, this means that the pedestrian or
cyclist is adapting its movement either in speed or direction. The advantage of this method is that even
the slightest movement changes by pedestrians are translated into this prediction of PET, which allows
an analysis on more nuanced movement changes.

The assumptions for predicting PET are presented in Chapter 5 and the results of the development of
this PET for the pedestrians are then explained in Chapter 6.

3.4.3. Deviating Behaviour

Apart from the stopping behaviour of pedestrians towards cyclists, the deviating behaviour is analysed.
Deviation is assumed to occur in the cases a pedestrian crosses a cyclist from behind and is considered
as an alternative to coming to a full stop. Instead of the pedestrian waiting for the cyclist to pass, the
pedestrian will walk in the direction of the cyclist to be able to cross after the cyclist earlier. Another
situation of deviation is assumed to occur where the pedestrian crosses in front of the cyclist, but it
deviates away from the cyclist to avoid a collision.

Whether the pedestrian performs deviation will be studied only for the origin-destination pairs that go
straight. For the south-west path at the Lorentzweg crossing, where the most optimal or convenient
route is ambiguous, calculating meaningful deviation becomes unreliable.

The deviation of the path is determined as the lateral distance that all trajectory points have from the
straight path. The straight path is determined as a straight line between the first and last point of the
trajectory. Figure 3.4 provides an example of a non-deviating trajectory 3.4a and a deviating trajectory
3.4b with a visualisation of these lateral distances for each trajectory point. The value for deviation of
a trajectory is calculated by using the method of the root mean squared deviation and by considering
the maximum deviation, which is presented in the Results chapter.

—o oy g

(a) Non-deviating trajectory (b) Deviating trajectory

Figure 3.4: Two samples of a trajectory without (a) and with (b) significant deviation.

An assumption is made on the deviation values of pedestrians interacting with cyclists compared to non-
interacting pedestrians. Since, for the non-interacting pedestrians, there are less reasons to deviate
from the intended path towards the destination, it is assumed that the distributions of deviating values
are significantly different between interacting and non-interacting pedestrians. The null hypothesis
thereby becomes (H,) that there is no-significant difference in the distribution of deviation from a straight
path towards the destination between an interacting and non-interacting pedestrian. The alternative
hypothesis (H) states that there is a significant difference in the distribution between these two groups
of pedestrians.

If the resulting p-value is more than 0.05, the null hypothesis cannot be rejected, and there’s no signifi-
cant evidence that both distributions are different.

3.5. MassMotion test case

The MassMotion environment is used to perform a test case on a cyclist-pedestrian interaction based
on the main findings on stopping and deviating behaviour in the data. MassMotion consists of a user
interface (Ul) and a software development kit (SDK), in which it is possible to create and change the
digital environment and the behaviour of the agents. This section discusses the set-up of the test case
that is performed in MassMotion to detect potential issues in the current model.

The process of performing the test case consists of four phases:
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1. A test sample is selected from the data that represents the behaviours that are the focus of this
research.

2. The environment of the crossing is recreated in the Ul to fit the layout of the actual crossing.

3. Atestis performed that uses the current formulation of the model, scripted in the SDK, as input
for the movement of the pedestrian and cyclist agent.

4. Adaptations are suggested in the SDK to improve the projected behaviours in the model.
For both the current and adapted formulation, the results are compared with the selected test set of

the data. This is done by performing a visual and numerical comparison of the trajectories for both
simulations with the actual trajectory.



Data selection

This Chapter provides the answer to sub-research question two: What data is needed to describe the
movements of pedestrians towards cyclists? Thus, data needs to be collected that can capture the
scenario described in the conceptual framework. It is essential to select suitable locations where the
data collection will take place. The choice of crossings must be justified to ensure that they provide
representative data on pedestrian-cyclist interactions. In addition, specific approach scenarios must
be identified at these crossings to extract a variety of encounters, and thus behavioural patterns.

First, the optimal crossing configurations to detect sideways interactions are selected. Second, the
multiple scenarios in which cyclists and pedestrians can cross each other on these intersections are
presented and a few of these approaches are selected for studying in detail. Lastly, the method of
collecting and collection site is detailed following from the configurations and the list of requirements
presented in section 3.2.

4.1. Intersection Selection

As discussed in the Literature Review (subsection 2.1.1), infrastructure plays a guiding role in shaping
the behaviour of both pedestrians and cyclists during their journeys. Active mode intersections are
locations where the paths are more likely to intersect and because of these converging paths, these
locations offer opportunities to observe a variety of behaviour. To better understand the nature of these
interactions, this research focusses on selecting an appropriate intersection.

The intersections that are considered are based on those of the study of Wei et al. (2021) with the
addition of the shared space, supported by the Crossing flows - Random category of Duives et al.
(2013). Figure 4.1 visualises the different crossing types that will likely induce a crossing scenario
between cyclists and pedestrians. On these intersections, the likelihood of a sideways interaction with
at least a 30 degree angle increases when the legs of the intersection are positioned perpendicular to
each other. Therefore, the merge, X-, and Y-intersection are less suitable crossings for observation.

For the multi-way intersections, the sideways interactions can be observed, though the complexity of
these crossings increases with the number of paths connected to the intersection. When the complexity
of a crossing increases, the pedestrians and cyclists might behave in a hesitant way when approaching
the crossing, having to scan the traffic from all directions. Although this behaviour would be relevant
for this study, it is beyond the scope of this research, where the focus should be on a one-on-one
cyclist-pedestrian interaction without other disturbances. Shared spaces are being applied more often
at squares to let the flows be regulated by interactive negotiations between traffic participants. Although
the shared space provides many of these interactions, several studies have analysed different interac-
tive scenarios in these environments and this study aims to analyse the pedestrian-cyclist interaction
by analysing locations with a separation of modes.

The remaining three intersections are the crossroad, the T-intersection, and the misaligned intersec-
tion. Although the misaligned intersection most likely induces other approaching behaviour than the

20
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Figure 4.1: Intersection possibilities where flows of people tend to cross each other. Based on the paper of Wei et al. (2021)
where the roundabout has been left out and a shared space is introduced.

T-intersection, the intersection is for the categorisation of crossing flows assumed to be a double T-
intersection. This leaves two categories of intersections that are studied: the T-intersection and the
crossroad intersection.

For the situation on the T-intersection, the topology creates a non-symmetric situation, with a major
road going straight and a minor road that is perpendicular to it. Important to note here is that this
study considers T-intersections where no specific hierarchy is given to one of the legs of the crossing.
The priority rules that apply are the same for pedestrian-vehicle crossings where the right of way to
pedestrians is only given in the scenario if the pedestrian approaches the cyclist head-on or from behind
and the cyclist needs to cross the pedestrian by turning off the straight. In every other approach, the
cyclist will have right of way because the space is specifically assigned to cyclists by a cycling path.

4.2. Crossing Scenarios

The focus of this study is on the behaviour of the pedestrian towards the cyclist. A categorisation
of the crossing scenarios has been proposed to distinguish between different circumstances for the
pedestrian. This categorisation will thus need to take into account the intended path of the pedestrian
and how the cyclist approaches this pedestrian, influencing the behaviour of the pedestrian.

Therefore, a distinction for the crossing scenarios can be made based on two categories: the intended
movement of the pedestrian and the respective approaching branch of the cyclist towards the crossing.
The movement of the pedestrian is dependent on the origin and destination. The origin can be either
one of the two branches on the major road going straight or the minor road that is the side branch of the
T-intersection, the same applies for the destination. If the pedestrian were to interact with the cyclist,
the possible crossing scenarios for the pedestrian need to be outlined. The pedestrian could either go
straight on the major road, turn away from the major to the minor road, or make a turn from the minor
road to the major road. For each of these categories, the pedestrian will need to cross the cycling path
somewhere. This leaves six scenarios for the movement of the pedestrian, assuming that the mirrored
image is a similar case. Figure 4.2 gives an overview of these six scenarios of pedestrians crossing
the cycling path:
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Figure 4.2: Possible ways a pedestrian can cross a T-intersection.

It has to be noted that both the origin and destination of the pedestrian matter for the type of crossing,
because the actual trajectories are likely not a straight line, but rather a diagonal or curved path thereby
either crossing already at the branch of the crossing or more in the centre of the crossing.

The cyclist that approaches the pedestrian can in this case come from the same branch, a sideways
branch or the branch opposite of the pedestrian and it will need to cross the path of the pedestrian.
Figure 4.3 below shows the possible crossing cyclist paths which origin is either from the same branch
(from behind), from a side branch (sideways), or from the opposite branch (Head-on). Some cases
have multiple crossing cyclist trajectories due to its different destinations or (sideways) origins, these are
indicated with the letters a to d, starting from the north direction going clockwise. In the cases numbered
16 to 18, the crossings are not possible, because the cyclist cannot approach from an opposite branch.
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Figure 4.3: Possible approaching situations between a cyclist and a pedestrian on a T-intersection.

The crossroad scenario has many more crossing scenarios compared to the T-intersection due to the
additional branch, yet many of the interactive situations are mirrored situations of others. Therefore,
for the purpose of visualising, the starting branch for the pedestrian will be the same in all scenarios,
only the destination will differ. The directional options the pedestrian has are shown in Figure 4.4 below
with the pedestrian starting in the bottom right corner and crossing the intersection to the directions in
a clockwise sequence:
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Figure 4.4: Possible ways a pedestrian can cross a crossroad intersection.
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Again, the cyclist can approach the intersection from the branches categorised behind, sideways or the
front. The cyclist can in multiple cases have several routes that lead to a crossing scenario, which are

labelled from a to d in Figure 4.5.
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Figure 4.5: Possible approaching situations between a cyclist and a pedestrian on a crossroad intersection.

The analysis of pedestrian behaviour begins by considering the pedestrian paths at these two types of
crossings that were studied. This pedestrian movement can vary depending on the presence of a cyclist.
To capture this variation, several crossing scenarios have been selected from both a T-intersection and
a crossroad. From the crossroad, a considered simple sideways approach with both modes going
straight is chosen, since the behaviour should be described in the most generic cases of crossings.
This setup is represented in scenario 9b and 9d of Figure 4.5. In addition, two interaction paths from the
T-intersection are included. The first involves a pedestrian turning onto the major road, as illustrated
by both scenarios (a and b) of situation 6 and 12 in Figure 4.3. The second involves a pedestrian
continuing along the major road, corresponding to all the scenarios of 1, 7, and 13. The analysis of the
crossing scenarios starts from the pedestrian movements and will from there on distinguish between

the different cyclist approaches.
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4.3. Data and Site Selection

The choice of data collection method stems directly from the previously defined data requirements,
which emphasize the need to observe a large number of interactions between pedestrians and cyclists
across diverse user groups. The TU Delft campus has an extensive amount of active mode infrastruc-
ture, with high daily volumes of people, primarily students (TU Delft, 2024), using this infrastructure.
This quantity of data is preferred to be captured by an automated sensor set-up, instead of the request
for an observer, limiting the amount of interactions that are captured.

Newer technologies such as as Wi-Fi detection systems could be used to trace cyclists and pedestrians,
but the precision of these detection systems is most likely not sufficient to detect pedestrian and cyclist
movements with a high resolution in time and space. For analysing more specific movements video
data can be used that captures the movements of pedestrians and cyclists. However, the use of the
imagery raises privacy concerns if large quantities of people are involuntarily being recorded.

The TU Delft has installed smart sensors across the campus that trace both pedestrians and cyclists
without the collection of actual video footage. Therefore, the data collected by these sensors is used.
These sensors track the heads of cyclists and pedestrians with a frame rate of approximately 1 frame
per second (FPS), while recent instalments can be upgraded to a frame rate of 4 FPS. The computer
attached to the sensor assigns a specific trace ID to each trajectory, but it is not specified whether the
trajectory is from a cyclist or a pedestrian.

The campus consists of various parts with a mix of transportation modes, but the specific intersections
which are solely accessible by bike and by foot are the intersections located at the Mekelpark in the
middle of the campus. The crossings need to align with the topologies chosen in subsection 4.1 and in-
clude sideways interactions between cyclists and pedestrians. Two intersections along the Stieltjesweg
match these criteria, one for each of the topologies. The following paragraphs provide the information
on the layout of these two crossings.

The crossroad, shown in Figure 4.6, is chosen as the location to analyse the sideways interaction
between cyclists and pedestrians. This interaction of pedestrians approaching the cyclist track from
the side and both modes going straight aligns with the indicated situation in subsection 4.2. Most
pedestrians are likely to cross the bike path from the north side, needing to go to the bus stop south
of the bike path, but also the north side will attract pedestrians, mostly during the lunch break when
there are food trucks along this path. The pavement clearly separates the two flows making distinctions
of the type of mode possible. The crossing is close to the Mekelweg, where the bus lane is located,
therefore, this crossing will from here on be referred to as the Mekelweg crossing.
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Figure 4.6: Blueprint of the Mekelweg crossing at the TU Delft campus where a cycling path crosses a footpath nearly
perpendicular.

The crossing at current day (2025) is however under the influence of a construction project of a tramline,
making the footpath inaccessible and transitioning the bike path into a steep ramp where cyclists are
likely to brake. The behavioural changes induced by these construction works are not representative for
this particular study; therefore, dates before the constructions started will be requested when accessing
the data, which is before April 2023 (Wassink, 2023).

The other crossing that has been chosen to collect data from is shown in Figure 4.7. This crossing
uses a combination of two sensors that have visuals on both T crossings with an overlapping area in
between. An advantage of the data being collected at this intersection is that the frame rate has been
set to 4 FPS, while the tram construction works are not of influence, so data of the current day can be
collected. The Stieltjesweg crosses here with the Lorentzweg from the north, therefore this crossing
will be referred to as the Lorentzweg crossing.
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Figure 4.7: Blueprint of the Lorentzweg crossing with a larger detection area and more directions possible.

The specific interaction that is required from this double T-intersection is the pedestrian coming from
the minor road in the south and turning onto the major road to the west. One drawback of the origin-
destination combination for the pedestrian is that the pedestrian could have taken a shortcut just before
this crossing, yet an observational study at this crossing has shown that many pedestrians still take
this route. The other interaction that is analysed here is from the pedestrian coming from the east and
needing to go to the west while crossing with a cyclist.

The four scenarios of pedestrian movements at the Mekelweg and Lorentzweg crossing are visualised
in Figure 4.8 with a sample trajectory of a crossing cyclist. Chapter 6 will present the behavioural results
from these crossing scenarios.
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Figure 4.8: The four crossing scenarios for the pedestrian that are the focus point of this study with in both cases an example
trajectory of a crossing cyclist.
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4.4. Conclusion

The sub-research question related to the data selection was: What data is needed to describe the
movements of pedestrians towards cyclists?

The data that is needed stems from the list of requirements that is proposed in this section. Trajec-
tory data of individual pedestrians and cyclists with a separation of modes indicated by pavement is
required to analyse pedestrian behaviour towards cyclists on bike paths. The environment should be
a crossing without traffic control systems, so the interactions take place purely based on the negotia-
tions between the two modes of traffic. The crossings that are analysed are a crossroad, which is the
Mekelweg crossing, and T-crossing, which is the Lorentzweg crossing, at the TU Delft campus area,
where multiple interactive scenarios are studied.



Data Preparation

Before the behaviour in the data can be classified and analysed, it requires steps of pre-processing,
following Section 3.3 of the Methodology. Only after adding the values of speed, location, origins and
destinations, and the different variables to distinguish types of conflicts, the stopping and deviating be-
haviour can be analysed and explained. This Chapter therefore aims to answer sub-research question
3: Which data processing and enrichment methods are required to prepare pedestrian and cyclist data
for a behavioural analysis? by first providing the general filtering steps and quality assessment of the
data. Secondly, the method for adding the different variables to the whole dataset is explained. Lastly,
the circumstances and required adaptations for every crossing scenario are specified to be able to
analyse the movement appropriately.

5.1. Data Preprocessing

For this study, access has been granted by the TU Delft of trajectory data at the Mekelweg crossing
from March 2023 to detect pedestrian-cyclist interactions. As mentioned in section 4.3, this month was
chosen because of the current construction works. For the Lorentzweg crossing, more recent data
from January 17 until March 3 2025 has been acquired. This section discusses the preprocessing
steps required to take before this data can be enriched. This will be done by assessing the quality of
this data and presenting steps to filter redundant data for the purpose of improving computational time.

5.1.1. Data Quality

The raw data is stored in separate json files for every minute of recording. The data that is registered
provides x and y positions at a certain time belonging to a trace ID. The data that has been gathered
at the Lorentzweg crossing not only provides insights into the trajectories, it also provides information
on peoples height and whether there is a group formation or an individual person in the area. This
study however, focusses on the interactions between individual cyclists and pedestrians. Therefore
the group data is left out of the dataset. The heights of the participants are not taken into account as a
contributing factor for the interactive behaviour.

This filtering step is processed in Python, in which the trace ID, date, time, x, and y position of every
participant is stored in a single DataFrame per crossing. The Mekelweg crossing positions are given
in millimetres, and the Lorentzweg crossing in meters, both with six decimal places, which suggests
a very high precision. The sensor accuracy is however limited due to the nature of detection, which
follows heads that are sized slightly more than 15 cm wide and 20 cm long on average (Reference,
2025). The eventual results are therefore rounded to one decimal place in meters for a more realistic
interpretation.

The data was analysed through multiple videos of random sample trajectories. In the videos, points
sharing a trace ID are linked in time order to form several trajectories. The trajectories are assessed
based on the detection timing and accuracy at the beginning and end, the time intervals, and the
accuracy of the positions. A representative set of trajectories is used to illustrate the overall quality

28
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of the data. This sample set is provided in Figure 5.1a, relating this to a blueprint of the Mekelweg
crossing from the perspective of the sensor in Figure 5.1b. The direction of all trajectories is manually
shown through an arrow-like triangle after the end point.
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Figure 5.1: A sample set of trajectories at the Mekelweg crossing to enable a quality assessment of the data.

The beginning and end of the trajectories are in some cases not properly detected, especially at the
edges of the detection area. For the Mekelweg crossing this is often the case for cyclists that enter the
area with a high speed. Consequently, the first registered trajectory point can sometimes be already
past another trajectory, which is the case for ID 8740 (brown) already having passed 8735 (blue), while
it is very likely that these two paths would have crossed. Also in some cases, the trajectories seem
to start late or end prematurely, which is likely due to the participant leaving the detection area, which
happens for ID 8739 (purple).

The time interval of the trajectories at the Mekelweg was set to 1 frame per second (FPS), meaning
that the time the location of a head is registered is every second. In the visualisation, it can be seen
that some trajectories are therefore limited to just a few trajectory points, in this case trace ID’s 8736,
8740, and 8741 moving in the x direction show only 4 points, which are likely derived from cyclists that
reach higher speeds in general and are therefore leaving the detection area faster. In contrast, the
movement of the pedestrians, likely indicated by the other trajectories 8735, 8737, 8738, and 8739 due
to generally lower speeds, can be detected to distinguish stopping behaviour, which are visible in the
parts of the trajectory that have dots closer together.

The axes of the trajectories do not match the blueprint of the crossing. The detection area indicated by
the yellow line in Figure 5.1b shows that visible reach to the footpath to the north is higher than towards
the south. This is opposite from the way most trajectories are projected, which extend more towards the
south. The y values need to be flipped in order for the blueprint of the crossing to match the coordinate
system. Further detailing of this fitting process from coordinates to blueprint is provided in subsection
5.2.1. The accuracy of the positions are determined by observing the course of the trajectories. The cy-
clist trajectories follow a mostly straight path, in line with the layout of the actual cycling track. The same
applies for pedestrians, yet these trajectories seem to oscillate slightly. Especially when observing the
trajectories where the pedestrian is likely standing still, which is for 8737 (green) and potentially 8738
(red), the position of the head does not remain in the exact same spot. Movements of the head are
simultaneously realistic to occur, for example when the pedestrian aims to observe oncoming cyclists
before crossing. Moreover, through every step the pedestrian takes, the head of the pedestrians show
slight lateral swaying according to Parisi et al. (2016), which would align with the trajectories of these
pedestrians showing similar movements. There is therefore no reason to assume that this oscillating
arises due to a measuring error.

A similar plot of sample trajectories at the Lorentzweg is created in Figure 5.2a, next to the blueprint of
this crossing in Figure 5.2b.
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Figure 5.2: A sample set of trajectories at the Lorentzweg crossing to enable a quality assessment of the data.

A first remark to be made is that ID’s 159098, 159101, and 159102 (green) are assumed to be of the
same trace ID, as well as 159103, and 159104 (red). This assumption is based on a video analysis
where the timing and position of the end of the first trajectory combined with its velocity almost perfectly
matches with the start of the second trajectory. It is more likely these trajectories belong to the same
participant, than that two participants are both detected only partially. This splitting of trajectories hap-
pened more often at this crossing and could be the cause of the merging of two sensor images into
one, therefore sometimes missing a link between two trace ID’s belonging to the same person. There
are more consequences to the merging of these images, which are explained in section 5.3. Another
issue with the beginning and end of the trajectories is that the speed seems to significantly reduce at
both ends, while there is no clear reason for this reduction. This reduction happens for all participants,
but can especially be detected for trajectories with a general higher speed, such as for 159096 (yellow),
159103 (red), 159110 (grey).

