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Summary

Cycling plays a crucial role in the daily commute of students and staff at the TU Delft campus, where
many individuals rely on bicycles for transportation. The Jaffalaan-Mekelweg intersection, situated on
the campus, is used by a large portion of university commuters on a daily basis.

It has been known for a while that this intersection is often subject to red-light negation by cyclists,
which can result in unsafe situations. The fact that red-light violations occur regularly at this intersection
makes it important to better understand the reasons why cyclists ignore traffic lights and what factors
possibly influence them.

This research aims to find relationship between the frequency of red-light violations and various me-
teorological and traffic-related factors, leading to the following research question. Can a multiple linear
regression model predict red-light violations by cyclists based on rain, wind speed, temperature, the
frequency of passing vehicles and the frequency of red-lights at the Jaffalaan-Mekelweg intersection?

Data is gathered from the Royal Dutch Weather Institute (KNMI) and from the traffic light it self. Sim-
ple linear regression models are used to verify if the relationships between the predictor variables and
the response variable are statistically significant. Finally, a multiple linear regression (MLR) model is
built using machine learning to predict red-light violations based on the influence of predicting variables.

After finding hourly values of red-light violations and processing the data from the independent
variables, the linearity between the response and predictor variables is assessed. The weather data
show no linear relation with red-light running behaviour. Therefore the weather is not included in the
MLR. On the other hand, the frequency of passing vehicles and the frequency of red-lights do show
some linear relation. The resulting MLR model, based on the remaining predictor variables, is able
to account for only 22.3% of the variance in red-light violations. This means 77.7% of the variance in
red-light negations remains unaccounted for. Indicating that more predictor variables are needed to
improve the MLR model. Despite the poor performance of the MLR model, machine learning is used
to produce predictions based on the model. A part of the data is used to train the new model. The
remaining part is used to test it. The results are visualised in Figure 4.16. It can be seen that the model
tends to over predict the number of hourly red-light violations.

Figure 1: MLRM Scikit-learn results

Due to limited and inaccurate predicting powers of the model for red-light violations, no tangible
conclusions can be drawn from it. More predictor variables, and data recorded over a longer period of
time are needed to build a model that can accurately predict red-light violations.
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1
Introduction

1.1. Problem Description

Many students and staff members cycle daily to and from the TU Delft campus, resulting in large cycling
flows on the cycle paths. Predominantly during morning and afternoon peak hours and during lunch,
bicycle lanes can become crowded. The Jaffalaan-Mekelweg intersection is located at the north side of
the campus. All cyclists coming from or going to the train station or the city must pass this intersection.
As a result, the Jaffalaan-Mekelweg is one of the busiest cyclist intersection in Delft and is therefore of
great interest regarding cyclist safety.

In general, it is important to ensure that busy traffic intersections are safe because traffic incidents
with cyclist remain a common phenomenon in The Netherlands. In 2022, 291 cyclists passed away
after a traffic incident. That is 84 more victims than the year before and is in fact the highest number
of casualties since 1996, the year registration was started (CBS, 2023). Also, in 2022, there were 79
more cyclist casualties caused by a crash with a car, van, bus, lorry or other vehicle than in 2021 (CBS,
2023). Implying that improving safety on bicycle lanes continues to be an important issue to society.

Besides that, it is fair to assume the traffic flows on the bicycle lanes of the TU Delft campus have
increased over the last couple of years. According to data from the TUDelft, the total student population
has increased from 23,604 students in December 2017 to 27,080 students in December 2022 (Delft,
2023). In the same period, the total number of staff employed by the TU Delft has increased from 5,210
to 6,647 and the total PhD population has increased from 2,719 to 3,144 (Delft, 2023). Increasing traffic
flows on bicycle lanes will lead to an increased probability of accidents, underlining the importance of
improving cyclists’ safety on campus.

It has been known for some time that at this intersection not all cyclists comply with the traffic lights,
which may result in unsafe situations and accidents. Research into the motivations of cyclist to ignore
traffic signals can be of great importance to find ways to reduce traffic light violations.

Reducing the number of traffic violations at the Jaffalaan-Mekelweg intersection will be beneficial
to many parties. First of all, the direct users of the intersection are important stakeholders. Cyclists will
benefit from a safer traffic situation as the probability of accidents and injuries will decrease. In addition,
drivers of motorised vehicles have interest in an improved traffic situation as the risk of collision with
a red-light negating cyclist will become smaller. Secondly, traffic flow of motorised vehicles will run
smoother if red-light violations are less frequent. Besides the direct users, the municipality and the
TU Delft are important stakeholders as well. Both parties have interest in a safer intersection. The
municipality is in general responsible for providing safe bicycle lanes and intersections. Also, the TU
Delft is involved because the intersection is on the university campus and many of its daily users are
students and faculty. Having safe infrastructure for students and faculty is understandably an important
matter to the TU Delft.

1
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1.2. Research Objective

This research aims to predict red-light violations at the Jaffalaan-Mekelweg intersection based on fac-
tors that may influence red-light running behaviour. As a result of the relatively short time period allotted
for this project, only existing data is used for analysis. This means only publicly available weather data,
data from the intersection and provided cyclist trajectory data can be used to discover factors of influ-
ence.

In this report the following research question will be answered. Can a multiple linear regression
model predict red-light violations by cyclists based on rain, wind speed, temperature, the frequency of
passing vehicles and the frequency of red-lights at the Jaffalaan-Mekelweg intersection? The research
question will be answered with the aid of the following sub-questions:

1. How can the frequency of red-light infringements at the Jaffalaan-Mekelweg intersection be de-
termined?

2. How can the predictor variables be preprocessed to allow for linear regression analysis?
3. Do linear relations exist between the predictor variables and red-light violations at the Jaffalaan-

Mekelweg intersection?
4. To what extent can each of the predictor variables independently predict red-light violations at the

Jaffalaan-Mekelweg intersection?