The time interval of the sensor at this crossing was set to 4 FPS. This is mainly beneficial for detecting
more detailed movements, yet plotting and performing calculations increases the computational time
per trajectory. It can be seen from trace ID’s 159110 and 159122 that both the movements of the cyclist
(grey) and pedestrian (blue) can be detected with this frame rate.

Similar to the Mekelweg crossing, the x and y axes of the trajectories, do not match with the orientation
of the Lorentzweg crossing provided in Figure 5.2b. Trajectories plotted in the direction of the y-axis
resemble the west-east direction, while the trajectories aligning with the x-axis direction are the actual
north-south direction. The axes of the plots are therefore rotated 90 degrees to the right to match the
blueprint of the crossing more accurately. The positions again seem to follow the expectancy of cyclist
tracks, corresponding to 159096 (yellow), 159103 (red), and 159110 (grey), following a more stable
course with little directional changes, compared to pedestrians (159098, 159122).

Concluding the findings of both crossings, the trajectory data covers the movements of cyclists and
pedestrians with sufficient accuracy to enable a movement analysis. The trajectories are in some cases
registered late, yet for studying the movements right before the moment of crossing, the consequences
for this analysis are minimised, because these crossings often take place in the more central parts of
the detected area. In some cases the late registration or the splitting of a participant’s path in two
or more trajectories might result in a missed crossing trajectory pair of a pedestrian and cyclist. This
impact is considered small, since it slightly reduces the total number of registered crossings. For this
reason, no steps are taken to for example connect the trace ID’s that are assumed to belong to one
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participant, besides the consideration that this could be a time consuming and error sensitive process.

5.1.2. Data filtering

There are a significant number of traffic participants registered at both crossings that do not encounter
other modes in the area. The trajectories displayed in this case are not relevant when investigating
certain interactions between cyclists and pedestrians. Therefore, if the time of a traffic participant
entering and leaving the area is not within a 5 seconds range of another participant, this trajectory is
removed. This 5 seconds range is considered to be a wide margin for an influencing range, yet it only
serves as a filter to remove redundant trajectories for interactional study. However, the filtered data will
still be used for the purposes of deriving speed as reference material for information on unrestricted
speeds.

The DataFrame is throughout the subsequent process supplemented with additional variables that help
to explain the interactive behaviour between cyclists and pedestrians.

5.2. Data Enrichment

This section provides the methodology for deriving the variables that are required to categorise the
interactions and presents these results.

The data is first enriched with the variables speed and location, which both are variables required to
determine the type of mode. Determining the origin and destination to distinguish between the different
directions is then discussed in the subsequent subsection. Furthermore, the crossing angle, post-
encroachment time (PET), first crossing mode and crossing point are explained in subsection 5.2.3.
Hereafter, a method for predicting PET is presented.

5.2.1. Speed and Location

Apart from providing insight into the movement of pedestrians and cyclists, the speed is considered
a measure to distinguish pedestrians from cyclists. Together with the locations of trajectories, these
variables are used to determine the type of mode. The probability of a trajectory belonging to a cyclist
or pedestrian is calculated by using the average speed. Then the location is used to confirm this type
of mode.

Since this study focusses on intersections where pedestrians and cyclists need to cross each other’s
paths, it is considered to assign the label cyclist and pedestrian to those following their respective bike
and footpaths. The reason for consulting the location with respect to the crossing layout, is because the
location could confirm that a certain traffic participant is indeed a cyclist or a pedestrian if the trajectory
is fully on this respective path. In addition, a traffic participant having a high probability of being a certain
mode based on the combination of the location and speed, could be a strong indicator for a trajectory
being assigned the label cyclist or pedestrian.

For calculating the speed of the pedestrians and cyclists at the Mekelweg crossing, the forward differ-
ence derivative is proposed to calculate the instantaneous speed at a time t with the application of the
following formula (Brorson (n.d.)):
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where ¢+ 1 denotes the next time step and At the difference between t and ¢ + 1. Especially for cyclists,
the number of times a speed is calculated, is relatively low, since cyclists can pass the area within a
few seconds.

To calculate the speed at the Lorentzweg crossing, the influence of measuring errors should be min-
imised. When performing the forward difference derivative method for this dataset, the speeds are
more likely to approach unrealistic values, while the information of the trajectory can provide valuable
interactions. Therefore, for the Lorentzweg crossing, a different method is chosen to determine the
speed of the traffic participant: the central difference method. The formula for calculating the speed
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per time step in this case becomes:

V@ — :ct_l)zz (Yer1 — ye—1)? (5.2)
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Where in this case the instantaneous speed is calculated by the previous and next trajectory point. The
time difference will be about 0.5 seconds, which reduces the truncation error of the measuring device.
Because information of the previous and next point is needed, the first and last trajectory point will not
have a speed value, but since the frame rate of the cameras is 4 FPS instead of 1, there are more
trajectory points to provide a general description of the speed and its development at this crossing.

Two speed histograms are created for the Mekelweg crossing and Lorentzweg crossing in Figure 5.3.
Figure 5.3a shows the distribution of all instantaneous speeds registered at the Mekelweg crossing.
Figure 5.3b shows this same distribution for the Lorentzweg crossing. The values of speeds found in
the data align with previous studies on cyclist and pedestrian speeds by Chandra and Bharti (2013),
Daamen and Hoogendoorn (2007), Yan et al. (2020) and Eriksson et al. (2019).
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Figure 5.3: Speed histograms of both the Mekelweg (a) and Lorentzweg (b) crossing.

The occurrences of speed show three clear peaks from left to right for people standing still, walking
pedestrians and cycling cyclists. The left peak arises because people that have no movement through
the environment, are spending a longer time in the area. This longer time spent here, makes for a
bigger overall contribution of very low registered speeds, resulting in the peak at a speed of almost 0
m/s. The pedestrian speed data peaks at a lower speed value than the cyclist speed data, because
of the common speed difference, confirmed in the studies of Chandra and Bharti (2013) and Daamen
and Hoogendoorn (2007). The histograms support that based on only speed data, a first distinction of
modes can be determined.

For the Mekelweg crossing, two distributions are derived which are visualised in Figure 5.4. The speed
data of pedestrians and cyclists is assumed to follow normal distributions, which is also confirmed in the
study of Chandra and Bharti (2013) and Nateghinia et al. (2024). The speeds of the traffic participants
that stand still are excluded by setting the minimum speed at 0.77 m/s, based on the lower bound slow
walking speed of Murtagh et al. (2021). After visual inspection of different minimum speeds, this value
seems to match both normal distributions; see Appendix B. By applying a Gaussian Mixture Model, the
speed data can be approximated by two curves, which sum is the combined distribution that follows
the speed data.
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Model Fit functions of the speeds from 0.77 m/s (Mekelweg crossing)
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Figure 5.4: Relative frequency of the number of times a certain speed is registered at the Mekelweg crossing.

For the distinction between pedestrians and cyclists, the intersection point right of the pedestrian speed
curve and left of the cyclist curve is calculated and the speed value attached to this intersection point is
the threshold value. This threshold value theoretically means that from this speed, more cyclists reach
this speed than pedestrians. For both crossings, the probability of the trajectory belonging to a cyclist
is calculated by dividing the height of the cyclist distribution (blue) at the average speed of that cyclist
divided by the total height of both distributions (red). In the same way, the probability of a trajectory
belonging to a pedestrian (green) can be calculated.

The threshold for the speed at the Mekelweg crossing is calculated to be 2.03 m/s. To meet the require-
ment of a higher probability of being a cyclist, the participant should have an average speed of at least
this value, or a particular part of the cyclist’s track should have a speed greater than 2.5 m/s, because
from this value, the chances of the ID belonging to a pedestrian are negligibly small (about 5 times the
standard deviation from the mean).

The two curves for the Lorentzweg crossing are different from the Mekelweg crossing with the separa-
tion being less distinct. Figure 5.5 shows that the dip around 2 m/s is less deep, suggesting that more
cyclists have lower speeds at this crossing. This could be explained by the different directions that
cyclists have to go to, potentially having to decrease their speed to make a comfortable turn.
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Model Fit functions of the speeds from 0.77 m/s (Lorentz crossing)
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Figure 5.5: Relative frequency of the number of times a certain speed is registered at the Lorentzweg crossing.

As a consequence, the two speed curves intersect at a lower speed value. The minimum average
speed threshold, which gives an equal probability of being a cyclist or pedestrian, is thus slightly lower
at 1.97 m/s. For each trajectory, the probability of the average speed belonging to that of a cyclist or
a pedestrian is calculated. This probability, together with the location are the variables that distinguish
cyclists from pedestrians.

As mentioned in the Introduction (1.3), no distinction has been made in the different types of cyclist or
pedestrian, for example pedelecs or runners. Since speed is the main indicator available that could
contribute to this distinction, this cannot be assessed with sufficient certainty, because the speed dis-
tributions show large overlaps Schleinitz et al. (2017) and Smyth (2018). The number of appearances
that these particular traffic participants have are furthermore very low.

Determining the locations with respect to the crossing layout will be done by extracting a random sample
size of the data that indicates the density and speed of trajectory points of the monitored area. Based
on the densities, the edges of the area, together with the locations of cycling and footpath, can be
determined by scaling the crossing layout to a visually fitting size. The edges between the cycling
and footpath are then furthermore determined through the colour distinction of the speed of the cyclist
compared to the speed of the pedestrian. The locations of the foot and bike path are determined for
the Mekelweg and Lorentzweg crossing, as shown in Figure 5.6a.
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Figure 5.6: Blueprints of the two crossing where the location of the bike and footpath are visually determined by a speed
scatter plot of a sample of the data.

The trajectory dots indicate the edges of the area, as well as the edges of cycling to footpath by the
separation of cyclists (green) and pedestrians (orange). Only when a trajectory is fully inside the area
of the bike path (magenta) or footpath (cyan), the trace ID is assigned a label ‘cyclist’ or 'pedestrian’
and the probability that this is the correct mode, initially based on the average speed, becomes 1. In
all other scenarios, no definitive type of mode is assigned to the trace ID and instead the probability of
speed remains the leading factor to determine the mode.

The result of this distinction in types of active modes is that in total 26090 trajectories are registered of
pedestrians and 47910 of cyclists with full certainty at the Mekelweg crossing. The trajectories with less
certainty of the modes are in total 5094 pedestrians and 2530 cyclists at the Mekelweg crossing. At
the Lorentzweg crossing, the count of trajectories with full certainty of the mode are 42399 pedestrians
and 94070 cyclists and with less certainty are 43311 pedestrians and 27812 cyclists.

These numbers suggest that the method of the location based modal split does not work as properly for
the Lorentzweg crossing, since more than half of the pedestrians and about 20 % of cyclists are labelled
without full certainty. From a field observation on site it was detected that the cyclists and pedestrians
did not adhere to their respective paths at the Lorentzweg crossing, mainly due to shortcuts provided
by the pavement of the other mode, see the samples of some trajectories in Figure 5.7.
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Figure 5.7: Samples at the Lorentzweg crossing with trajectories of cyclists and pedestrians making use of different pavement
sections.

The Lorentzweg has this high uncertainty, because the trajectories of many pedestrians and cyclists do
not match with the locations of the foot and cycling paths. It is therefore decided to lower the probability
requirement for trajectories belonging to cyclists or pedestrians. This probability has been based on the
speed distribution. Therefore, when lowering the probability threshold, the speed that is corresponding
to this probability is changing as well. For example, a 98% probability considers a maximum speed of
1.48 m/s for pedestrians and a 2.25 m/s minimum speed for cyclists. When filtering out pedestrians
up to an average speed of 1.48 m/s, a significant amount of trajectories is being removed. This is
confirmed in the data and other studies (Chandra and Bharti, 2013 and Murtagh et al., 2021). Mainly
fast walking pedestrians will be removed from the data, creating a possible bias in the behavioural
patterns. The 95% probability corresponds with a maximum average speed of 1.65 m/s for pedestrians
and 2.19 m/s minimum average speed for cyclists, aligning with the findings of Murtagh et al. (2021)
on maximum pedestrian paces that are around 1.62 m/s. Therefore, this probability will be chosen as
a threshold for distinguishing cyclists from pedestrians.

The count of trajectories within this probability margin then becomes 83517 pedestrians and 119160
cyclists and with less certainty, there are 2193 pedestrians and 2722 cyclists remaining.

5.2.2. Origins and Destinations
To distinguish the trajectory data between the four crossing scenarios of pedestrians as provided in
section 4.3, the directions of the trajectories are determined.

The crossing at the Lorentzweg in total has 4 main directions that cyclists and pedestrians can come
from and go to, referred to as the origin and destination respectively. The situation for each pair of
origin and destination could have different behaviour as a consequence. For example, pedestrians
coming from either the north, east or south and going to the west might have to cross the cycling path
at the same location, but the approach case with respect to the cyclist and the bike path makes for a
different situation, which are also highlighted in section 4. Therefore, further categorisation is applied
where the origin and destination for each trajectory is determined. For each of the trajectories, the first
and last points are assumed to be the origin and destination, respectively. For simplicity, the directions
are referred to as the four cardinal directions, even though both crossings are slightly rotated and do
not align perfectly with these directions.

The Mekelweg crossing is oriented in a similar rotation as the Lorentzweg crossing, but it has the
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addition of a south-east direction referring to the foot path providing a short cut for pedestrians (and
unintentionally cyclists) coming from the west and going to the south of the TU Delft campus. All
directions are visualised in Figure 5.8 with the trajectories origin and destination corresponding to the
area that the first and last trajectory point is monitored respectively.
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Figure 5.8: Blueprints of the two crossing with an approximation of the area for determining the origin and destination.

The application of this method however, might miss certain origins or destinations due to the late regis-
tration that was mentioned in section 5.1. Therefore interactions for the directions of interest might not
be considered, while they could prove to be valuable for this research, due to the increase in statistical
significance. For this reason, an additional method to address these cases is introduced that takes
into account the beginning and end direction of the trajectories that start or end in the centre of the
detection area.

The first and last points of a trajectory are likely to point in the direction of the origin and destination.
The exact directions can be calculated by applying the following formula:

Ay
( = arctan (Aw) (5.3)
Where Ay and Ax are determined by: subtracting the x and y values of the second and second to
last trajectory point from the first and last trajectory points respectively for the origin and destination.
Because the Lorentzweg crossing has a higher frame rate, these first and last two trajectory points can
deviate from the actual direction, most likely for pedestrians. For this reason, a larger time interval is
used for calculating the direction, which means that not the second and second to last trajectory points
are used, but the fourth and fourth to last for pedestrians, thereby requiring the trajectory to consist of
at least 4 points.

The directions will then be compared to the four cardinal directions, with the same slight rotation. A
direction is assigned to the trajectories that point to the cardinal direction with the slight rotation +-22.5
degrees, dividing the 360 degrees into 8 segments of 45 degrees.

The result of all the origins and destinations is given in tables in Appendix C, where the cardinal di-
rections and the directions that are left inconclusive are given for both pedestrians and cyclists for the
Mekelweg and Lorentzweg crossing. The numbers of pedestrians and cyclists are slightly less than the
numbers given in subsection 5.2.1, because participants starting or ending far outside the paved area
were not considered.

5.2.3. Interacting Cyclists and Pedestrians
As referred to in the Introduction 1, the specific interactions that are analysed, are the sideways inter-
actions of + 60 degrees between individual cyclists and pedestrians. The paths of the pedestrian and
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cyclist need to cross within a reasonable amount of time for them to perform behaviour that aligns with
an interaction. The crossings that occur within 5 seconds from each other are analysed, which is the
interactive margin that is used in the studies of Beitel et al. (2018) and Zangenehpour et al. (2016) and
a gap of 5 seconds or more at a road crossing of about 5 meters wide is very unlikely to be rejected by
pedestrians according to Zhao et al. (2019), although this study focusses on pedestrian-vehicle inter-
action.

To determine whether a cyclist and pedestrian cross each others paths, it must be verified whether one
of the segments of a pedestrian trajectory intersects with one of the segments of a cyclist trajectory
within this 5 second range. To check whether the segments of two trajectories cross, the cross product
method is applied (sqlpey, 2024), that uses the property of two points being on either side of a line seg-
ment in order for these to cross. Whenever two segments cross, the angle between the two segments
needs to be at least 30 degrees in order for the interaction to be classified as a sideways interaction.
The angle is calculated by applying the following formula (GeeksforGeeks (2024b)):

d; - d;
—1 T J
(¢ = COoS = (5.4)
<Idil * Idj>

Where d; and d;- are the directions of traffic participant i and j based on the position p; and p; right
before and after crossing, referred to as time step ¢ — % and t + % The directions therefore become:

- -

di=pigyy —Pigiy & dj=pii -yl

For each of the interactions, the post-encroachment time (PET) is calculated as the difference in time
between the first exterior of the participant to leave the conflict area, and the second exterior of the
participant to reach the area. However, the exact measures of the area are not fixed and unknown, since
the person has no registered geometry. Therefore, the area of conflict is in this case simplified to the
intersection point of the two trajectories, which gives an approximation of the centre of the conflict area.
Based on this intersection point, the PET can be estimated by applying linear interpolation towards the
intersection point for both trajectories. From this interpolation, a distinction is then made in the conflicts
where the pedestrian crosses before and after the cyclist, because different behaviours are expected
in both scenarios as explained in the Methodology.

Only the interactions that are within a range of 0 to 5 seconds, are studied further to detect interactive
behaviour. This range is acquired from multiple studies (Beitel et al., 2018, Zangenehpour et al., 2016,
and Tageldin and Sayed, 2016) that consider time ranges of 0 to 5 seconds as the interaction threshold
for a cyclist and pedestrian. Because the studies do not agree on potential intermediate threshold
values for PET on the severity of the conflict, this study will base these values on the outcome of
stopping trajectories for PET’s between 0 and 5 seconds, which is explained in section 6.1.1.

5.2.4. Predicted PET

As mentioned in Chapter 2, the post-encroachment time by definition does not require calculations for
the predictions of movement. However, when studying movement changes of pedestrians, a measure
of prediction could prove to be of value for the actual outcome of an interaction. A certain PET value
cannot for example explain whether the pedestrian has stopped along it's path to provide the cyclist
right of way or that it has continued on it's path with the same speed and direction. With the addition of
a predicted PET, the development of this movement can be studied and patterns could be recognised
that explain the outcomes of eventual conflicts. For this reason, this study will apply a method to predict
the PET for every time step.

There is a risk with predicting the PET that the development of this value progresses unstable, because
the predicted path can deviate from the actual path. Therefore, a few assumptions have to be made
on what movements can be expected in next time steps:

1. The eventual predicted path of the pedestrian is directed towards its destination, which in this
case is estimated to be the last trajectory point.
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2. The speed of the pedestrian at the current time step is assumed to remain the same for the time
predictions of the remaining straight direction towards the end goal.

3. In contrast to the predicted pedestrians path, the cyclist path is considered fixed in space.

4. Similar to the pedestrian, the current speed of the cyclist is used as a measure to predict the
timing of the eventual path by maintaining the same speed across the whole trajectory.

5. If the cyclist is not (yet) present in the area when calculating the predicted PET for the pedestrian,
the cyclist is assumed to follow the eventual trajectories speed and direction.

By excluding a prediction of the cyclists path, the prediction of PET therefore becomes less of an
actual prediction, but the advantage of this method is that the course of the predicted PET is more
stable compared to a calculation where the full movement is predicted. Besides, a predicted path
in the way that it is predicted for a pedestrian is less likely to be the path that is predicted for the
cyclist. In practice, pedestrians tend to make intuitive assumptions about the cyclist’s path, and these
assumptions are likely closer to the actual trajectory than a simplistic straight-line model.

The prediction of a trajectory can occur in many different ways. For example, a pedestrian approaching
the crossing with a certain speed, could be predicted as the first mode to cross based on the calculations
of its current speed and eventual goal, yet whenever the pedestrian decides to wait for the cyclist, the
outcome of the prediction inverts and the pedestrian eventually crosses after the cyclist. A plot is made
in Figure 5.9 that shows this development of predicted PET for three sample trajectories. On the y-axis,
the predicted PET is shown with the positive predicted PET values referring to a pedestrian crossing
before a cyclist and a negative predicted PET to that of a pedestrian crossing after the cyclist. This
development is only calculated for the central area before the crossing point, excluding possible speed
deviations at the beginning and end of the trajectory, which is why the time does not start at zero.

Predicted PET Development ending with Actual PET
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Figure 5.9: Samples at the Lorentzweg crossing of predicted PET development over time, ending with the actual PET.
A similar development profile is created for the speed in these parts of the trajectories for these three

samples in Figure 5.10. This speed plot contributes to understanding the specific movements that the
pedestrian makes when encountered with a cyclist.
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Development of the speed of the pedestrian trajectories
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Figure 5.10: Samples at the Lorentzweg crossing of speed development over time.

A short interpretation of the predicted PET combined with the development of the speed of the three
trajectories is listed below:

ID 167374 The pedestrian is predicted to cross before the cyclist and does eventually cross before it.
A slight increase at the beginning in predicted PET can be detected, which in this case is due to
a slight increase in speed, yet this could have also been caused by the cyclist slowing down.

ID 100484 The pedestrian is predicted to cross behind the cyclist and crosses behind the cyclist as
well. It does so with quite a steep drop in the middle of the predicted PET indicated by the
pedestrian slowing down significantly here, resulting in the temporary predicted PET to be much
more negative than the eventual PET. The drop in speed has also likely caused the eventual PET
to be lower compared to the predicted PET at the start.

ID 37625 The pedestrian was predicted to be first given the predicted PET at the beginning, yet even-
tually the pedestrian crosses after the cyclist. This is due to the pedestrian slowing down before
the crossing, not wanting to take the risk of going before the cyclist.

The fluctuation of the predicted PET of the pedestrian with ID 37625 can be further clarified when
studying the actual trajectory. Figure 5.11 shows the course of the trajectory of the pedestrian from
east to west and the crossing cyclist going from south to north with the speed indicated by colour. The
trajectory of the pedestrian consists of different phases, starting with the pedestrian approaching the
crossing with a fairly regular walking speed, thereby predicting the pedestrian to cross before the cyclist.
When the pedestrian comes near the edge of the footpath, it decides to come to a stop, decreasing its
speed significantly, thereby predicting the PET to be in favour of the cyclist instead of the pedestrian.
After this short stop, the pedestrian decides to increase it's speed again to cross behind the cyclist, yet
in the way the PET is predicted, this increase in speed, together with the direction towards the eventual
goal results again in a slight peak of the predicted PET, favouring the pedestrian for a short period of
time. The pedestrian however aims to go around the cyclist from behind, eventually resulting in the
PET value to be negative.
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Sample of pedestrian 37625 and the crossing cyclist
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Figure 5.11: Pedestrian 37625 crossing with an approaching cyclist

5.3. Identification of Crossing Trajectories

All crossing trajectories that were registered within 5 seconds at the Mekelweg crossing between cy-
clists and pedestrians sum to a total of 5942 from the 81624 captured trajectories of cyclists and pedes-
trians going in all directions. For the Lorentzweg crossing there are 28085 crossing trajectories out
of 207592 total trajectories. Tables 5.1 and 5.2 below show the number of total pedestrians and the
number of pedestrians crossing with cyclists only for the directions of interest.

Table 5.1: Numbers of pedestrians crossing with a cyclist at the Mekelweg crossing.

Mekelweg crossing  South - North  North - South

Total trajectories 3200 3468
Crossing trajectories 1183 625
Percentage 37% 18%

Table 5.2: Numbers of pedestrians crossing with a cyclist at the Mekelweg crossing.

Lorentzweg crossing South - West East - West

Total trajectories 1688 17984
Crossing trajectories 448 5054
Percentage 27% 28%

The east-west direction of the Lorentzweg crossing show a significantly higher number of pedestri-
ans (17984) and a higher number of pedestrians crossing with a cyclist (5054) compared to the other
origin-destination scenarios. Thus, the interactions captured here provide a richer basis for identifying
behavioural patterns. For this reason, the analysis that will be mostly shown is from this group, while
the figures of the other crossing scenarios are included in the appendix to maintain clarity within this
and the subsequent chapters. Comparisons between the different directions by means of descriptive
statistics are provided in subsequent chapters.

Trajectory plots of pedestrians walking from east to west at the Lorentzweg which cross with a cyclist are
shown in Figure 5.12. The colour indicates the speed of the pedestrians. A figure with higher opacity
is shown in Appendix G to visualise the density of the trajectories. The head and tail of the trajectories
indicate the sudden speed change, which is likely due to a measuring error as mentioned in section
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5.1. Additionally, even though pedestrians may slow down or deviate in this area, it is improbable that
a cyclist is the cause, given the distance to the eventual conflicting point exceeds 6 meters. For this
reason, a frame is introduced indicated by the vertical blue lines in between which the stopping and
deviating behaviours are considered. At the end of the trajectories, the left side of the figure, an evenly
distributed strip of increased speed can be detected in the darker green area. This strip aligns with
the border of the monitored area covered in the north-east of this crossing, therefore it is likely that the
merging of the two images of trajectories produces a consistent measuring error for people going from
east to west. However, when studying the stopping and deviating behaviour, that occurs mostly after
crossing, so this does not have a big influence on the outcomes.

2.00

1.75

Figure 5.12: Trajectory plots of all pedestrians walking from east to west at the Lorentzweg crossing with the frame of
behavioural consideration in between the blue lines

5.4. Conclusion

The pedestrian and cyclist data is prepared for a behavioural analysis by performing a quality assess-
ment, filtering step, and by enriching the data. Thereby, the following sub-research question is an-
swered: Which data processing and enrichment methods are required to prepare pedestrian and cyclist
data for a behavioural analysis?

The data quality was assessed using video footage and trajectory plots at the Mekelweg and Lorentzweg
crossings. The trajectories appear accurate: cyclist paths are smooth, while pedestrians show more
lateral swaying, as expected. Moreover, the values of speeds align with existing literature. Some tra-
jectories are registered late, possibly missing crossings. The Lorentzweg benefits from a higher frame
rate, capturing more detail, but occasionally splits a single participant into multiple trace ID’s, reducing
interaction data.

In general, the trajectory data from the smart sensor is suitable to detect movement changes for pedes-
trians in their approach to cyclists on bike paths. The stopping and deviating movements that are
considered can be captured with good accuracy, though for the Lorentzweg crossing the influence of
the inaccurate tips of the trajectories should be minimised. This is done by narrowing the area to detect
movement changes. In a later stage, crossing trajectories are compared with non-crossing ones to
provide a reference point for interpreting movement patterns and to account for measurement incon-
sistencies.

Speed and location variables are added to the data to distinguish pedestrians from cyclists. Besides,
speed is vital for understanding general movements. Origins and destinations stem from the location
by considering the begin and end of each trajectory. These origins and destinations are important for
selecting the intended interaction scenarios.
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Pedestrian-cyclist crossings of at least a 30 degree angle are calculated and the crossing point and
timing between both modes (PET) are derived from the crossing segments. PET provides the value to
determine the proximity of the conflict and with a few assumptions a prediction of PET is possible. The
predicted PET contributes to a more common understanding of the development of an interaction.



Results

This chapter presents the results of the data analysis to address the fourth sub-research question: What
movement changes does a pedestrian perform when approaching a cyclist in a sideways conflict? Of
the 7310 crossing pedestrians in four different crossing scenarios, 4780 crossed with a single cyclist.

First, the stopping behaviour of pedestrians is analysed by introducing a PET threshold value, the
quantities of stopping and the stopping distance. Then, the gradual development of the pedestrian
movements are analysed with respect to the cyclists by visualising the predicted PET with a numerical
analysis. Lastly, the general deviating behaviour that could be detected is provided by again introducing
threshold values and qualitatively assessing the directions where deviation occurs most.

6.1. Stopping Behaviour

In this section, the stopping behaviour of pedestrians is analysed. This analysis will be done based on
the enriched data that is created as described in Chapter 5. The stopping analysis starts with a further
classification of the trajectory data. All of the crossing trajectories are classified based on the mode
that crosses first from the perspective of the pedestrian as described in section 3.4 of the Methodology.
Following this first distinction, this section presents the method for deriving a PET threshold by studying
the relation between the PET and the stopping behaviour. After this, the general stopping behaviour in
terms of quantities and stopping distances is presented.

6.1.1. Threshold definition

This subsection compares the number of stopping pedestrians relative to the total number of crossing
pedestrians to the values of PET. This analysis is solely done for the east west crossing pedestrians at
the Lorentzweg crossing. The threshold used for a stopping trajectory is 0.77 m/s, which means that
a trajectory reaching a speed below this value, is registered as a stopping trajectory. This threshold
is based on the lower bound 95% interval of slow walking pedestrians by Murtagh et al. (2021). If a
participant reaches a speed that is below this threshold value, it is labelled as a stopping trajectory.

The interaction cases are classified based on the PET values for pedestrians crossing first and second.
Figure 6.1 shows the percentage of stopping trajectories of pedestrians when they cross before the
cyclist (red) and after the cyclist (blue). The bars with less than 10 trajectories for comparison are
removed due to a risk of insignificant values.

In the scenario where the pedestrian crosses before the cyclist, no clear trend in stopping trajectories
can be detected, while the percentage of stopping trajectories is also significantly lower. These pedes-
trians most likely do not have a reason to stop, because they intend to be crossing before the cyclist.
Thereby, a relation between PET and these rarely occurring stopping movements is very unlikely to
arise. The remaining stopping behaviour is most likely the result of a few measuring errors inside the
considered area or some regular stopping unrelated to the approaching cyclist. In the scenario where
the pedestrian crosses after the cyclist, an overall decreasing trend can be detected.

44
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Figure 6.1: Percentages of stopping trajectories for different PET values when the pedestrian crosses first (red) and when the
cyclist crosses first (blue).

An approximation of the course of the stopping percentages is used to create a threshold value for
the PET. In the scenario where the pedestrian crosses after the cyclist, this pedestrian has likely done
this by adapting its movement through slowing down. The closer the conflict is in terms of timing, the
more likely it is that this pedestrian experiences the urge to come to a stop to cross behind a cyclist,
because otherwise a collision might have happened. For this reason, there is likely a decreasing trend
in the lower PET regions. According to Figure 6.1 halfway the PET values of 0 to 5 seconds, the
trend seems to stabilise. The value for the average number of stopping trajectories is in this particular
scenario 17.8%. The course of the trend after 5 seconds is unknown, while previous research tends to
agree upon the 0 to 5 second range to be the range between which pedestrians and cyclists perform
interaction, as presented in section 2.1.3, yet when observing the dataset of pedestrians that do not
cross within 5 seconds with a cyclist for the east west crossing pedestrians, the average stopping
percentage is 8.4% which is slightly lower than the 17.8%.

The trend is assumed to be linearly decreasing from the lowest PET values that were detected, because
the higher a PET value becomes, the less likely it is that the pedestrian needs to stop. The stabilisation
in the right part of the histogram can be approximated by a separate linear trend line. By approximating
both of these sections with a trend line, the PET value separating these both sections can be determined
at the intersection point of both lines. This intersection theoretically means that from that corresponding
PET value, the amount of stopping trajectories, and thus stopping pedestrians, will change at a different
rate once the PET increases. In Appendix D, the result of several fitting approaches are shown with the
bin width, the PET end point of the first fitting line and the PET starting point of the second fitting line as
variable inputs. Additionally, because it is unclear whether the amount of stopping stabilises halfway
or whether it is decreasing, both trend types are considered as well. The results indicate that many of
the intersection points show a changing trend for a PET value of around 3 seconds, which aligns with
the findings of Tageldin and Sayed (2016) and Zangenehpour et al. (2016). Therefore, this PET value
is considered a threshold value for the classification of different interactions.

6.1.2. Stopping results

The threshold value of PET is used to indicate the difference in approach cases of a conflicting situation
(PET < 3.0 s) and an interactive situation (3.0 s < PET < 5.0 s). In this analysis, the consequence of
the general categorisation is presented in visualisations. Then, the quantities of stopping are provided
for all crossing scenarios. Hereafter, the stopping distances are presented.

Figure 6.2 shows the trajectories of the pedestrians going from east to west at the Lorentzweg crossing
interacting with a cyclist within a PET of 0 - 3 seconds in the first column and a PET of 3 - 5 seconds
in the second column. The first row indicates the approaching situations where the pedestrian leaves
the conflict area first and is therefore crossing before the cyclist, while the second row shows the
pedestrians that cross behind the cyclist. Similar plots of these trajectories are created for the other
three crossing scenarios, which can be found in Appendix G.
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Figure 6.2: Pedestrians walking from east to west at the Lorentzweg crossing with a distinction based on PET value and
whether the pedestrian crosses before or after the cyclist.

In many of the cases, the pedestrian seems to go straight towards its goal, yet in some cases the
pedestrian either stops or sometimes seems to deviate from a straight trajectory. This deviation is
addressed in section 6.3. Stopping is mostly observed right before the pedestrian enters the bike path,
shown in the red parts of the trajectories. This significant stopping behaviour can only be observed in the
cases where the pedestrian crosses after the cyclists, which is confirmed by the stopping percentages
in Table 6.1 below.

Table 6.1: percentage of crossing trajectories that stop within each category of PET and first crossing mode

East - west (stopping trajectories) PET0-3s PET 3-5s
Pedestrian crosses first 4.4% 6.5%
Cyclist crosses first 32.8% 15.6%

The category of pedestrians crossing after the cyclist in a conflicting situation tend to stop on average
32.8% of the time. This indicates that a significant number of pedestrians also do not stop, so they
either slow down or even maintain their speed. If the pedestrian crosses before the cyclist, a slightly
lower percentage of stopping is observed compared to non-crossing pedestrians, which was 8.4%. This
possibly implies that some pedestrians confronted with an approaching cyclist feel slightly more urge
to walk on than if this confrontation does not happen.

For the situations of pedestrians crossing after the cyclists, the relative number of stopping pedestrians
is the highest. However, compared to the other crossing scenarios, this number is relatively low. Table
6.2 shows the stopping percentages for all different crossing scenarios. The percentages are based on
the stopping and total trajectories given in Appendix G. Besides the stopping quantities of the crossing
pedestrians, the quantity of stopping of the non-crossing pedestrians is provided as a reference.
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Table 6.2: percentage of crossing trajectories that stop for all other crossings

. . . Stopping percentages
Crossing Origin - Destination PE'I?% —g3ps PETg3 -5 s | Reference non-crossing
Lorentzweg East - west 32.8% 15.6% 8.4%
South - west 51.9% 45.3% 34.4%
Mekelweg South - north 32.2% 16.8% 9.4%
North - south 47.6% 23.8% 13.2%

The percentage of the south-west crossing pedestrians at the Lorentzweg crossing has in this case
the highest value for both the crossing and non-crossing pedestrians. The crossing pedestrians are
however stopping relatively seldom because of an approaching cyclist, when considering the reference
group that also frequently stops.

For the behaviour that pedestrians tend to perform, it is key to understand the stopping distances that
pedestrians tend to keep. The distance that the pedestrian has towards the cyclist can differ significantly,
depending on the approaching side of the cyclist. This is why it is proposed to measure the stopping
distance of the pedestrian towards the crossing point. Besides, the stopping distance with respect
to the cyclist can in some cases not be determined if the cyclist is not present in the area or not yet
detected by the sensors. The distance from the crossing point to the pedestrian can be calculated with
the following formula:

dt - \/(xcrosspoint - xt)z + (ycrosspoint - yt)2 (61)

Where %crosspoint 8N Yerosspoine denote the x and y value in the grid of the intersection where the
pedestrian and cyclist in the future will cross each others paths. x; and y; denote the x and y position
of the pedestrian in this same grid at the time instant ¢ that the pedestrian slows down to a speed below
0.77 m/s.

For all stopping pedestrians in their respective category, histogram plots are created that visualise the
distance pedestrians tend to keep with respect to the crossing point. Figure 6.3 shows these histograms
for the east west direction. The other histograms are shown in Appendix H.
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Figure 6.3: Frequency of stopping distances for pedestrians walking from east to west crossing with a cyclist at the
Lorentzweg crossing.

From the histograms where the cyclists cross first, a distribution that resembles a normal distribution
can be detected. Normality is assumed based on the idea that each pedestrian maintains a slightly
different preferred distance from the crossing point, driven by personal comfort and perceived safety.
These individual differences are expected to cluster symmetrically around a central tendency leading
to a distribution that resembles a normal distribution. As mentioned in the Methodology, the statistical
significance of the hypothesis is tested that the data potentially follows a normal distribution. A com-
bination of D’Agostino and Pearson'’s test is performed that tests whether the distance with respect to
the crossing point that pedestrians tend to slow down from is normally distributed (H;). The alternative
hypothesis (H;) is that the distance does not follow a normal distribution. If the resulting p-value of the
test is more than 0.05, the null hypothesis cannot be rejected, and there’s no significant evidence that
the data is not normally distributed. The results of all categories is given in Table 6.3.

Table 6.3: Statistical tests performed on normality of the stopping distance for pedestrians walking from east to west at the
Lorentzweg crossing.

First crossing mode | PET category | Test statistic | P-value | p >0.05 | Statistical significance
Ped first 0-3s 8.135 0.017 No Not normal

3-5s 3.986 0.136 Yes Normal
Cyc first 0-3s 0.785 0.676 Yes Normal

3-5s 6.729 0.035 No Not normal

The normality test for the pedestrians crossing behind the cyclist for a PET between 0 to 3 seconds
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results in a p-value above 0.05, therefore there is no significant reason to reject the null hypothesis,
making it possible that the stopping distance up to the crossing point follows a normal distribution
in these close conflicts. The characteristic values of the normal distribution for pedestrians crossing
behind the cyclist for a PET between 0 and 3 seconds are listed in Table 6.4 below for all crossings.

Table 6.4: Mean and standard deviation of the stopping distance up to the crossing point for pedestrians crossing behind the
cyclist within a PET of 0 to 3 seconds.

Crossing Origin - Destination | Mean | Standard deviation
Lorentzwe East - west 3 1m | 11m
9 South - west 25m | 12m
Mekelwe South - north 3.3m | 0.78 m
9 "North - south 35m | 0.83m

The average stopping distance of the pedestrian towards the cyclist is on average lower at the Lorentzweg
crossing compared to the stopping distances at the Mekelweg crossing in the close conflicting cases.
The deviation of the stopping distance is however larger at the Lorentzweg crossing compared to the
Mekelweg crossing, potentially due to the variety of directions that the cyclist can approach from and
go to.

6.2. Gradual movement adaptation

The course of the trajectories provides insight into the eventual outcomes of the behaviour. This section
provides the quantities of modes that cross first and explains this by reasoning from the perspective of
more gradual movement adaptations.

Table 6.5 below shows the total number of trajectories for both PET categories for the pedestrians
walking from east to west. For the other directions, Appendix G provides the total number of crossing
trajectories.

Table 6.5: Total number of crossing trajectories within each category of PET and first crossing mode

East - west (total trajectories) PET 0-3s PET 3 -5s
Pedestrian crosses first 1082 704
Cyclist crosses first 811 800

The category of pedestrians crossing first within 0 to 3 seconds from the cyclist has the highest number
of pedestrians and this decreases for the range of 3 to 5 seconds. In the cases where the pedestrian
crosses after the cyclist, the quantities are very similar, potentially due to pedestrians preferring to
remain at a larger distance from the cyclist, thereby crossing after the cyclist in the 3 to 5 seconds
range, which is also supported by the quantity of stopping trajectories which is generally more (15.6%)
than the reference non-crossing pedestrians (8.4%).

The division of first and second crossing pedestrians does however differ when considering the different
directions that the cyclist can approach from. Table 6.6 shows the quantities of pedestrians walking at
the Lorentzweg from east to west while going first and second depending on the approaching direction
of the cyclist.

Table 6.6: Division of pedestrians crossing before (first) and after (second) the approaching cyclist, with a separate category
for the approach of the cyclist

Origin cyclist | Ped first | Ped second | Total | Ped first percentage | Ped second percentage

West 672 252 924 | 72.7% 27.3%
South 754 994 1748 | 43.1% 56.9%
East 46 64 110 | 41.8% 58.2%

North 174 169 343 | 50.7% 49.3%
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The quantities and percentages in pedestrians crossing first/second show large differences. The pedes-
trians crossing with a cyclist from the south cross mostly after the cyclist, whereas the pedestrians
crossing with the cyclist from the west more often cross first. This potentially arises due to the right of
way that pedestrians have in the second scenario, though this is not reflected in the scenario where
the cyclist approaches from the east. For the north direction no strong preference seems to be present
for one of the two participants. A possible explanation for the divide of these last two directions is that
the approach from the east and north cause a complicated traffic situation, where it is unclear for both
modes which mode has priority. Therefore, the pedestrian might hold back more often due to the higher
speed of the cyclist, even though it has priority.

Following the outcomes of first and second crossing pedestrians however does not explain the under-
lying approach of both modes on how the order of crossing was determined. The predicted PET can
provide an insight into these approach cases to estimate the process behind the eventual outcome of
a conflict. Figure 6.4 shows the predicted PET values for pedestrians crossing with a cyclist walking
from east to west at the Lorentzweg crossing. This is the only scenario for which this calculation was
conducted. Again, the trajectory points inside the considered frame up until the crossing point are con-
sidered which in this figure are evenly spread on a normalised scale of 0 to 1, to be able to visually
compare all the developments of trajectories. The trajectories indicated in red cross before the cyclist,
whereas the blue trajectories eventually cross behind the cyclist. An opacity has been applied to get
an understanding of the density of predicted PET values.
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Figure 6.4: Development of the predicted PET for all trajectories of pedestrians walking from east to west at the lorentzweg
crossing while crossing with a cyclist.

Following the general course of the predicted PET values, the trajectories seem to gradually divide
themselves either to a positive PET value of more than 1 s or a negative PET value less than -1 s. This
is likely because a PET value in between this range would indicate a collision since the exteriors of
the two traffic participants are then in too close range from each other. Because the traffic participants
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want to prevent the collision from happening, they make decisions in their speed and direction in such
a way that a collision does not occur. This figure indicates that often times the pedestrian crosses the
cyclist from behind if a predicted collision would have occurred. This can be seen in the primarily blue
coloured predicted PET values in between -1 and 1 s at x = 0. Two (stacked) histogram plots are shown
in Figure 6.4 as well with the counts of these trajectories at the beginning (x = 0) and end (x = 1, or the
actual PET), where it is confirmed that most of the predicted PET trajectories in between -1 and 1 end
up behind the cyclist (again indicated by the blue colour).

The actual PET values (right histogram) show two peaks on both sides of the zero PET value, albeit that
the blue peak is less distinct. The peak in red suggests that unlike pedestrians, cyclists tend to cross
pedestrians sooner after the pedestrian has passed the conflicting point. The red peak corresponds
with the higher quantity of first crossing pedestrians between 0 to 3 seconds from Table 6.5. In the
predicted scenario (left histogram), this peak is also already noticeable. This would suggest that before
the pedestrian reaches the point to change its movements, the cyclist has already made the decision
to yield to the pedestrian and has behaved accordingly.

To evaluate the consistency of the predicted PET values across the trajectories, the predicted first
crossing mode is quantitively compared with the actual first mode. The predicted first mode is derived
based on the sequence of predicted PET values along the trajectory by evaluating the sign of predicted
PET across multiple time steps. Table 6.7 shows how often the pedestrian was temporarily predicted
as crossing first and second compared to the eventual outcome. These tables are provided below.

Table 6.7: Count of pedestrians predicted first and second compared to the actual outcome considering several consecutive
trajectory points.

Number of consecutive trajectory points | Predicted | Actual first Actual second
1 First 1727 155
Second 59 1456
5 First 1747 134
Second 39 1477
3 First 1754 119
Second 32 1492
4 First 1761 99
Second 25 1512

The values in each section of the table on the anti-diagonal show that in all cases, it occurs more often
that during a certain part of the trajectory the pedestrian is predicted to cross first, but ends up second
than the other way around, again suggesting that the pedestrian is more likely to yield to the cyclist,
than the other way around.

6.3. Deviating Behaviour

In this section, an approach is presented to distinguish deviating trajectories from non-deviating ones.
This is done by comparing the deviation of crossing and non-crossing trajectories to find a threshold
value. Thereafter, the approach of the cyclist is used as a variable to distinguish the scenarios where
deviating behaviour occurs most often.

6.3.1. Deviating threshold

The trajectory plots of Figure 6.2 show a number of trajectories that deviate from a straight path towards
the end goal. Particularly, the paths that align with the foot path seem to have a region with many
trajectories that deviate southwards after the footpath makes a turn in this direction. For calculating the
deviation of the pedestrians walking from east to west at the Lorentzweg crossing, only the paths that
start and end at the height of the foot path in between the specified frame in Figure 5.12 are considered.
For the scenarios of the Mekelweg crossing, the full trajectory is considered.

A measure for the deviation is the root mean squared deviation (RMSD). The RMSD can be calculated
with the lateral distance of each trajectory point from a centre line. The centre line is in the case of
pedestrians walking from east to west defined as the line in between the first and last trajectory point
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in between the specified blue frame. A visualisation of this centre line is made of a sample trajectory
in Figure 6.5.

Sample of pedestrian deviating trajectory and its centre line

\I 2.00

175

= = Trajectory 0.25
=== Centreline
— Lateral distance 0.00

Figure 6.5: Sample trajectory of a pedestrian walking from east to west with the highlighted centre line and lateral distances of
the trajectory points.

The lateral distance from each trajectory point to this line can be determined by applying the distance
formula from a point to a line (GeeksforGeeks, 2024a):

_ laz, — yp + |

a?+1
Where z,, and y, are the coordinates of that trajectory point and « and b are the slope and y-intercept
of the straight line respectively.

d (6.2)

To compare the distances for a full trajectory with respect to the centre line, the formula for the root
mean square deviation is applied that provides the overall magnitude of deviation from the central line
(Ather, 2022):

no g2
RMSD — % (6.3)

Where n is the number of trajectory points within the considered frame. The first and last trajectory
point are not considered in the total deviation calculation (n — 2), because the distance to the central
line has to be zero if this line is based on these two points.

In some cases, the overall deviation of a trajectory might not have a high value, while the trajectory
might deviate significantly at a specific location, e.g. right before entering the bike path. For this reason,
not only RMSD, so overall deviation, is considered, but also the maximum deviation of a trajectory,
measured with the same lateral distances calculated with formula 6.2.

For both the RMSD and the maximum deviation, it needs to be verified what a suitable threshold could
be for appointing deviating trajectories. Determining the threshold values is done for the pedestrians
walking from east to west at the Lorentzweg crossing. This is because it has a larger number of pedes-
trians, making the findings statistically more relevant. These thresholds are then applied to all three
straight crossing scenarios.
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First, insight in the deviation values for crossing pedestrian trajectories is needed and this is compared
to the general deviating values of non-crossing pedestrians. Histogram plots are made of the RMSD
and maximum deviation of all trajectories of pedestrians walking from east to west. Figures 6.6 and
6.7 show these plots respectively, with a log-normal fitting function used to approximate the course of
these deviations. Deviations often exhibit right-skewed behaviour, so small deviations are common,
but large deviations are rare and occur with decreasing frequency. The log-normal distribution models

this kind of asymmetry.
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Figure 6.6: Histograms of the root mean squared deviation of crossing trajectories
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Figure 6.7: Histograms of the maximum deviation of crossing trajectories

The RMSD and maximum deviation both have a higher mean and standard deviation in the scenarios
where the cyclist crosses first, suggesting that pedestrians tend to deviate from their path more fre-
quently and that this deviation is larger if the cyclist crosses first than if the pedestrian crosses first. It
is however key to understand how these numbers compare to the pedestrians that do not cross with a
cyclist, to detect whether movement changes occur. A similar histogram can thus be made analysing
the same framed area of pedestrians going east to west that do not cross with cyclists from the side
for both the RMSD and the maximum deviation. Figures 6.8a and 6.8b show these histograms for the

RMSD and the maximum deviation respectively.
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Figure 6.8: Histograms of the RMSD (a) and maximum deviation (b) of non-crossing pedestrians.

Although the figures seem to be similar in shape, the minor differences in means and standard deviation
together with the quantity of the data make for a different distribution for all scenarios, so the deviation of
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non-crossing pedestrians, pedestrians crossing first and pedestrians crossing second. To test whether
the distributions are significantly different, a Kolmogorov-Smirnov-test (KS-test) is performed on the
dataset.

The distribution of deviations among non-crossing pedestrians serves as the reference group. The
null hypothesis (Hy) for each comparison is that the distribution of trajectory deviations (both RMSD
and maximum deviation) for crossing pedestrians does not significantly differ from that of non-crossing
pedestrians. The alternative hypotheses (H;) state that crossing pedestrians exhibit significantly differ-
ent deviation distributions compared to non-crossing ones.

The test results of each of the hypotheses are shown in Tables 6.8 and 6.9 highlighting that all distribu-
tions are significantly different (p-value < 0.05).

Table 6.8: Significance test for the trajectory RMSD for crossing pedestrians compared to non-crossing pedestrians.

First crossing mode | PET category | KS statistic | P-value | p <0.05 | Statistical significance

Ped first 0-3s 0.072 8.02e-5 | Yes Significantly different
3-5s 0.083 3.32e-4 | Yes Significantly different

Cyc first 0-3s 0.104 1.89e-7 | Yes Significantly different
3-5s 0.060 1.30e-2 | Yes Significantly different

Table 6.9: Significance test for the trajectory maximum deviation for crossing pedestrians compared to non-crossing

pedestrians.
First crossing mode | PET category | KS statistic | P-value | p <0.05 | Statistical significance
Ped first 0-3s 0.067 3.71e-4 | Yes Significantly different
3-5s 0.066 8.48e-3 | Yes Significantly different
Cyc first 0-3s 0.103 3.30e-7 | Yes Significantly different
3-5s 0.077 5.38e-4 | Yes Significantly different

This significant difference is not always present for the Mekelweg crossing scenarios, of which the
histogram plots and the resulting statistical tests can be found in Appendix F. It can be noted here that
a significant difference between two distributions is more likely to arise for higher amounts of trajectories,
so the values of Tables 6.8 and 6.9 are assumed to provide the most accurate results.

Because the crossing and non-crossing pedestrians are significantly different in their deviating be-
haviour, this difference can be used to determine a threshold for deviating trajectories. The threshold
that is determined is based on the difference between the non-crossing pedestrians and the pedestri-
ans that cross after the cyclists. The pedestrians that cross before the cyclists also show a significant
difference in deviating behaviour, but this is because these pedestrians actually tend to walk in a more
straight path than non-crossing pedestrians do. This is different from the assumption made in section
3.4.3, where the pedestrian was assumed to deviate slightly away from the approaching cyclist if it
decides to cross before the cyclist. Possibly, this is due to these pedestrians preventing a collision by
walking straight to their goal, instead of a gentle walk where more lateral deviation could occur.

The contrast between pedestrians who cross behind a cyclist and those who do not cross can be char-
acterized by comparing their fitted log-normal distributions for trajectory RMSD and maximum deviation.
Appendix E provides a visual overview of the steps used to establish a threshold based on these distri-
butions.

To better understand where deviating behaviour when crossing diverges most significantly from the
reference behaviour, a graph is created that maps this divergence across the full range of RMSD and
maximum deviation values. Rather than relying on absolute differences a relative comparison is made,
because the absolute difference does not necessarily emphasise the most distinct cases. The graph
highlights where crossing pedestrians exhibit disproportionately frequent deviations compared to non-
crossing individuals. The point of greatest relative difference is then selected as the threshold, as it
represents the region where crossing behaviour deviates the most from the reference behaviour. Fig-
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ures 6.9 and 6.10 show the graphs of the relative density difference with the threshold value highlighted
as the maximum for each of the scenarios.
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Figure 6.9: The density difference of the RMSD distributions between crossing pedestrians and non-crossing pedestrians
relative to non-crossing pedestrians.

PET: O - 3 s (Cyc First), max at x = 0.93 PET: 3 - 5 s (Cyc First), max at x = 0.00

021 ]
0.2
0.0 1

Relative Density Difference
IS
s

Relative Density Difference

—-1.0

0.0 0.5 1.0 15 2.0 2.5 0.0 0.5 1.0 15 2.0 2.5
Maximum Trajectory Deviation [m] Maximum Trajectory Deviation [m]

Figure 6.10: The density difference of the maximum deviation distributions between crossing pedestrians and non-crossing
pedestrians relative to non-crossing pedestrians.

The threshold value that is chosen for RMSD is chosen in between the two founded values, which in
this case is set at 0.45 m. For maximum deviation, no clear threshold value was found in the scenario
of PET 3 - 5 seconds, which is why the threshold value in this case is set at 0.93 m, based on the PET
0 - 3 second scenario.

6.3.2. Deviating directions

The threshold values are used as a basis for extracting trajectories that deviate substantially. The
deviation not only happens to certain extents, the directions to which pedestrians tend to deviate is
also of importance when creating an understanding of this type of behaviour. In the Methodology, an
assumption was made on the direction of the pedestrian, depending on the origin of the cyclist. The
direction of the cyclist could be an indicator for the pedestrian to deviate towards the cyclist, in the case
that the pedestrian crosses behind the cyclist. Therefore, subplots of the deviating trajectories are
created that distinguish the four cardinal directions that the cyclist approaches from. These subplots
are shown in Figure 6.11.
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Figure 6.11: Subplots of the pedestrians walking from east to west crossing behind a cyclist that approaches from one of the
four cardinal directions.

The percentages of deviating trajectories compared to the total number of pedestrian east-west cross-
ings with a cyclist from one of the cardinal direction is given as the 'count’. From these percentages
it can be seen that in the case that a cyclist approaches from the south, the pedestrian is deviating
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relatively often compared to the other directions. This deviation seems to be mostly southwards, so in
the direction of where the cyclist is coming from. This behaviour is likely due to a pedestrian wanting to
cross the cyclist earlier in time than it would if it would come to a complete stop. The percentage for the
east direction is also 20%, yet a visual inspection of this category does not indicate clear deviations.

For the other crossing scenarios, no clear pattern could be detected in the direction of deviation based
on the same threshold values, except for the pedestrians crossing from south to north at the Mekel-
weg. In the specific approaching case where the cyclist approaches from the east at this crossing, the
pedestrians again seem to deviate slightly in the direction of the approaching cyclist.

Commonly, the percentages of deviating trajectories were higher, yet no real directional preference
could be detected for all other crossing scenarios. The trajectories of pedestrians crossing behind the
cyclist at the Mekelweg that deviate substantially are provided in Appendix | with again the origin of the
cyclist used to classify the trajectories.

Even though deviation can be detected in some approaching cases, in general it occurs less often
compared to pedestrians that stop in their approach to cycling paths.

6.4. Conclusion

In this section, an answer is provided to the sub-research question: what movement changes does a
pedestrian perform when approaching a cyclist in a sideways conflict?

A pedestrian can perform multiple changes to its movement when it approaches a cyclist. The results
show that stopping behaviour occurs approximately 30 to 50% of the time in the case that the pedestrian
crosses after the cyclist for a crossing happening within a PET of 0 to 3 seconds from each other.
Stopping happens slightly less often in the case that the pedestrian crosses before the cyclist compared
to pedestrians that do not cross with a cyclist.

The stopping distance that pedestrians tend to keep towards the eventual conflicting point fluctuates
around a mean of about 3 meters, but is dependent on the circumstances of the crossing scenario.
Figure 6.12 summarises the different stopping percentages for pedestrians crossing after a cyclist within
0 to 3 seconds, together with the average stopping distances that are kept for all scenarios.

Mekelweg crossing Lorentzweg crossing

47.6%

3.5m

B32.8%

4\

51.9%
Figure 6.12: All stopping percentages and mean stopping distances of the different analysed crossing scenarios.
The data suggests that the pedestrians more often yield to cyclists in the cases that a close conflict is

predicted (predicted PET in between -1 and 1 second). This is confirmed by observing and quantifying
the general course of the number of predicted first and second pedestrians.
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Deviation happens less often compared to stopping, yet there is a significant difference in deviating
behaviour for crossing pedestrians compared to non-crossing pedestrians. The pedestrian tends to
walk a straighter path when it decides to cross before the cyclist than when it does not cross at all.
Deviation mostly happens if the pedestrian crosses after the cyclist while the cyclist approached from a
branch sideways to the approach of the pedestrian. The deviation is then mostly towards the direction
of the approaching cyclist.



Modelling Test Case

In this chapter, a test case is presented that was set-up in MassMotion. In this test case, the aim is not to
propose a generalised adaptation of the Social Force Model, but rather to explore how targeted changes
can improve the behaviour in a controlled scenario. A trajectory pair of an interacting pedestrian and
cyclist was chosen that acts as a representative example. While this setup does not result in a broadly
applicable model on its own, it serves as an illustrative example for how such adjustments could be
incorporated into a more generic model in future work.

Following this case, sub research question 5 is attempted to be answered: What adaptations can be
done to the social forces model to mimic the behaviour of pedestrians towards approaching cyclists?.
The environment of the Lorentzweg crossing is digitally recreated. The pedestrian and cyclist move-
ment of a single sideways crossing is attempted to align with the findings in the data. The steps that
are performed are presented in Chapter 3.5 and follow the structure of the selection of the trajectories,
the set-up of the environment, the initial formulation test and the adapted form of this test.

7.1. Sample from the data

To choose a representative interaction between a pedestrian and cyclist from the data, the intersection
and crossing scenario needs to be determined. The main focus on this research has been on the
pedestrians walking from east to west at the Lorentzweg crossing, because this scenario provided
the richest amount of interactions between cyclist and pedestrians. Furhtermore considering that the
trajectory data has a higher frame rate, covers a larger area and is therefore able to visualise the
movement of the cyclist properly, the Lorentzweg crossing is chosen as the intersection of interest with
the specific focus of the pedestrian walking from east to west.

The cyclist can approach the pedestrian from the 4 cardinal directions, yet when observing the deviating
behaviour and pedestrians crossing behind the cyclist depending on the approaching direction of the
cyclist (Table 6.6), the cyclist approaching from the south induces the most movement changes for the
pedestrian in terms of stopping and deviating. This is the behaviour that is attempted to be tested in
this case. Thus, the cyclist approaching from the south is selected as the to be analysed interaction.

The interactive cyclist-pedestrian pair that has been chosen is shown in Figure 7.1 with the pedestrian
walking from east to west and the cyclist going from south to west. This example was chosen because
the pedestrian got to a speed below 0.77 m/s with a stopping distance to the crossing point that is
within the expected range of the normal distribution. Besides, a slight deviation southward could be
detected at the instant the cyclist was approximately in front of the pedestrian. Furthermore, a video
inspection of that time instant proved that there was no interference of other participants, neither by
crossing nor by approaching in close range. The pedestrian crosses after the cyclist with a PET value
of 2.9 seconds.

60
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Figure 7.1: Chosen trajectory pair of a cyclist going from south to west crossing with a pedestrian going east to west.

7.2. Environmental set-up

The environment of the crossing is recreated in MassMotion by projecting a scaled map of the inter-
section as a blueprint while matching the position and orientation from the map to the axis of the data
collected by the smart sensor.

Agents are placed within defined areas that represent the cycling and footpaths that constrain the
agents to remain in that area. To allow movement between the pedestrian and cycling paths, transitions
are only enabled at the specific crossing points. Since the focus of this study is on pedestrian behaviour
in response to cyclists, the cyclist’s path is fixed and follows the trajectory recorded in the data. As a
consequence for the behaviour of the pedestrian, it is reactive instead of interactive, because the cyclist
will not adapt its movement based on the presence of the pedestrian. Therefore, every time step, the
pedestrian will change its movement to the cyclist and its current direction. Figure 7.2 shows the set-up
of the environment.
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Figure 7.2: Set-up of the environment in MassMotion

After the crossing point, the cyclist did not perfectly adhere to the fixed path that was created for the
cyclist, because it had to be split into two sections. This is why the trajectory of the cyclist does not
perfectly align with the trajectory from the data. The speed of the cyclist can furthermore not be adapted
during its trip, therefore, the speed at the beginning of the trajectory is the speed that the cyclist mostly
contains during the whole trajectory.

The appearance of agents can be timed with a precision of one second. Creating an agent from a
starting point with this precision might result in timing issues for the conflict. Therefore, an estimation
of the location of the portals has to be made from where the pedestrian and cyclist agent will start, to
follow the correct location and timing of the trajectories in the data.

7.3. Original formulation test

The original formulation test that is performed considers the script that was created in the SDK to make a
first prediction of movements for cyclists and the responding pedestrians, created by Oasys. For every
time step (0.2 seconds) in the simulation, the speed and direction of the pedestrian are determined
based on the presence of the cyclist, together with all other already existing forces in the model. The
speed of the cyclist varies with a mean of 4 m/s, a standard deviation of 0.108 m/s and has a minimum
and maximum value of 2 and 7 m/s respectively. This standard deviation is likely to be higher when
considering the findings of the speed distributions of cyclists at both crossings in the data (Chapter
5.2.1). For the purpose of this test however, this deviation is set to an even lower value, to match the
speed of the cyclist in the sample.

The influence from the cyclist to the pedestrian is in the SDK formulated as an overruling statement on
the initial model, so no force is formulated. The direction that the pedestrian tends to go to is driven by
a combination of frontal, sideways and rear distances that the pedestrian agent tries to maintain from
the cyclist, which are 6, 0.5 and 2 meters respectively. If the pedestrian approaches the cyclist within
these regions, it will react by moving with the same speed towards the nearest escape direction. This
escape direction is perpendicular to the direction of the cyclist and always points away from this axis
of movement. The script also calculates the collision courses and sets the TTC value of 3 seconds as
a threshold below which a similar fleeing reaction is performed with an additional increase in speed of
50%. Lastly, if the pedestrian gets in the range of 1 meter around the cyclist, the pedestrian will again
move in the escape direction with a speed increase of 50%.

An issue with the fleeing reaction based on the sideways approach arises in the simulation where
unexpected behaviour of the pedestrian is detected. When performing the simulation, the trajectories



7.3. Original formulation test 63

show the movement patterns as illustrated in Figure 7.3.
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Figure 7.3: Trajectory pair of simulated cyclist agent crossing with the pedestrian agent for the old situation in MassMotion.

The trajectory of the pedestrian shows fleeing behaviour. This can be seen in the red part of the
trajectory overlapped by an orange part, indicating that the pedestrian turned around twice to not get
near the cyclist. This behaviour occurs while the cyclist is not in the near regions of the pedestrian. The
simulation in this case does not properly reflect the behaviour that was detected in the data, where the
behaviour of the pedestrian was more in stopping and a slight deviation southwards.

The velocity vector of the cyclist is rotated 90 degrees to the left and normalised. Between this vector
and the vector of relative position (from the cyclist to the pedestrian agent) the dot product is calculated
to consider whether the pedestrian is below the 0.5 meter range from the cyclist. Two visualisations of
this calculation are shown in Figure 7.4.
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Figure 7.4: Two situations where the dot product is calculated as a projection of the cyclist-pedestrian vector on the normalised
rotated cyclist direction vector. The value can be both positive (1) as negative (2).

This method only partially works for an interaction between a cyclist and a pedestrian. The dot product
is a measure to determine the common direction two vectors have with each other. When the two
vectors are pointing in opposite directions (situation 2), the value of the dot product takes on negative
values, thereby being below 0.5, inducing pedestrians to flee in the perpendicular direction from the
cyclist velocity direction. An approaching pedestrian from the right from the perspective of the cyclist
reacts therefore in an unusual way, by fleeing in the opposite direction.

To correct this behaviour, the dot product can be made positive by taking the absolute value bars.
Although this adaptation should contribute to more suiting behaviour of the pedestrian, the fleeing
behaviour in general has almost not occurred in the data. The formulation in general therefore requires
several adaptations that potentially improve the movements of the pedestrian.

7.4. Adapted formulation test

The new formulation of the simulation takes into account the findings of the data and attempts to trans-
late these into a new formulation. This formulation is performed in the SDK. Two main topics are
addressed in this new simulation: the speed and the direction of movement for the pedestrian.

The pedestrian is likely to decrease its speed when encountered with an approaching cyclist. It is
therefore important to distinguish in which situations it is likely that the pedestrian is about to slow
down. In the previous formulation, the pedestrian either changed its movement due to its distance with
respect to the cyclist or because of a collision course expressed in TTC. This formulation will make use
of predicted PET instead of TTC, because predicted PET also distinguishes potential near collisions
that pedestrians might want to avoid. The predicted PET that is calculated in this scenario, considers
only the speed and movement direction of the current time step to calculate the timing in between
the pedestrian and cyclist agent to cross each others paths. The crossing point between these two
modes is calculated for every time step as well. This can then translate into the distance from which
the pedestrian tends to slow down or stop.

For this particular situation, the distance where the pedestrian reaches a speed below 0.77 m/s of
the pedestrian is 3.86 meters, as established from the trajectory analysis. The adapted formulation
introduces conditions based on predicted PET and distance to the conflicting point to trigger a speed
change in the pedestrian movement. In this scenario, the speed is reduced by 37.5% if the pedestrian
PET is predicted to be less than 3 seconds and the distance to the collision pointis less than 3.5 meters.
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The 37.5% reduction is based on an estimate of the difference between the pedestrian’s speed before
and after the deceleration phase in the trajectory, which ranges from 1.2 m/s to 0.75 m/s respectively,
see Figure 7.5. The PET threshold of 3 seconds reflects observed fluctuations in the predicted PET
around that value during the encounter, see Figure 7.6, while the distance threshold of 3.5 meters
is slightly lower than the observed 3.86 meters to compensate for the more immediate reaction of
pedestrians changing speed in the simulation, which tend to be less gradual than the case from the
data.
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Figure 7.5: Development of the speed from the sample of the data.
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Figure 7.6: Development of the predicted PET from the sample of the data.

Besides the speed, the direction of the pedestrian needs to be determined as well. The regular for-
mulation of social forces directs a force from the cyclist to the pedestrian, creating a movement of the
pedestrian parallel to the path of the cyclist, see Figure 7.7, situation 1. The previous method explained
in section 7.3 prevented this situation by using a perpendicular force from the direction of the cyclist,
yet this would possibly not result in the deviating behaviour that could be observed in the data. For this
reason, an additional point is considered in front of the cyclist that influences the preferred direction of
the pedestrian. Instead of a force directed solely from the cyclist, this method uses a combination of a
force exerted from the cyclist and from the additional point in front of the cyclist. This is shown in the
second situation in Figure 7.7.
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== Force due to cyclist
=P Goal force
== Resultant force

(1) (2)

Figure 7.7: Two situations where the pedestrian is tempted to walk along the direction of the cyclist (1) and where the
pedestrian is tempted to go behind the cyclist (2).

The position of the additional point is based on the current speed and direction of the cyclist. Specifi-
cally, it is placed at a distance of five times the cyclist’s velocity vector at that time step, meaning that
the cyclist’s position is predicted five seconds into the future. This multiplier can be interpreted as a
predictor: it approximates the future position the cyclist would reach if it maintained constant speed
and direction. The resulting influence on the pedestrian is calculated from vectors pointing from both
the cyclist’'s current and projected positions toward the pedestrian, which together define a preferred
‘escape’ direction. The resulting direction of the pedestrian is then compiled of its previous and escape
direction. The choice of a five-second projection is mostly based on visual evaluation of the trajectories,
but can also be interpreted as modeling an anticipatory behaviour in which the pedestrian responds to
the space the cyclist is expected to occupy in the near future. As the two influence vectors average
out, the resulting directional influence is approximately aligned with the cyclist's position 2.5 seconds
ahead, reflecting an assumed anticipatory window in the pedestrian’s decision-making.

The final direction is then calculated by multiplying both the initial and escape directions with weights
based on the predicted PET. The weights for the escape and previous directions are calculated by the
following formula:

. 1 ) )
weightescape = m &  weightprevious = 1 — weightescape (7.1)

The weight of the escape direction cannot be higher than the weight of the current direction, therefore,
the turning around behaviour of the pedestrian is prevented.

The eventual outcome of the simulated trajectories are shown in Figure 7.8. The trajectory of the
pedestrian shows slowing down behaviour and a slight bit of deviation southwards, which is similar to
the observed behaviour.
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Figure 7.8: Trajectory pair of simulated cyclist agent crossing with the pedestrian agent for the new situation in MassMotion.

Visually, the trajectory of the adapted formulation aligns with the sample from the data. Furthermore,
a comparison of the speeds for all three cases, shows that the adapted formulation and test sample
from the data follow a similar speed path. Figure 7.9 provides a visual comparison of all three speed
profiles.
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Figure 7.9: Comparison of the speeds of the three situations.

The speed profiles of the previous and new situation in Massmotion start exactly the same until the
interaction with the cyclist takes place, from here on, the new situation resembles the speed profile of
the actual situation better compared to the old situation. After 6 seconds, the pedestrian agent in the
new situation slowly recovers to its original speed, whereas in the data the pedestrian seems to keep a
low speed for a longer time period. As a result, the eventual post-encroachment time of the simulated
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situation is slightly lower compared to the actual situation. The total time spent in the area of both the
pedestrian agent in the new situation and the pedestrian from the sample of the data are the same,
meaning that both pedestrian’s trip takes the same time, while also the distance that is covered by the
pedestrians is similar. Table 7.1 below provides an overview of the pedestrian’s PET value, total time
spent in the area, and the covered distance for all three situations.

Table 7.1: Numerical comparison of the PET, total time spent and total distance covered by the pedestrian (agent) in the
detected area.

Old situation MassMotion | New situation MassMotion | Actual data
PET 456 s 2.36 s 293 s
Total time spent 158 s 11.6s 11.6s
Distance covered | 16.6 m 12.6 m 124 m

7.5. Conclusion

The adaptations that are proposed in this Chapter align with the findings of the data that the pedestrian is
tempted to slow down or stop when confronted with an approaching cyclist. Also, a method is introduced
that induces slight deviations in the direction of the approaching cyclist. Thereby, an answer is provided
to the sub-research question: what adaptations can be done to the social forces model to mimic the
behaviour of pedestrians towards approaching cyclists?

Figure 7.10 shows the three situations next to each other, with the new situation to the right.
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Figure 7.10: Trajectory comparison of the cases (from left to right): actual trajectory, previous set-up, new set-up.

However, the method that is proposed in this thesis requires significantly more test cases to properly
calibrate the parameters and validate the results of the simulation. The parameters that should be
properly calibrated are the slowing down percentages, the multiplication factor of the cyclists velocity
for determining the additional point in front of the cyclist, and the weight of the escape vector based on
the PET value. It should be considered what the effect is that the new formulation has on the movements
of pedestrians right in front of the cyclist and whether it should be adjusted for these cases.

Also, the methods introduced in this chapter have been attempted to align with a single sample pedestrian-
cyclist pair, whereas the results of all the interactions show a variety in behaviour. Thus, a proper model
should consider this stochasticity of for example threshold values for preferred stopping distances and
for predicted PET.



Discussion

In this Chapter, the findings of this study are discussed and related to the existing knowledge on
pedestrian-cyclist interactions. A critical overview is provided by comparing the findings to existing
literature and highlighting the limitations of this study with respect to the collected data and applied
methods.

8.1. Thesis in light of the existing literature

The studies that have been examined show an understanding of the movement of cyclists in many
different approaching cases with a pedestrian, yet this thesis can supplement the general knowledge on
pedestrian-cyclist interactions by focussing on the behaviour of the pedestrian. This section considers
how the findings relate to earlier work on pedestrian behaviour.

For stopping behaviour, a threshold value was set and the quantities of stopping pedestrians were
compared in different crossing scenarios. Then the stopping distances that pedestrians tend to keep
towards the crossing point and distributions were created to detect whether the type of conflict has
an influence on the stopping distance. Stopping behaviour specifically for pedestrians approaching
cyclists has to the writer’s knowledge not yet been studied, yet methods of mimicking the behaviour of
pedestrians towards cyclists in a social forces model have been proposed.

The findings of the PET thresholds are in accordance with some of the PET values that have been
determined in previous studies. The studies of Zangenehpour et al. (2016) and Tageldin and Sayed
(2016) agree that the conflicts within a PET of 0 and 3 seconds are dangerous conflicts. Therefore the
findings of the data shown in subsection 6.1.1 align with this threshold value that from a PET value
of 3 seconds the amount of stopping trajectories seem to drop less significantly, suggesting that the
severity of the conflict influences the stopping behaviour. These same studies however also consider
conflicts with PET below 1.5 seconds. In relation to the stopping percentage, no significant change
in stopping behaviour was found in the data for this PET value. Also, the study of Beitel et al. (2018)
presented a threshold value of 2 seconds, for which again no significant change in stopping behaviour
was found. All studies seem to agree on 5 seconds to be the maximum value of PET that is considered
to be an interaction. However, in this research there seemed to be a difference between the amount
of stopping for non-crossing trajectories and for the 5 second PET interactions, namely 8.4% against
17.8% respectively in the most significant approaching scenario. It is unknown whether from a PET
higher than 5 seconds a significant drop in stopping trajectories can be detected.

Furthermore, it is assumed that the PET classification of 0 to 3 and 3 to 5 seconds can also be applied
for deviating behaviour. It is however unclear whether this assumption is justified and possibly further
research could explicitly show a relation between PET and deviation.

Deviation of pedestrians paths have been detected in the study of Afghari et al. (2014), though it was
not specified to what extent and in which direction this deviation takes place. The deviating direction of
the pedestrian with respect to the cyclist is regularly considered in the studies on social forces. Some
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of these studies (W. Wang et al., 2024, LIANG et al., 2012) assume that the force exerted from the
cyclist to the pedestrian acts along this direction. The resulting movement of pedestrians in a sideways
conflict would be that the pedestrian moves along in the movement direction of the cyclist. However, the
deviating behaviour that was detected in this study suggests that the pedestrian moves in the direction
that the cyclist comes from, thereby contradicting the outcomes of these studies. Other pedestrian
studies (Dias et al., 2018, Yuan et al., 2019) show that the deviating behaviour can indeed be towards
the direction the crossing cyclist is coming from, because a future position is considered.

This study has been conducted at cyclist-pedestrian intersections with a separation of both modes by
indicated coloured pavement and a ribbed strip of pavement in between. From other literature it is
unclear how this specific type of infrastructure influences the choices of pedestrians and cyclists com-
pared to other (separation) methods, such as kerbs (vertical or sloped), solid barriers or no separation.
A separate study, focussing on these types of pavement designs could clarify the specifics of the ex-
pected behaviour at each of these types.

8.2. Limitations of the Data

The TU Delft campus has a bias considering the population distribution, with relatively many young
adults making use of the infrastructure. According to statistics of the TU Delft (TU Delft, 2024), the
student population is significantly larger than the personnel population, which on average are younger
(KorteAntwoorden, 2016 and Strategic Development, 2015) and the people are predominantly male
(Data-Insights, 2025). The effect that these relatively young men have on the overall data is most no-
ticeable in speeds and agile movements. Potentially older people tend to take less risks, as a result
having pedestrians tend to stop more often, potentially decreasing the amount of deviation as an alter-
native for stopping.

Also, the trajectories at the Lorentzweg crossing (Figure 5.12) show a fixed measuring error when the
trajectory transitions from one camera to the other and another error at the end of the trajectory, as
explained in Chapter 5.1. Although it was mentioned that this would not affect the movement changes
that the pedestrian makes before the crossing, it has an influence on the spread of the speed distribu-
tions. Because the standard deviation of the speed becomes larger, the overlapping region of speeds
between pedestrians and cyclists becomes larger, therefore cyclist and pedestrian trajectories could
be unintentionally filtered out or incorrectly labelled a cyclist or pedestrian.

Data on interaction might not always be fully captured in the smart sensor. Trajectories do not give any
information on the negotiations that pedestrians and cyclists tend to perform when in a real life situation.
The pedestrian might make a choice based on visual cues, e.g. eye contact, or even verbal interaction.
Although the result of the behaviour is projected in the data, the methods that were applied to arrive to
that physical behaviour is not always clear.

Furthermore, interaction is also an iterative process that changes due to the behaviour of the other
mode. It is therefore a big assumption in this research that the trajectories of cyclists are treated as
somewhat fixed or predetermined movements, whereas these are normally also determined based on
the movement of the oncoming traffic participants. In section 6.2, it was suggested that cyclists perhaps
made their decisions before entering the detection area, which could mean that cyclists tend to yield
more than is suggested based on the findings in this research.

The data limitations could be solved by applying another collection methodology, such as conducting
the experiment at another sight, with other equipment or with observers, or a different set-up of the
smart sensors. A comparative study at different crossings outside of the campus could reveal what
movements are performed by a representative sample of the population. Otherwise, the demographics
of the traffic participants could be taken into account as an influencing variable by performing a field
study with observers. An additional advantage of this collection method is that it can provide more
nuanced insights into the way the interactions unfold and thus provide more qualitative insight as well.
Another way to circumvent the limitations is to reinstall the smart sensors in such a way that the images
that are created are properly connected, through calibration and validation of the trajectories. This
connection of multiple frames can then furthermore be used to detect cyclist movements further down
their path, if installed with sufficient distance coverage.
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8.3. Limitations of the Method

During this investigation, some limitations were discovered in the method, which are outlined in this
section.

A first limitation in the method is in the use of fitted distributions for classification, especially when
the fit does not align well with the empirical data. The distribution fitted to the speed data may not
exactly reflect the observed speeds. In the case of the speed distributions of all trajectory points, the
fitted distribution of the cyclist’s speed appears to underestimate the average speed compared to what
a visual inspection of the histogram would suggest (Figure 5.4). As a result, the threshold used to
distinguish between pedestrians and cyclists may be slightly lower than ideal, potentially leading to
some misclassification.

A similar fitting problem seems to arise for the deviating functions, which are expressed by a log-normal
distribution. The distribution function mostly does not perfectly align with the reference data (Figures
6.8a and 6.8b), overestimating the deviation at the higher end and therefore underestimating the relative
difference that is used to determine the threshold. This could have been prevented by creating more
visually fitting functions, rather than relying on the fitting functions that are generated based on the
dataset with pre-written functions in Python.

Pedestrians and cyclists are now distinguished mostly based on their speed, where the 95 percent
interval as a consequence has that the speeds that are considered are only from pedestrians that do
not walk too fast and cyclists that do not go too slow. The group of pedestrians going fast could however
be pivotal when studying the different behaviours of pedestrians. A fast walking group might have
had an influence on the number of pedestrians crossing before the cyclist, because the expectancy is
that this group is tempted to cross before the cyclist more often than to decrease their speed and go
behind it. A consideration that can be made is to decrease the certainty interval determining the type
of mode based on speed. To compensate for this, other methods could be considered to distinguish
cyclists from pedestrians, for example by introducing additional factors such as acceleration or rotation.
Another method to distinguish cyclists from pedestrians is by application of machine learning, which
has been done in the study of W. Wang et al. (2024), that could automatically learn motion patterns and
distinguish between the two based on several more features. However, such an approach requires an
existing dataset in which each trajectory is reliably labelled as either pedestrian or cyclist. Since this
is not available in this study, such ground truth would need to be manually established, for example
by visually inspecting and labelling each trajectory. This would enable the application of supervised
learning, though it comes with other challenges, such as subjectivity on the distinction between a cyclist
and pedestrian and it is likely labour-intensive.

Only a distinction is made on individual interactions taking place within 5 seconds, but say a pedestrian
encounters two consecutive cyclists in a row and it is not accepting the gap in between, the first cyclist
that passes might have left the conflicting point more than 5 seconds after the pedestrian has passed
that point, wrongly stating that the pedestrian only crossed one trajectory. This could have been pre-
vented by calculating the interactions within a longer range, yet this would increase the computational
time.

Also, crossings should happen with at least a 30 degree angle, which is very locally determined, but if a
cyclist crosses with a pedestrian under a smaller angle, this interaction is not registered, thereby some-
times filtering out some specific movements that are common for these specific interactions. These
issues could be prevented by performing iterative steps in which the founded crossing trajectories are
reconsidered in the context of the full dataset, to detect whether no other traffic participant could have
been of influence on the particular crossing scenario. Another way to approach the interaction patterns
is by only considering the origins and destinations and the angles that these crossing paths likely make,
while not fixating on a very local angle.



Conclusion

This study investigated how pedestrians adjust their movements when crossing bike paths with oncom-
ing cyclists. The analysis focused on three types of behavioural responses: stopping, deviating, and a
more subtle form of gradual yielding, where pedestrians adjust their speed or direction. The aim was
to answer the main research question:

In what way do pedestrians change their movements when approaching and crossing bike paths with
oncoming cyclists?

A total of 4780 individual pedestrian-cyclist crossings have been analysed spread across two active
mode intersections at the TU Delft campus. This study derived movement indicators to quantify these
behavioural changes. The key findings are presented below, structured around the three main types of
behaviour observed. These findings serve to summarise the outcomes presented throughout the report
and highlight the most important insights in relation to the research question. The chapter concludes
by answering the main research question and then provides recommendations for future research and
practice.

9.1. Stopping Behaviour

Pedestrians perform different behaviours depending on the type of conflict with the cyclist. For the con-
flicts between a single pedestrian and cyclist, only a part of the pedestrians come to a stop. If the conflict
is happening within 0 to 3 seconds, the average stopping percentage of pedestrians crossing behind a
cyclist is 32.8% for the crossing scenario with the most interactions, where the pedestrians cross the
minor road of a T-intersection, referred to as the east-west connection at the Lorentzweg crossing. For
the other crossing scenarios this percentage is 51.9%, 32.2%, and 47.6% at the Lorentzweg crossing
for pedestrians going from south to west, and at the Mekelweg crossing going from south to north and
north to south respectively. Especially, the stopping percentage difference between the south-west
crossing pedestrians and the straight crossing scenarios is large. The stopping percentage is likely
higher because the pedestrians are making a sharp turn, therefore being more often registered as a
stopping trajectory. This is confirmed when comparing the stopping percentages with the reference
group of pedestrians that do not cross, which is 34.4% and is much higher compared to the other sce-
narios which are around 10%.

The stopping percentage for crossing pedestrians at the Lorentzweg crossing going from east to west
shows a gradual decline within a PET range of 0 to 3 seconds, where the closest interactions within
1 second of each other have a stopping percentage of around 45% and the interactions that have a
timing difference of around 3 seconds have a stopping percentage of approximately 20%.

If the pedestrian makes the decision to stop and wait for a passing cyclist, the stopping distance that
the pedestrian tends to keep in a conflict between 0 to 3 seconds towards the crossing point fluctuates
around 3 meters for the pedestrians at the east-west connection of the Lorentzweg crossing. The
standard deviation of this distance is a bit more than 1 meter.
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Depending on the type of origin-destination pair, the stopping distances for the pedestrians in the other
crossing scenarios differ slightly from the east-west connection. The south-west crossing pedestrians
at the Lorentzweg intersection show a slightly lower mean stopping distance to the conflict point com-
pared to the east-west crossing pedestrians. This difference is likely explained by the geometry of the
intersection. Pedestrians crossing from the east to the west approach the conflict point along a path
that is perpendicular to the bike path, so their stopping distance is measured directly along that axis.
In contrast, pedestrians crossing from the south to the west approach the same conflict point at an
angle, meaning their distance to the point of conflict is measured diagonally. As a result, this straight
line distance is smaller.

For the crossing scenarios at the Mekelweg (south-north and north-south) the mean of the stopping
distance is slightly higher, while the standard deviation tends to be lower. This is possibly due to the
width of the bike path and the different destination options at the Lorentzweg crossing in comparison
to the Mekelweg crossing. The width of the bike path that is crossed at the Mekelweg is larger than the
Lorentzweg crossing (approximately 4 meters and 2.5 meters respectively), so cyclists approaching
from the right, from the perspective of the pedestrian, have a broader strip of bike path in between the
pedestrian and cyclist. The pedestrian is likely to wait somewhere at the edge of the footpath for the
cyclist to cross, as was seen in the visualisations of the speed-trajectory plots (Figure 5.12 and Appendix
G). Therefore, the distance that the pedestrian keeps towards this crossing cyclist is on average larger.
At the Lorentzweg, the width of the path is smaller, yet the multiple directions that cyclists have as
origin or destination possibly create the larger spread of stopping distances that pedestrians tend to
keep, with cyclists possibly turning away or towards the pedestrian.

Figure 9.1 summarises the percentages of stopping trajectories and distances that pedestrians on
average tend to keep towards the conflict point for the crossing scenario where the pedestrian crosses
after the cyclist within a PET of 0 to 3 seconds.

Mekelweg crossing Lorentzweg crossing

47.6%

B 32.8%

51.9%

Figure 9.1: All stopping percentages and mean stopping distances of the different analysed crossing scenarios.

9.2. Gradual yielding

Other ways that pedestrians and cyclists tend to cross with each other are in the form of a more gradual
self-organising process. Since stopping does usually not happen more than half of the times a pedes-
trian crosses behind the cyclist, it suggests that it happens sufficiently frequently that pedestrians either
slow down slightly or that they maintain their speed on a constant level to eventually cross behind the
cyclist.

This is supported when analysing the development of the predicted post-encroachment time (PET) for



9.3. Deviating Behaviour 74

the Lorentzweg crossing for pedestrians crossing from east to west where the development of this
value for many trajectories remains constant throughout time, suggesting that pedestrians maintain
their speed in the cases where no collision or near collision course is predicted.

The predicted PET furthermore provides the insight that in the cases that a pedestrian and cyclist are
predicted to get in very close range of each other (PET between 0 and 1 seconds), the pedestrian
is more likely to yield to the cyclist, thereby crossing the cyclist from behind. This either happens by
stopping, thereby causing a severe drop in predicted PET, or by the pedestrian slowly changing its
movement direction, speed or both to end up behind the cyclist, thereby observing a more gradual
decline of the predicted PET.

9.3. Deviating Behaviour

Pedestrians can deviate from their intended straight path by deviating in a certain direction to prevent
a collision with a cyclist. Deviation happens only significantly often in the cases that the pedestrian
crosses after the cyclist. The data even suggests that pedestrians that cross before the cyclist maintain
a straighter path than pedestrians that do not cross with cyclists. At the locations with fewer total
interactions, the Mekelweg crossing from south to north and north to south, the distinction between
crossing and non-crossing trajectories was less pronounced.

The cases that deviation happens most often is when the cyclist approaches the pedestrian from a
sideways branch of the crossing. If the cyclist approaches from a branch behind or in front of the
pedestrian, deviation occurs less often and with less magnitude.

Deviation to a significant amount happens in about 20% of the cases where the cyclist approaches the
pedestrian from a sideways branch and the cyclist crosses first. The pedestrian in this case often tends
to deviate in the direction that the cyclist is coming from to be able to cross earlier.

9.4. Answer to the Main Research Question

Previously listed findings ultimately lead to the answer to the main research question: In what way
do pedestrians change their movements when approaching and crossing bike paths with oncoming
cyclists?

Based on the findings, pedestrians adapt their movements in several ways when encountering oncom-
ing cyclists. The pedestrian either comes to a stop, slows down, deviates from its intended path or uses
a combination of these movements in the case that the pedestrian decides to yield to the cyclist. This
movement is often projected when the cyclist and pedestrian are predicted to get in very close range of
each other and it especially occurs when the cyclist approaches from a sideways branch with respect
to the approach of the pedestrian. While stopping is more common when the post-encroachment time
becomes small, deviation is most often used in a situation where a slight adaptations are necessary to
prevent a collision and is only done when more space is available. In the cases where the pedestrian
has a reasonably safe opportunity to cross before the cyclist, it does so with determination by keeping
a straight path and almost no stopping.

The findings of this study highlight the anticipatory nature of pedestrian behaviour in encounters with cy-
clists, particularly in environments where no clear right-of-way is established. This has implications for
how active-mode infrastructure is designed and regulated. Despite the legal equality of both pedestri-
ans and cyclists as vulnerable road users, the behaviour observed suggests that pedestrians are often
cautious towards cyclists, acknowledging the speed advantages of cyclists. This shows that there may
be a gap between how the law treats pedestrians and cyclists equally, and how they actually behave in
practice. For urban designers and policymakers, understanding the patterns of behaviour is essential in
creating crossings that accommodate safe interaction. Infrastructure should not only separate modes
where needed but also provide clear visual cues that induce anticipation, which is especially valuable
in an urban environment where a modal shift to active mobility is emerging.

9.5. Recommendations

A proposal in MassMotion has been created that could potentially translate the stopping and deviat-
ing behaviour that has been found in the data. However, the current implementation has only been
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partially calibrated for a single scenario and should be viewed as an illustrative example rather than a
validated model. The parameters that govern the speed reduction and directional changes, which reg-
ularly occurs in the analysed data, need to be tuned to fit multiple scenarios. It is therefore proposed to
perform further research into the calibration and validation of the proposed changes to the formulation
to actually capture the effect that it has on the simulation performance. Calibration involves adjusting
the model parameters to reflect the observed behavioural patterns. Validation tests whether the model
can accurately reproduce these behaviours in different or unseen scenarios. The calibration can be
based on the statistics of the data used in this research, which are the stopping percentages, preferred
stopping distances and descriptive statistics of deviations and should be compared with these statis-
tics to make an overall comparison. A stochastic approach is needed to capture the natural variation in
pedestrian behaviour, such as whether an individual chooses to stop, slow down, or deviate, based on
probabilities derived from the observed data. This stochasticity can furthermore be applied using the
statistics of the normally distributed stopping distances that pedestrians prefer. Validation could be per-
formed by applying the calibrated model to a separate dataset and comparing the simulated outcomes,
such as stopping quantities, deviating patterns, or overall flow, to those observed in reality.

Furthermore, from the data it was observed that there is a large group of people that actually tend to
cross in front of the cyclist, which show less stopping and deviation compared to non-crossing pedes-
trians. For further testing of the MassMotion model, the behaviour of pedestrians crossing after the
cyclist should potentially be distinguished from the pedestrians crossing in front of the cyclist. This may
require the development and testing of a separate behavioural formulation which is most likely based
on the value of the predicted PET. When the predicted PET is sufficiently high, in the sense that the
pedestrian is predicted to cross first, the model should distinguish between the pedestrians that are
tempted to cross before the cyclist and the ones that still decide to wait and cross after the cyclist.

Further research should not only be done based on the findings of this study, it could explore other inter-
action types as well. This study specifically analysed individual pedestrian-cyclist interactions, whereas
Oasys could also encourage studies on mutual behaviours of groups of cyclists, or the interaction these
groups perform towards pedestrians. Behaviour in groups can be significantly different from individual
behaviours, because of the collective expectations the people in these groups have towards each other.
Massmotion would benefit from these different behavioural studies for creating a more inclusive model.

Besides research in the modelling, there are also other perspectives possible when analysing the be-
haviour of a pedestrian-cyclist interaction. While this study focussed on pedestrian responses, future
research could explore the behaviour of cyclists during crossing scenarios by analysing their move-
ments on the bike path further before reaching the crossing, because the findings of the data suggested
that cyclists might make their decisions further away from the conflicting point. As mentioned in the
Discussion, this could be done by using multiple smart sensors, which are properly calibrated to each
other, across a cycling path to detect the potential anticipatory movements of cyclists towards pedes-
trians.

Future research could further explore shared decision-making processes between the two modes. Par-
ticularly, interactions could be studied more in depth by focussing on verbal and non-verbal negotiations
that pedestrians and cyclists perform to each other to grant or take their right of way. This is more likely
to be properly detected by observers, that have the ability to classify the interactive behaviours based
on nuanced communication between cyclists and pedestrians.

Another follow-up study could use the findings of stopping and deviating behaviour to do a design-
oriented research of bike path crossings, not only considering the layout of the crossing itself, but also
taking into account the effect the placement of a crossing has on surrounding areas. This study could
explore how different crossing configurations influence pedestrian comfort and safety.

Oasys could develop their software in such a way that the behavioural findings of this study could find
an application for the users. First of all, the cyclist agent can be implemented within the software, by
providing a realised cyclist agent, with corresponding speeds and movement restrictions, that does not
require steps of adapting from a pedestrian agent. Secondly, if the cyclist were to be implemented
correctly, a modification of the social forces is likely to be necessary by implementing cyclist specific
behavioural rules for both cyclists themselves and pedestrian responses towards that cyclist. Lastly,
options could be added to define probabilities or distributions for agent decisions under certain condi-
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tions (e.g. a PET less than 3 seconds leading to a 30% chance of stopping).

On another note, Oasys could refine their software by enabling the use of trajectory data. This could
be done by implementing trajectory data, similar to the data used in this study, to enable calibration of
different parameters in the model when existing interactions need to be improved or new interactions
need to be tested.

Urban planners, designers and policymakers should be aware of the interactive behaviours observed
at active mode crossings, as highlighted in this study. Municipalities could use this behavioural analysis
to better understand pedestrian-cyclist interaction and inform the design of active mode crossings. The
results show that pedestrians more often yield, which implies the need for designs that could equalise
both modes, such as surface markings that prioritise pedestrian awareness or signage clarifying ex-
pectations. on the contrary, if this precautionary behaviour is actually desired in certain circumstances,
crossings should be designed to provide good sight lines and predictable cyclist paths to enable these
behaviours safely. On a larger scale, practitioners should be aware of the impact the integration of a
cycling path has on the pedestrian responses and on the potential accessibility issues it causes. Urban
environments where pedestrians and cyclists coexist should be designed with careful consideration of
the behavioural dynamics to ensure both safety and inclusiveness.
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Source Code

This appendix contains the most important lines of code for enriching the data.

Calculating the time in seconds from the start.
nnn

import pandas as pd

# Ensure the datetime column is in datetime format
df ['datetime'] = pd.to_datetime(df['datetime'])

# Define the start time
start_time = df['datetime'].min()

# Compute the relative time in seconds
df ['relative_time'] = (df['datetime'] - start_time).dt.total_seconds()

For speed, only the central difference method is shown. The forward difference method is very similar.

Calculation for deriving the speed at the Lorentzweg crossing, using the central difference
method

nnn

import pandas as pd

import numpy as np

from tqdm import tqdm

def calculate_speed(pl, p2, tl, t2):
# Calculates the speed between two points and their respective time
pl = np.array(pl)
p2 np.array (p2)
time_difference = t2 - t1
distance = np.linalg.norm(pl - p2)
return distance / time_difference if time_difference > 0O else np.nan

def determine_speed(df):
# Group the dataframe by trace_id
groups = df.groupby('trace_id')

# Create a new column for speed
df ['speed'] = np.nan

# Initialise a progress bar
with tqdm(total=len(groups), desc="Processing Groups") as pbar:
# Iterate through each group
for trace_id, group in groups:
# Sort the group by relative_time to ensure proper calculation order
group = group.sort_values(by='relative_time')

# Calculate the speed for each row (except the last row)
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for j in range(l, len(group) - 1):
pl = (group.iloc[j - 1]1['x'], group.ilocl[j - 11['y'D)
p2 = (group.iloc[j + 1]1['x'], group.iloc[j + 11['y'1)
tl = group.iloc[j - 1]l['relative_time']
t2 = group.iloc[j + 1]['relative_time']

# Calculate speed and assign to the dataframe
speed = calculate_speed(pl, p2, tl, t2)
df .at [group.index[j], 'speed']l = speed

# Update progress bar
pbar.update (1)

return df

# Example usage
df _speed = determine_speed(df)

nnn

Determining the probability of a trajectory belongs to a cyclist or a pedestrian based on the
average and maximum speed. Also calculates the probability of a trajectory belonging to

a certain mode based on the pdf functions of both modes.
nnn
import pandas as pd
import numpy as np
from tqdm import tqdm
from sklearn.mixture import GaussianMixture

intersection_speed = 1.9677 # [m/s]
minimal_maximum_speed_cyclist = 2.5 # [m/s]

# Fit a Gaussian Mixture Model with 2 components
gmm = GaussianMixture(n_components=2, random_state=1)

def is_it_cyclist_or_pedestrian(df, intersection_speed, minimal_maximum_speed_cyclist):

# Create a list to store the mode type classification for each trace_id
mode_classifications = []
probability_of_mode = []

# Group the dataframe by trace_id
groups = list(df.groupby('trace_id'))

# Initialise a progress bar

with tqdm(total=len(groups), desc="Processing groups") as pbar:
# Iterate through each group
for trace_id, group in groups:

group = group.reset_index()
average_speed = groupl['speed'].mean()
maximum_speed = groupl['speed'].max()

# Determine if the trace_id corresponds to a cyclist or pedestrian
if average_speed > intersection_speed or maximum_speed >
minimal_maximum_speed_cyclist:
mode_type = 'cyclist'

pdf = (gmm.weights_[1] * (1 / (stds[1] * np.sqrt(2 * np.pi)) * np.exp(-0.5 *

((average_speed - means[1]) / stds[1])*x*2))) / (

gmm.weights_[1] * (1 / (stds[1] * np.sqrt(2 * np.pi)) * np.exp(-0.5 *

((average_speed - means[1]) / stds[1])*x%2)) + (

gmm.weights_[0] * (1 / (stds[0] * np.sqrt(2 * np.pi)) * np.exp(-0.5 *

((average_speed - means[0]) / stds[0])*%*2))
))
elif average_speed <= intersection_speed and average_speed > 0.77:
mode_type = 'pedestrian'

pdf = (gmm.weights_[0] * (1 / (stds[0] * np.sqrt(2 * np.pi)) * np.exp(-0.5 *

((average_speed - means[0]) / stds[0])*x*2))) / (

gmm.weights_[1] * (1 / (stds[1] * np.sqrt(2 * np.pi)) * np.exp(-0.5 *

((average_speed - means[1]) / stds[1])*x%2)) + (

gmm.weights_[0] * (1 / (stds[0] * np.sqrt(2 * np.pi)) * np.exp(-0.5 *

((average_speed - means[0]) / stds[0])*x*2))
)

elif average_speed <= 0.77 and average_speed > O0:
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mode_type = 'pedestrian'
pdf = 1.0

else:
mode_type = float('NaN')
pdf = 0

# Append the result for this trace_id
mode_classifications.append((trace_id, mode_type))
probability_of_mode.append((trace_id, pdf))

# Update progress bar
pbar.update (1)

# Convert the classifications to a DataFrame

classification_df = pd.DataFrame(mode_classifications, columns=['trace_id',

type_of_active_mode'])
probability_df = pd.DataFrame(probability_of_mode, columns=['trace_id',
probability_of_mode'])

# Merge the classifications back into the original dataframe
df = df .merge(classification_df, on='trace_id')

df = df.merge(probability_df, on='trace_id"')

return df

df _type_active_mode = is_it_cyclist_or_pedestrian(df_speed, intersection_speed,

minimal_maximum_speed_cyclist)

The filter for no encounters is applied to pedestrians and cyclists that enter and exit the area with a time

margin of 5 seconds of no other traffic participants found in this area.

nnn

Filtering out the trajectories of pedestrians and cyclists that do not encounter any other
traffic participant 5 s before they entered or 5 s after they have left the area.

nnn

import pandas as pd

time_range = 5 # seconds
range_limit = 100

def filter_time_range_limited(df, time_range, range_limit=100):
# Reset index for consistent indexing
df = df.sort_values(by='relative_time').reset_index(drop=True)

# Set to store trace_ids of trajectories to keep
keep_trace_ids = set()

with tqdm(total=len(df), desc="Processing trajectories") as pbar:
for index, row in df.iterrows():
# Get rows within the index range limit
lower_bound = max(index - range_limit, 0)

upper_bound = min(index + range_limit + 1, len(df))

# Subset the dataframe to rows within the range limit
nearby_rows = df.iloc[lower_bound:upper_bound]

# Exclude rows with the same trace_id

nearby_rows = nearby_rows[nearby_rows['trace_id'] != row['trace_id']]

# Check if any nearby row meets the time condition

if ((nearby_rows['relative_time']l - row['relative_time']).abs() <= time_range).

any () :
keep_trace_ids.add(row['trace_id'])

# Update progress bar
pbar.update (1)

# Filter the DataFrame to include only rows with matching trace_ids

filtered_df = df[df['trace_id'].isin(keep_trace_ids)].reset_index(drop=True)
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return filtered_df

df _filter_1 = filter_time_range_limited(df_type_active_mode, time_range, range_limit)

Determining the location happens in a few steps: first the cycling and footpath need to be determined
visually, then the functions are created that can test whether a point is inside the rectangle, lastly it is
tested for all trajectories to what extent the trajectory is on the foot or cycling path.

Code for determining the locations of foot and cycling paths via a plot.
nnn

import pandas as pd
import numpy as np
import matplotlib.image as mpimg

# show only one of every 100 points
df _filter_2 = df_filter_1.iloc[::100, :]

fig, ax = plt.subplots(figsize=(16, 9))

# import image

img = mpimg.imread('Location_new_crossing. jpg')
ax.imshow(img, extent=[-7, 14.5, -6.5, 10], alpha = 0.8)
ax.scatter(df_filter_2['y'], -df_filter_2['x'], label = 'trajectory,points', alpha=0.8)

# Introduce all corner points of the different rectangles
point_1 = (-6, 2.08)

width_1 = 17

height_1 = 4

point_2 = (-4.1, -7.5)
width_2 =
height_2 = 9.5

I
N
N
-

point_3 = (4.3, 5.3)
width_3 =
height_3 = 3

|
N
N
fare

point_4 (-5.5, 0.045)
width_4 16
height_4 = 2

point_5 = (-1.9, -7.7)
width_5 = 2
height_5 = 7.5

point_6 = (6.5, 5.2)
width_6 =
height_6 = 3

|
()]

point_7 = (6.2, 1.2)
width_7 = 1.8
height_ 7 = 4

# Rectangles are slightly rotated.
angle_degrees = 4
angle_radians = angle_degrees * np.pi / 180

# Adding rectangles for the cycling path

rectl = mpatches.Rectangle(point_1, width_1, height_1, angle=-angle_degrees, rotation_point='
xy', label= 'cycling path', edgecolor='red', facecolor='red', alpha=0.2)

ax.add_patch(rectl)

rect2 = mpatches.Rectangle(point_2, width_2, height_2, angle=-angle_degrees, rotation_point='
xy', edgecolor='red', facecolor='red', alpha=0.2)

ax.add_patch(rect2)

rect3 = mpatches.Rectangle(point_3, width_3, height_3, angle=-angle_degrees, rotation_point='
xy', edgecolor='red', facecolor='red', alpha=0.2)

ax.add_patch(rect3)
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# Adding rectangles for the footpath
rectd4d =

xy', label= 'footpath', edgecolor='yellow', facecolor='yellow', alpha=0.2)

ax.add_patch(rect4d)
rect5 = mpatches.Rectangle(point_5, width_5, height_5,

angle=-angle_degrees,

xy', edgecolor='yellow', facecolor='yellow', alpha=0.2)

ax.add_patch(rect5)
rect6 = mpatches.Rectangle(point_6, width_6, height_6,

angle=-angle_degrees,

xy', edgecolor='yellow', facecolor='yellow', alpha=0.2)

ax.add_patch(rect6)
rect7?7 = mpatches.Rectangle(point_7, width_7, height_7,

angle=-angle_degrees,

xy', edgecolor='yellow', facecolor='yellow', alpha=0.2)

ax.add_patch(rect7)

plt.legend(loc="'best', bbox_to_anchor=(0.55, 0.2, 0.5,
plt.axis('scaled')
plt.show()

nnn

Defining different vectors that provide the borders of

0.5))

the rectangles. Also creating

functions that test whether a point is inside the foot or cycling path.

nnn

import numpy as np

#direction vectors for determining the exact area
rotation_matrix = np.array([[0, -1],

[1, 0]]1) # Left turn
[1, np.tan(- angle_radians)]
np.dot (rotation_matrix, first_vector)
np.dot(rotation_matrix, second_vector)
np.dot(rotation_matrix, third_vector)

first_vector =
second_vector =
third_vector =
fourth_vector =

cycling_paths_first_point = (point_1, point_2, point_3)
foot_paths_first_point = (point_4, point_5, point_6, po
cycling_paths_second_point_x = (point_1[0] + width_1 =*
sin(angle_radians),
point_2[0] + width_2 *
sin(angle_radians),
point_3[0] + width_3 *
sin(angle_radians))
foot_paths_second_point_x = (point_4[0] + width_4 * np.
(angle_radians),
point_5[0] + width_5 * np.
(angle_radians),
point_6[0] + width_6 * np.
(angle_radians),
point_7[0] + width_7 * np.
(angle_radians))

cycling_paths_second_point_y = (point_1[1] - width_1 =*
cos(angle_radians),

point_2[1] - width_2 x*

cos (angle_radians),

point_3[1] - width_3 *

cos (angle_radians))
foot_paths_second_point_y = (point_4[1] - width_4 * np.
(angle_radians),
point_5[1] - width_5 * np.
(angle_radians),
point_6[1] - width_6 * np.
(angle_radians),
point_7[1] - width_7 * np.
(angle_radians))

# Check whether the full trajectory is on the cycling p
def trajectory_on_cycling_path(point):
trajectory_on_cycling_path = False
point = np.array(point)

int_7)
np.cos(angle_radians) + height_1 *

np.cos(angle_radians) + height_2 *

np.cos(angle_radians) + height_3 x*

cos(angle_radians) + height_4 * np.
cos(angle_radians) + height_5 * np.
cos(angle_radians) + height_6 * np.

cos(angle_radians) + height_7 * np.

np.sin(angle_radians) + height_1 *
np.sin(angle_radians) + height_2 *

np.sin(angle_radians) + height_3 *

sin(angle_radians) + height_4 * np.
sin(angle_radians) + height_5 * np.
sin(angle_radians) + height_6 * np.

sin(angle_radians) + height_7 * np.

ath

for i, check_point in enumerate(cycling_paths_first_point):
location_wrt_first_point = point - np.array(check_point)
location_wrt_second_point =

point - np.array([cycling paths_second_point_x[i],

mpatches.Rectangle (point_4, width_4, height_4, angle=-angle_degrees, rotation_point='

rotation_point='

rotation_point='

rotation_point='

sin

sin

sin

sin

np.

np.

np.

cos

cos

cos

cos
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cycling_paths_second_point_y[i]])
if np.dot(location_wrt_first_point, first_vector) > 0 and np.dot(

location_wrt_first_point, second_vector) > 0 and np.dot(location_wrt_second_point

, third_vector) > 0 and np.dot(location_wrt_second_point, fourth_vector) > 0:
trajectory_on_cycling_path = True
return trajectory_on_cycling_path

# Check whether the full trajectory is on the footpath
def trajectory_on_foot_path(point):
trajectory_on_foot_path = False

point = np.array(point)

for i, check_point in enumerate(foot_paths_first_point):
location_wrt_first_point = point - np.array(check_point)
location_wrt_second_point = point - np.array([foot_paths_second_point_x[i],

foot_paths_second_point_y[i]])
if np.dot(location_wrt_first_point, first_vector) > O and np.dot(

location_wrt_first_point, second_vector) > 0O and np.dot(location_wrt_second_point

, third_vector) > 0 and np.dot(location_wrt_second_point, fourth_vector) > 0:
trajectory_on_foot_path = True
return trajectory_on_foot_path

nnn

Confirming the mode based on the location together with the speed.
nnn

import pandas as pd

import numpy as np

from tqdm import tqdm

def cyclist_on_cycle_path(df):
# Group the dataframe by trace_id
groups = list(df.groupby('trace_id'))

# Create new columns for mode classification and probability
df ['mode_location_based'] = 'unclear'
df ['probability_location']l = 0.0 # New column for probability based on location

# Initialise the progress bar

with tqdm(total=len(groups), desc="Processing Groups") as pbar:
# Iterate through groups and check for the location of each point of trajectory
for i, (current_trace_id, current_group) in enumerate (groups):

current_group = current_group.reset_index(drop=True)
predicted_mode = current_group.iloc[0]['type_of_active_mode']
cyclist_list = []

pedestrian_list = []

for k in range(len(current_group)):
pl = (current_group.iloc[k]['y']l, -current_group.iloc[kI['x'])
cyclist_list.append(trajectory_on_cycling_path(pl))
pedestrian_list.append(trajectory_on_foot_path(pl))

total_count = len(cyclist_list)
true_count_cyclist = sum(cyclist_list)
true_count_pedestrian = sum(pedestrian_list)

probability_cyclist = true_count_cyclist / total_count if total_count > O else O

probability_pedestrian = true_count_pedestrian / total_count if total_count > 0

else O

# Confirming the mode based on location

if all(cyclist_list) and predicted_mode == 'cyclist': # All points indicate
cyclist
df .loc[df['trace_id'] == current_trace_id, 'mode_location_based'] = 'cyclist'
df .loc[df ['trace_id'] == current_trace_id, 'probability_location'] =
probability_cyclist
df .loc[df ['trace_id'] == current_trace_id, 'probability_of_mode'] = 1.0
elif all(pedestrian_list) and predicted_mode == 'pedestrian': # All points
indicate pedestrian
df .loc[df ['trace_id'] == current_trace_id, 'mode_location_based'] = '
pedestrian'
df .loc[df ['trace_id'] == current_trace_id, 'probability_location'] =

probability_pedestrian
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df .loc[df ['trace_id'] == current_trace_id, 'probability_of_mode'] = 1.0
else: # Mixed points
df .loc[df['trace_id'] == current_trace_id, 'probability_location'] =
probability_cyclist if predicted_mode == 'cyclist' else

probability_pedestrian

# Update the progress bar
pbar.update (1)

return df.reset_index(drop=True)

# Usage
df _filter_location = cyclist_on_cycle_path(df_filter_1)

Multiple functions are required for determining whether two segments of trajectories are crossing. After
defining these functions, it can be checked for each segment whether they cross with a segment of
another mode within a certain time range.

nnn

Multiple functions to define whether two segments cross based on the cross product method
nnn

import numpy as np

# Calculate the cross product
def cross_product(o, a, b):
return (a[1] - o[1]) * (b[0] - o[0]) - (al[0] - o[0]) * (b[1] - o[11)

# Apply the cross product and return a true if the first and last trajectory point actually
cross (for computational efficiency)
def end_segments_cross(pl, p2, p3, p4):
if (cross_product(pl, p2, p3) * cross_product(pl, p2, p4) < 0 and
cross_product(p3, p4, pl) * cross_product(p3, p4, p2) < 0):
return True
else:
return False

# Apply the cross product and return a true if the segments actually cross under an angle of
at least 30 degrees (1/6 pi)
def segments_cross(pl, p2, p3, p4):
if (cross_product(pl, p2, p3) * cross_product(pl, p2, p4) < O and
cross_product (p3, p4, pl) * cross_product(p3, p4, p2) < 0):
# intersection angle
dotproduct = abs((p1[0] - p2[0]) * (p3[0] - p4[0]) + (pil[1] - p2[1]1) =* (p3[1] - p4
(11
pl = np.array(pil)
p2 = np.array(p2)
np.array (p3)
p4 = np.array(p4)
combined_lengths = np.linalg.norm(pl - p2) * np.linalg.norm(p3 - p4)
angle = np.arccos(dotproduct / combined_lengths)
return angle > 1/6 * np.pi
else:
return False

el
w
]

# Returns the intersection point based on interpolation
def intersection_point(pl, p2, p3, p4):

al = (p1[1] - p2[1]) / (pi[0] - p2[01)

b1 pil[1] - a1l * p1[0]

a3 = (p3[1] - p4al[1]l) / (p3[0] - p4alo0l)

b3 = p3[1] - a3 * p3[0]

x (b3 - b1) / (al - a3)

y = al * x + bl

return x, y

# Calculates the post-encroachment time based on interpolation
def what_is_the_post_encroachment_time(tl, t2, t3, t4, pl, p2, p3, p4, intersection_x,
intersection_y, current_mode, next_mode):
#interpolate the time for both modes to reach the intersection point
time_current_mode = t1 + (t2 - tl1) * np.linalg.norm([intersection_x, intersection_y] - np
.array(pl)) / np.linalg.norm(
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np.array(p2) - np.array(pl))
time_next_mode = t3 + (t4 - t3) * np.linalg.norm([intersection_x, intersection_y] - np.
array(p3)) / np.linalg.norm(
np.array(p4) - np.array(p3))
# Calculate the post-encroachment time
if time_current_mode < time_next_mode:

first = current_mode

post_encroachment_time = time_next_mode - time_current_mode
else:

first = next_mode

post_encroachment_time = time_current_mode - time_next_mode

return first, post_encroachment_time, time_current_mode, time_next_mode

# Calculates whether there is even a possibility for two trajectories to overlap by looking
at the borders of the 'boxes' that the trajectories are in

def boxes_overlap(bboxl, bbox2):
x_minl, y_minl, x_maxl, y_maxl = bboxl
x_min2, y_min2, x_max2, y_max2 = bbox2

# Check if one box is completely to the left of the other
if x_maxl < x_min2 or x_max2 < x_minl:
return False

# Check if one box is completely above the other
if y_maxl < y_min2 or y_max2 < y_minl:
return False

return True

nnn

Applies all previous functions to determine whether two trajectories are crossing
nnn

import pandas as pd

import numpy as np

from tqdm import tqdm

max_groups_to_check = 10
max_time_diff= 5
probability_threshold = 0.95

def keep_intersecting_ped_cyc(df, max_groups_to_check=10, max_time_diff=5,
probability_threshold=0.95):
groups = list(df.groupby('trace_id'))
processed_trace_ids = set ()

# Initialize storage for crossing data

crossing_data = {
'crossing_trace_ids': {},
'post_encroachment_time': {},
'first_mode': {},
'intersection_x': {3},
'intersection_y': {},
'time_at_crosspoint': {}

}

for trace_id in df['trace_id'].unique():
for key in crossing_data:
crossing_datal[key] [trace_id] = []

with tqdm(total=len(groups), desc="Processing Groups") as pbar:
for i, (current_trace_id, current_group) in enumerate (groups):

current_group = current_group.reset_index(drop=True)

current_mode = current_group['type_of_active_mode'].iloc[0]

if current_group['probability_of_mode'].iloc[0] < probability_threshold:
continue

for j in range(i + 1, min(i + 1 + max_groups_to_check, len(groups))):
next_trace_id, next_group = groupsl[j]
next_group = next_group.reset_index(drop=True)
next_mode = next_group['type_of_active_mode'].iloc[0]
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if {'cyclist', 'pedestrian'} != {current_mode, next_mode}:
continue

if next_groupl['probability_of_mode'].iloc[0] < probability_threshold:
continue

current_bbox = (current_group['x'].min(), current_group['y'].min(),

current_group['x'].max(), current_group['y'].max())
next_bbox = (next_group['x']l.min(), next_group['y']l.min(),
next_group['x'].max (), next_group['y']l.max())

if not boxes_overlap(current_bbox, next_bbox):
continue

beginpoint_1 = (current_group.iloc[0]J['x'], current_group.iloc[0]['y'])
endpoint_1 = (current_group.iloc[-1]['x'], current_group.iloc[-11['y"'])
beginpoint_2 = (next_group.iloc[0]J['x'], next_group.iloc[0]['y'])
endpoint_2 (next_group.iloc[-1]['x'], next_group.iloc[-1]['y'])

N

if not end_segments_cross(beginpoint_1, endpoint_1, beginpoint_2, endpoint_2)
continue

for k in range(len(current_group) - 1):
pl, p2 = (current_group.iloc[k]['x'], current_group.iloc[k]['y']l), (
current_group.iloc[k + 1]['x'], current_group.ilocl[k + 1]1['y'])
tl, t2 = current_group.iloc[k]['relative_time'], current_group.iloc[k +
1] ['relative_time']

for 1 in range(len(next_group) - 1):
p3, p4 = (next_group.iloc[1]['x'], next_group.iloc[1]1['y']), (
next_group.iloc[1l + 1]1['x'], next_group.iloc[l + 1]['y'])
t3, t4 = next_group.iloc[l]['relative_time'], next_group.iloc[l + 1][
'relative_time']

if abs(tl - t3) > max_time_diff:
continue

if segments_cross(pl, p2, p3, pé):
intersection_x, intersection_y = intersection_point(pl, p2, p3,
p4)
first, pet, time_curr, time_next =
what_is_the_post_encroachment_time (
tl, t2, t3, t4, pl, p2, p3, p4, intersection_x,
intersection_y, current_mode, next_mode)

for tid, opp_tid, time_at_cross in [
(current_trace_id, next_trace_id, time_curr),
(next_trace_id, current_trace_id, time_next)

crossing_datal['crossing_trace_ids'][tid].append(opp_tid)
crossing_datal['post_encroachment_time'][tid].append(pet)
crossing_datal['first_mode'][tid].append(first)
crossing_datal['intersection_x'][tid].append(intersection_x)
crossing_datal['intersection_y'][tid].append(intersection_y)
crossing_datal['time_at_crosspoint'][tid].append(time_at_cross

)

processed_trace_ids.update([current_trace_id, next_trace_id])
pbar.update (1)

# Fill empty lists with NaN
for key in crossing_data:
for tid, val in crossing_datalkey].items():
if not val:
crossing_datalkey] [tid] = np.nan

# Attach to dataframe
for key in crossing_data:

df [key] = df['trace_id'].map(crossing_datalkeyl)

return df.reset_index (drop=True)
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# Usage
df _filter_crossings = keep_intersecting_ped_cyc(df_filter_location, max_groups_to_check,
max_time_diff, probability_threshold)

In a similar way as for the location, the origin and destinations are determined based on the location of
the first and last trajectory points, but also a second method is used that determines this based on the
direction that the trajectory moves from or goes to.

Defining rectangles inside which the origins or destinations are set. Also, a function is
presented that provides an alternative for determining the origin or destination if the

first method does not give a result.
nnn

import numpy as np

#direction vectors for determining the exact area

rotation_matrix = np.array([[0, -1],

(1, 011
first_vector_south_west = [1, np.tan(-5.5 * np.pi / 180.0)]
second_vector_south_west = np.dot(rotation_matrix, first_vector_south_west)
third_vector_south_west = np.dot(rotation_matrix, second_vector_south_west)
fourth_vector_south_west = np.dot(rotation_matrix, third_vector_south_west)

first_vector_north_east = [1, np.tan(-10 * np.pi / 180.0)]

second_vector_north_east = np.dot(rotation_matrix, first_vector_north_east)
third_vector_north_east = np.dot(rotation_matrix, second_vector_north_east)
fourth_vector_north_east = np.dot(rotation_matrix, third_vector_north_east)

first_point_west = np.array([point_1])
second_point_west = np.array([point_1[0] + width_1 * np.cos(angle_125) + height_1 * np.sin(
angle_125),
point_1[1] - width_1 * np.sin(angle_125) + height_1 * np.cos(
angle_125)1)

first_point_south = np.array([point_2])
second_point_south = np.array([point_2[0] + width_2 * np.cos(angle_125) + height_2 * np.sin(
angle_125),
point_2[1] - width_2 * np.sin(angle_125) + height_2 * np.cos(
angle_125)])

first_point_east = np.array([point_3])
second_point_east = np.array([point_3[0] + width_3 * np.cos(angle_34) + height_3 * np.sin(
angle_34),
point_3[1] - width_3 * np.sin(angle_34) + height_3 * np.cos(
angle_34)])

first_point_north = np.array([point_4])
second_point_north = np.array([point_4[0] + width_4 * np.cos(angle_34) + height_4 * np.sin(
angle_34),
point_4[1] - width_4 * np.sin(angle_34) + height_4 * np.cos(
angle_34)1])

first_point_centre = np.array([point_51)
second_point_centre = np.array([point_5[0] + width_5 * np.cos(angle_125) + height_5 * np.sin(

angle_125),
point_5[1] - width_5 * np.sin(angle_125) + height_5 * np.cos(
angle_125)])
direction_list = [(first_point_west, second_point_west, first_vector_south_west,

second_vector_south_west, third_vector_south_west, fourth_vector_south_west),

(first_point_south, second_point_south, first_vector_south_west,
second_vector_south_west, third_vector_south_west,
fourth_vector_south_west),

(first_point_east, second_point_east, first_vector_north_east,
second_vector_north_east, third_vector_north_east,
fourth_vector_north_east),

(first_point_north, second_point_north, first_vector_north_east,
second_vector_north_east, third_vector_north_east,
fourth_vector_north_east),
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(first_point_centre, second_point_centre, first_vector_south_west,
second_vector_south_west, third_vector_south_west,
fourth_vector_south_west)]

# Check the directions of the full trajectory

def

point_direction(point):
trajectory_direction = False
point = np.array(point)
for i, (lower_left_point, upper_right_point, first, second, third, fourth) in enumerate(
direction_list):
location_wrt_first_point = point - lower_left_point
location_wrt_second_point = point - upper_right_point
# print('respective location:', location_wrt_second_point)
# print('inproduct:', np.dot(location_wrt_second_point, third))
if np.dot(location_wrt_first_point, first) > O and np.dot(location_wrt_first_point,
second) > O and np.dot(location_wrt_second_point, third) > O and np.dot(
location_wrt_second_point, fourth) > O:
trajectory_direction = i + 1
break
return int(trajectory_direction)

quadrants = [

def

nnn

(-5/8 * np.pi - 5.5 * np.pi / 180, -3/8 * np.pi - 5.5 * np.pi / 180),
(-1/8 * np.pi - 5.5 * np.pi / 180, 1/8 * np.pi - 5.5 * np.pi / 180),
(3/8 * np.pi - 5.5 * np.pi / 180, 5/8 * np.pi - 5.5 * np.pi / 180)

]

alternative_direction(pointl, point2):
pointl = np.array(pointi)
point2 = np.array(point2)

direction_vector = pointl - point2
x_direction = direction_vector [0]
y_direction = direction_vector[1]

if x_direction ==
return 4 if y_direction >= 0 else 2 # Assign direction values to special cases

direction_angle = np.arctan(y_direction / x_direction)
if x_direction < O:
direction_angle += np.pi if y_direction >= 0 else -np.pi

if direction_angle >= 7/8 * np.pi - 5.5 * np.pi / 180 or direction_angle < -7/8 * np.pi -
5.5 * np.pi / 180:
return 1

# Check which quadrant the direction_angle falls into
for i, (start, end) in enumerate(quadrants):
if start <= direction_angle < end:
return i + 2 # Quadrants are 1-indexed
return 5

Function that assigns the actual directions to the trajectories numbered as

nnn

s wWwN -
[}

west

south

east

north

inconclusive --> potentially changed by the alternative method to become one of the 4
cardinal directions.

import pandas as pd
import numpy as np

def

coming_from_going_to(df):
# Group the dataframe by trace_id
groups = list(df.groupby('trace_id'))

# Initialize the acceleration column
df ['coming_from'] = np.nan

df ['going_to']l = np.nan

# Initialize the progress bar
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with tqdm(total=len(groups), desc="Processing Groups") as pbar:
# Iterate through groups
for current_trace_id, current_group in groups:
beginpoint_1 = (current_group.iloc[0]['y'], - current_group.iloc[0]['x"'])
endpoint_1 = (current_group.iloc[-1]['y'], - current_group.iloc[-1]['x"'])

# Determine mode

mode = current_group.iloc[0]['type_of_active_mode']
min_length = 4 if mode == 'pedestrian' else 2
begin_iloc = 3 if mode == 'pedestrian' else 1
end_iloc = -4 if mode == 'pedestrian' else -2

# Calculate directions
coming_from_value = point_direction(beginpoint_1)
going_to_value = point_direction(endpoint_1)

# Adjust if direction is 5 (inconclusive)

if coming_from_value == 5 and len(current_group) >= min_length:
beginpoint_2 = (current_group.iloc[begin_iloc]['y'], - current_group.ilocl[
begin_iloc]l['x'])
coming_from_value = alternative_direction(beginpoint_1, beginpoint_2)
if going_to_value == 5 and len(current_group) >= min_length:
endpoint_2 = (current_group.iloc[end_iloc]['y'], - current_group.ilocl[
end_iloc]['x'])
going_to_value = alternative_direction(endpoint_1, endpoint_2)

# Update only the relevant rows in df
df .loc[df ['trace_id'] == current_trace_id, ['coming_from', 'going_to'l]l = int(
coming_from_value), int(going_to_value)

# Update the progress bar
pbar.update (1)

return df.reset_index(drop=True)

df _with_begin_and_end = coming_from_going_to(df_filter_crossings)

Lastly, the code for calculating the predicted PET, which uses a slightly different method than the actual
PET.

nnn

Additional functions to calculate the predicted PET

nnn

import pandas as pd
import numpy as np

# Function to calculate predicted PET based on the variables speed and direction of the

def

pedestrian and speed for the cyclist
predicted_PET(t1, t3, t4, pl, p2, p3, p4, intersection_x, intersection_y, vl, t_cyclist,
distance_cyclist, v_cyclist):

distance_pedestrian = np.linalg.norm([intersection_x, intersection_y] - np.array(pl))
#interpolate the time for both modes to reach the intersection point
time_pedestrian = tl1 + distance_pedestrian / vi

if np.isnan(v_cyclist):
distance_cyclist = np.linalg.norm([intersection_x, intersection_y] - np.array(p3))
time_cyclist = t3 + (t4 - t3) * np.linalg.norm([intersection_x, intersection_yl]l - np.
array(p3)) / np.linalg.norm(
np.array(p4) - np.array(p3))
else:
time_cyclist = t_cyclist + distance_cyclist / v_cyclist

post_encroachment_time = time_cyclist - time_pedestrian
return post_encroachment_time, time_pedestrian, time_cyclist

# Function to determine what the PET is (including negative values for pedestrians crossing

def

after the cyclist)

what_is_the_post_encroachment_time(tl, t2, t3, t4, pl, p2, p3, p4, intersection_x,
intersection_y, current_mode, next_mode):

#interpolate the time for both modes to reach the intersection point
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def

time_current_mode = tl1 + (t2 - t1) * np.linalg.norm([intersection_x, intersection_y] - np
.array(pl)) / np.linalg.norm(
np.array(p2) - np.array(pil))
time_next_mode = t3 + (t4 - t3) * np.linalg.norm([intersection_x, intersection_y] - np.
array(p3)) / np.linalg.norm(
np.array(p4) - np.array(p3))
# Calculate the post-encroachment time
if time_current_mode < time_next_mode:
first = current_mode
post_encroachment_time = time_next_mode - time_current_mode
else:
first = next_mode
post_encroachment_time = time_current_mode - time_next_mode
return first, post_encroachment_time, time_current_mode, time_next_mode
calculate_predicted_PET (pedestrian_df, full_df):
print (len(pedestrian_df))
mask = pedestrian_df['post_encroachment_time'].apply(lambda x: is_single_pet_in_range(x,
0, 5))
filtered_df = pedestrian_df [mask].copy()
print(len(filtered_df))
# filtered_df ['post_encroachment_time'] = filtered_df['post_encroachment_time'].apply(
extract_single_float_from_list)
list_columns = ['crossing_trace_ids', 'post_encroachment_time', 'intersection_x', '
intersection_y', 'time_at_crosspoint']
for col in list_columns:
filtered_df [col] = filtered_df[col].apply(safe_eval_list)
pedestrian_df_updated = filtered_df.copy()
groups = list(pedestrian_df_updated.groupby('trace_id'))
for current_trace_id, current_pedestrian in tqdm(groups, desc="Calculating PET"):
current_pedestrian = current_pedestrian.reset_index(drop=True)
first_row = current_pedestrian.iloc[0]
crossing_cyclist_trace_id = first_row['crossing_trace_ids'][0]
crossing_cyclist_group = full_df [full_df['trace_id'] == crossing_cyclist_trace_id].
reset_index (drop=True)
p2 = (current_pedestrian.iloc[-1]1['x'], current_pedestrian.iloc[-1]J['y'])
time_at_crosspoint = first_row(['time_at_crosspoint'][0]
for k in range(len(current_pedestrian) - 1):
row_k = current_pedestrian.iloc[k]
pl = (row_k['x'], row_k['y']l)
tl = row_k['relative_time']
vl = row_k['speed']
if t1 > time_at_crosspoint:
break
for 1 in range(len(crossing_cyclist_group) - 1):
row_l, row_11 = crossing_cyclist_group.iloc[1l], crossing_cyclist_group.iloc[1l
+ 1]
p3 = (row_1['x'], row_1['y'l)
p4d = (row_11['x'], row_11['y'D)
t3, t4 = row_1l['relative_time'], row_l1l['relative_time']
if segments_cross(pl, p2, p3, pd):
intersection_x, intersection_y = intersection_point(pl, p2, p3, p4)
pet, time_ped, time_cyc = predicted PET(tl, t3, t4, pl, p2, p3, p4,
intersection_x, intersection_y, v1)
idx = pedestrian_df_updated[
(pedestrian_df_updated['trace_id'] == current_trace_id) &
(pedestrian_df_updated['relative_time']l == t1)].index
if not idx.empty:
pedestrian_df_updated.at[idx[0], 'predicted_post_encroachment_time']

= pet
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return pedestrian_df_updated

predicted_interacting_pedestrian_east_west = calculate_predicted_PET(
interacting_pedestrian_east_west, df_with_begin_and_end)
# Only taking the interacting pedestrians crossing from east to west



Fitting a Distribution Function
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Figure B.1: Comparison for three different threshold values of the speed where the distribution functions are plotted on. The
threshold values of 0.5 m/s and 1.0 m/s deliver distributions that are not accurate enough to describe the curves visualised by
the histogram of the data
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Origin-Destination Matrices for
pedestrians and cyclists at the
Mekelweg and Lorentzweg crossing

Table C.1: Origin-Destination Matrix of pedestrians at the Mekelweg crossing

| Origin \Destination — | West | South | South-east | East | North | Inconclusive
West 63 353 298 1184 | 202 59

South 469 1138 | 671 3004 | 2849 | 347
South-east 340 | 872 55 40 14 11

East 1764 | 3237 | 42 100 | 46 45

North 349 1564 | 110 95 438 747
Inconclusive 210 | 328 17 36 798 121

Table C.2: Origin-Destination Matrix of cyclists at the Mekelweg crossing

| Origin \Destination — | West | South | South-east | East North | Inconclusive
West 0 38 1148 18984 | 1 560

South 63 39 145 215 17 126
South-east 41 6 3 2 0 2

East 14569 | 19 41 453 5 32

North 3 16 4 25 1 6
Inconclusive 3186 162 24 25 14 110

Table C.3: Origin-Destination Matrix of pedestrians at the Lorentzweg crossing

| Origin \Destination — | West | South | East North | Inconclusive
West 372 715 19841 | 991 1401

South 1688 | 1403 | 4318 | 5631 | 4251

East 17984 | 3718 | 5465 | 173 339

North 1602 | 4522 | 90 1098 | 267
Inconclusive 1263 | 3851 | 447 359 1257
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Table C.4: Origin-Destination Matrix of cyclists at the Lorentzweg crossing

| Origin \Destination — | West | South | East North | Inconclusive
West 566 | 14957 | 29810 | 4450 | 1607

South 18822 | 2069 1526 | 4123 | 1426

East 21631 | 1027 | 478 42 72

North 4678 | 3528 | 94 88 294
Inconclusive 2455 | 3498 | 279 633 758




Fitting lines on PET vs stopping
percentages

See next page.
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Figure D.1: Several fitting lines on PET vs stopping percentages, with the bar width (0.1 to 0.5) and the end of the first fitting
line (2.5 to 3.5 s) as variables. The second (horizontal) fitting line starts at 2 seconds.
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Figure D.2: Several fitting lines on PET vs stopping percentages, with the bar width (0.1 to 0.5) and the end of the first fitting
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100

Increment: 0.1, line 1: 0-2.5s, line 2: 2-55

Increment: 0.1, line 1: 0-3s, line 2: 2-55

Increment: 0.1, line 1: 0-3.55, line 2: 2-55

50 50 50
—— Linear Fit line 1 —— Linear Fit line 1 —— Linear fit line 1
Linear Fit line 2 Linear Fit line 2 Linear Fit line 2
40 ® PET threshold: 2.98 40 ® PET threshold: 2.86 40 @ PET threshold: 2.82
g g g
£ o o
g 30 2 30 g 30
£ 2 £ 1 | 1
@ ] @
4 ¥ =4 .
& & &
= 20 220 = 20
& a a
a a =
2 ] 2
a A @
10 10 1o
0- 0- 0-
PET (5] PET (s} PET is)
Increment: 0.2, line 1: 0-2.5s, line 2: 2-5s Increment: 0.2, line 1: 0-3s, line 2: 2-55 Increment: 0.2, line 1: 0-3.5s, line 2: 2-5s
30 0 30

Stopping Percentage (%)

PET (s)

—— Linear Fit line 1
Linear Fit line 2
® PET threshold: 2.56

|

Increment: 0.3, line 1: 0-2.5s, line 2: 2-55

Stopping Percentage (%)

PET (s}

Increment: 0.3, line 1: 0-3s, line 2: 2-3s5

—— Linear Fit line 1
Linear Fit line 2
® PET threshold: 2.86

o |

Stopping Percentage (%)

—— Linear Fit line 1
Linear Fit line 2
® PET threshold: 2.76

|

PET (s)

Increment: 0.3, line 1: 0-3.5s, line 2: 2-55

Stopping Percentage (%)

PET (5]

—— Linear Fit line 1
Linear Fit line 2
® PET threshold: 2.74

Increment: 0.4, line 1: 0-2.5s, line 2: 2-55

Stopping Percentage (%)

PET (s}

Increment: 0.4, line 1: 0-3s, line 2: 2-55

—— Linear Fit line 1
Linear Fit line 2
® PET threshold: 2.99

Stopping Percentage |

—— Linear Fit line 1
Linear Fit line 2
@ PET threshold: 2 94

PET (s)

Increment: 0.4, line 1: 0-3.5s, line 2: 2-5s

Stopping Percentage (%)

—— Linear Fit line 1
Linear Fit line 2
PET threshold: 2.66

—— Linear Fit line 1
Linear Fit line 2
® PET threshold: 2.71

40 ® PET threshold: 2.78
g &
o o
o }=J
2 E 30
£ £
g @
1 =4
& &
g 220
a =4
a =
g 55
A #
10
ol
PET (5] PET (s} PET (s)
Increment: 0.5, line 1: 0-2.5s, line 2: 2-5s5 Increment: 0.5, line 1: 0-3s, line 2: 2-5s Increment: 0.5, line 1: 0-3.5s, line 2: 2-5s
50 50

—— Lingar Fit line 1
Linear Fit line 2

Stopping Percentage (%)

PET (5]

—— Linear Fit line 1
Linear Fit line 2
@ PET threshold: 2.68

Stopping Percentage (%

PET (s}

— Linear Fit line 1
Linear Fit line 2
® PET threshold: 2.68

Stopping Percentage (%)

—— Linear Fit line 1
Linear Fit line 2
@ PET threshold: 2.76

PET (s)

Figure D.3: Several fitting lines on PET vs stopping percentages, with the bar width (0.1 to 0.5) and the end of the first fitting
line (2.5 to 3.5 s) as variables. The second fitting line starts at 2 seconds.
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Figure D.4: Several fitting lines on PET vs stopping percentages, with the bar width (0.1 to 0.5) and the end of the first fitting
line (2.5 to 3.5 s) as variables. The second fitting line starts at 2.5 seconds.
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Determining threshold RMSD and
maximum deviation

The example that is shown in this appendix is from the RMSD of pedestrians walking from east to west
at the Lorentzweg crossing. The same method is applied for the maximum deviation. The trajectory

RMSD for these pedestrians is given for the four scenarios:

PET: 3 - 5 s (Ped First), mean: 0.27, std: 0.17

PET: O - 3 s (Ped First), mean: 0.27, std: 0.17
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Figure E.1: Histograms of the root mean squared deviation of crossing trajectories

This is compared with the RMSD of all other trajectories of pedestrians walking from east to west at
the Lorentzweg crossing, so non-crossing pedestrians. The comparison is made by overlaying the

crossing pedestrian lognormal distributions with the non-crossing:
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PET: O - 3 s (Ped First), mean: 0.26 PET: 3 - 5 s (Ped First), mean: 0.27
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Figure E.2: Histograms of the root mean squared deviation of crossing trajectories vs non-crossing trajectories

This figure visualises the difference between the crossing and non-crossing trajectories and based on
the distribution function, this difference can be calculated for the RMSD values. A new graph is made
that shows this expected absolute difference between crossing and non-crossing trajectories:
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Figure E.3: Density difference between crossing pedestrians and non-crossing pedestrians

However, the absolute difference between the crossing and non-crossing pedestrians does not explain
where the deviation is most different from the normal (non-crossing) situation. This is why this difference
is measured relative to the non-crossing situation, to see at what amount of RMSD the trajectories of
crossing pedestrians are occurring relatively more often compared to the non-crossing pedestrians
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Figure E.4: Relative density difference between crossing pedestrians and non-crossing pedestrians
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The peak in this figure is highlighted, which can be used as the threshold value, because in this situation,
the most deviation takes place compared to a non-crossing situation.



Deviation Mekelweg crossing

The RMSD and maximum deviation for pedestrians crossing (south-north or north-south) at the Mekel-
weg crossing has lower significance compared to the east-west crossing pedestrians at the Lorentzweg

crossing.

F.1. RMSD south-north
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Figure F.1: RMSD of crossing pedestrians going south to north at the Mekelweg crossing
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Reference RMSD of non-crossing trajectories, mean: 0.61, std: 0.57
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Figure F.2: RMSD of non-crossing pedestrians going south to north at the Mekelweg crossing

Table F.1: Significance test for the trajectory RMSD for crossing pedestrians compared to non-crossing pedestrians at the
Mekelweg crossing

First crossing mode | PET category | KS statistic | P-value | p <0.05 | Statistical significance

Ped first 0-3s 0.098 0.211 No Not significantly different
3-5s 0.171 2.23e-3 | Yes Significantly different
0-3s 0.094 0.011 Yes Significantly different

Cyc first 3-5s 0.071 0.306 No Not significantly different
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F.2. Maximum Deviation south-north
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Figure F.3: Maximum deviation of crossing pedestrians going south to north at the Mekelweg crossing

Reference maximum deviation of non-crossing trajectories, mean: 0.69, std: 0.67
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Figure F.4: Maximum deviation of non-crossing pedestrians going south to north at the Mekelweg crossing
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Table F.2: Significance test for the trajectory maximum deviation for crossing pedestrians compared to non-crossing
pedestrians at the Mekelweg crossing

First crossing mode | PET category | KS statistic | P-value | p <0.05 | Statistical significance

Ped first 0-3s 0.118 0.079 No Not significantly different
3-5s 0.166 3.16e-3 | Yes Significantly different

Cyc first 0-3s 0.066 0.154 No Not significantly different
3-5s 0.060 0.525 No Not significantly different

F.3. RMSD north-south

PET: O - 3 s (Ped First), mean: 0.53, std: 0.39
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Figure F.5: RMSD of crossing pedestrians going north to south at the Mekelweg crossing
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Reference RMSD of non-crossing trajectories, mean: 0.58, std: 0.47
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Figure F.6: RMSD of non-crossing pedestrians going north to south at the Mekelweg crossing

Table F.3: Significance test for the trajectory RMSD for crossing pedestrians compared to non-crossing pedestrians at the
Mekelweg crossing

First crossing mode | PET category | KS statistic | P-value | p <0.05 | Statistical significance

Ped first 0-3s 0.096 0.532 No Not s!gn?ficantly d?fferent
3-5s 0.138 0.178 No Not significantly different

Cyc first 0-3s 0.091 0.175 No Not s!gn!f!cantly d!fferent
3-5s 0.085 0.428 No Not significantly different
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F4. Maximum Deviation north-south

F.4. Maximum Deviation north-south
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Figure F.7: Maximum deviation of crossing pedestrians going north to south at the Mekelweg crossing

Reference maximum deviation of non-crossing trajectories, mean: 0.68, std: 0.57
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Figure F.8: Maximum deviation of non-crossing pedestrians going north to south at the Mekelweg crossing
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Table F.4: Significance test for the trajectory maximum deviation for crossing pedestrians compared to non-crossing
pedestrians at the Mekelweg crossing

First crossing mode | PET category | KS statistic | P-value | p <0.05 | Statistical significance

Ped first 0-3s 0.142 0.122 No Not significantly different
3-5s 0.127 0.253 No Not significantly different

Cyc first 0-3s 0.096 0.133 No Not significantly different
3-5s 0.066 0.742 No Not significantly different




Trajectory plots crossing pedestrians
Lorentzweg and Mekelweg crossing
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Figure G.1: All crossing pedestrians walking from east to west at the Lorentzweg crossing.
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Figure G.2: Trajectory plots of all pedestrians walking from east to west at the Lorentzweg crossing with higher opacity

Table G.1: Total number of crossing trajectories within each category of PET and first crossing mode (pedestrians go from
south to west) at the Lorentzweg crossing

East - west (total trajectories) PET0-3s PET 3-5s
Pedestrian crosses first 1082 704
Cyclist crosses first 811 800

Table G.2: number of crossing trajectories that stop within each category of PET and first crossing mode (pedestrians go from
south to west) at the Lorentzweg crossing

East - west (stopping trajectories) PET0-3s PET 3-5s
Pedestrian crosses first 48 46
Cyclist crosses first 266 125
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Figure G.3: All crossing pedestrians walking from south to west at the Lorentzweg crossing.

Table G.3: Total number of crossing trajectories within each category of PET and first crossing mode (pedestrians go from
south to west) at the Lorentzweg crossing

South - west (total trajectories) PET0-3s PET 3-5s
Pedestrian crosses first 70 74
Cyclist crosses first 77 64

Table G.4: number of crossing trajectories that stop within each category of PET and first crossing mode (pedestrians go from
south to west) at the Lorentzweg crossing

South - west (stopping trajectories) PET0-3s PET 3-5s
Pedestrian crosses first 28 32
Cyclist crosses first 40 29
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Figure G.4: All crossing pedestrians walking from south to north at the Mekelweg crossing.

Table G.5: Total number of crossing trajectories within each category of PET and first crossing mode (pedestrians go from
south to north) at the Mekelweg crossing

South - north (total trajectories) PET 0-3s PET 3-5s
Pedestrian crosses first 116 117
Cyclist crosses first 292 190

Table G.6: number of crossing trajectories that stop within each category of PET and first crossing mode (pedestrians go from
south to north) at the Mekelweg crossing

South - north (stopping trajectories) PET0-3s PET 3-5s
Pedestrian crosses first 10 13
Cyclist crosses first 94 32
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Figure G.5: All crossing pedestrians walking from north to south at the Mekelweg crossing.

Table G.7: Total number of crossing trajectories within each category of PET and first crossing mode (pedestrians go from
north to south) at the Mekelweg crossing

North - south (total trajectories) PET0-3s PET 3-5s
Pedestrian crosses first 71 64
Cyclist crosses first 143 105

Table G.8: number of crossing trajectories that stop within each category of PET and first crossing mode (pedestrians go from
north to south) at the Mekelweg crossing

North - south (stopping trajectories) PET0-3s PET 3-5s
Pedestrian crosses first 6 14
Cyclist crosses first 68 25




Histograms stopping distance
pedestrians Lorentzweg and
Mekelweg crossing
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Figure H.1: Frequency of stopping distances for pedestrians walking from east to west crossing with a cyclist at the
Lorentzweg crossing.
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Table H.1: Mean and standard deviation of the stopping distance up to the crossing point for pedestrians walking from east to
west at the Lorentzweg crossing when crossing behind the cyclist.

PET Mean Standard deviation
0-3s 3.105 1.119
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Figure H.2: Frequency of stopping distances for pedestrians walking from south to west crossing with a cyclist at the
Lorentzweg crossing.

Table H.2: Mean and standard deviation of the stopping distance up to the crossing point for pedestrians walking from south to
west at the Lorentzweg crossing when crossing behind the cyclist.

PET Mean Standard deviation
0-3s 2538 1.230
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Figure H.3: Frequency of stopping distances for pedestrians walking from south to north crossing with a cyclist at the
Mekelweg crossing.

Table H.3: Mean and standard deviation of the stopping distance up to the crossing point for pedestrians walking from south to
north at the Mekelweg crossing when crossing behind the cyclist.

PET Mean

Standard deviation

0-3s 3.299 0.776
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Figure H.4: Frequency of stopping distances for pedestrians walking from north to south crossing with a cyclist at the
Mekelweg crossing.

Table H.4: Mean and standard deviation of the stopping distance up to the crossing point for pedestrians walking from north to
south at the Mekelweg crossing when crossing behind the cyclist.

PET Mean Standard deviation
0-3s 3511 0.832




Deviating paths

PET: O - 3 s, cyc origin: west, count: 33.83%  PET: 3 -5 s, cyc origin: west, count: 26.51%
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Figure 1.1: Deviating trajectories going south to north at the Mekelweg crossing with the direction of the cyclist
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PET: 0 - 3 s, cyc origin: west, count: 64.00% PET: 3 -5 s, cyc origin: west, count: 43.75%
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Figure 1.2: Deviating trajectories going north to south at the Mekelweg crossing with the direction of the cyclist
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