The research will be performed by analysing and quantifying data on traffic-light cycles, trajectory
data of crossing cyclists and meteorological data. Subsequently, a multiple linear regression model will
be performed. Results from the regression model will be visualised and interpreted.

The trajectory and traffic light data were by provided by Dr.ir. W. Daamen from the Transport &
Planning department of the faculty of Civil Engineering and Geosciences, TU Delft. Trajectory data is
only available for a period of roughly a month during the winter of 2021 and only cyclist coming from
campus (south to north) were registered. Therefore, this thesis will be limited to analysing cyclists
coming from the campus for this period of time.

1.3. Structure Description

The report of this Bachelor thesis is structured as follows. In Chapter 2 the literature review is presented.
In this chapter the influence of various factors on red-light running is explained. Chapter 3 describes
how the data was collected and processed, including the method on finding red-light violations. In
addition, the method of the linear regression analysis is illustrated. Subsequently, in Chapter 4 the
resulting red-light violations and the results of the linear regression analysis are demonstrated. Chap-
ter 5 contains the discussion on the methodology and results of this research. Finally, in Chapter 6
conclusions from the results are drawn and recommendations are given. Also, possibilities for further
research are mentioned in this chapter. In the appendices Python DataFrames and Python code is
provided, accompanied with detailed descriptions.



2
Literature Review

Red-light running poses significant risks to cyclists and other traffic users, leading to an increased
likelihood of collisions, injuries, and fatalities. Consequently, understanding the influential factors that
contribute to this behaviour is crucial for designing effective countermeasures and to enhance overall
traffic safety.

In this chapter an introductory examination is performed of influential factors associated with red-
light running behaviour. Through literature research, we aim to provide valuable insights into the un-
derlying causes and motivations that drive individuals to disobey red signals.

After conducting the literature research, a literature gap is found. In section 2.2 is described what
this thesis aims to research and why this is deemed desirable and needful.

2.1. Influential Factors in Red-Light Running Behaviour

2.1.1. Demographic factors: gender, age, education and income

The demographic profile of the cyclists crossing the Jaffalaan-Mekelweg intersection can be useful to
understand red-light running behaviour at this junction. For this thesis, four demographic factors are
researched: gender, age, education and income. According to a study on red-light running by cyclists
at five intersections in The Hague, men were 1.32 times more likely to run a red-light (Van der Meel,
2013). Another study, conducted in Beijing, China, also found men to be more likely to negate red
traffic signals. From video observations it followed that 53% of men, and 43% of women violated a red
light (Wu et al., 2012).

From the same study conducted in The Hague, followed that age also plays an important role in the
likelihood of violating a red-light. From gathered observations in the study followed that 34.7% of young
people (aged below 20) ignored a red-light. Of adults (20-65) and elderly (65+), 24.3% and 21.6% ran
a red-light respectively (Van der Meel, 2013).

A study based on a national survey in Australia showed some interesting results regarding red-light
negation and the level of education. It was found that the percentage of cyclists complying with traffic
signals decreased as the level of education increased. Of cyclists with just secondary education, 66.8%
is compliant. Of cyclists with a university degree or higher degree, 62.5% and 59.4% are compliant
respectively (Johnson et al., 2013).

The same Australian survey also asked respondents about their income. However, the resulting
percentages of compliance are less straightforward as for education levels. This is probably due to the
lowest two income groups having relatively few respondents compared to the higher two income groups.
Of the two higher income groups, 64.0% of the respondents with an income between $40.000-$99.999
obeys traffic signals. Whereas just 61.6% of respondents with an income over $100.000 obeys traffic
lights (Johnson et al., 2013).

3
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2.1.2. Socio-Psychological factors

Besides demographic factors, socio-psychological factors also play a role in red-light running behaviour.
For this research we focus on the following socio-psychological factors: risk-perception, haste, cycling
experience and herd behaviour.

Regarding psychological factors that influence red-light violating behaviour, risk-perception can be
named as a factor of influence. In existing literature often a distinction is made between three groups
of cyclists: risk-taking behaviour, opportunistic behaviour and law-obeying behaviour (Pai and Jou,
2014). They defined risk-taking behaviour as violating a red-light signal without stopping (but possibly
slowing down). Pai and Jou (2014) classified 859 (6.9%) of in total 12,447 observations as risk-taking
behaviour. They also found that cyclists who wore helmets, used bicycle lights and wore protective
clothing or gloves consistently stopped more often at a red-light.

Not many studies have been publicised on the relation between haste and red-light negation by
cyclists. Some literature is available on the relation between red-light negation and pedestrians. Two
survey-based studies from the eighties state that haste is a significant factor for pedestrians to deter-
mine whether they ignore a traffic light or not. In two studies haste was named 19.9% and 36.1% by
pedestrian as a reason to ignore a red-light (Van der Meel, 2013). From a survey-based research on
Australian cyclists, 3.0% of the cyclist who indicated they run red-lights stated ‘when in a hurry’ as a
reason (Johnson et al., 2013). Red-light violations in relation to waiting timemight indicate how haste in-
fluences red-light running. In their research, Pai and Jou (2014) looked at signal violations categorised
by waiting time. However, they did not obtain unambiguous results. They observed the most signal
violations (9.12%) for a waiting between 46 and 99 seconds. After that comes 1-30 seconds with 7.77%
and finally, 31-45 seconds with 5.98% violating a red-light. Making it difficult to draw conclusions from
waiting time.

The influence of cycling experience on red-light running can be categorised into two groups. Namely,
the years of experience an individual has with riding bikes. And secondly, the years of experience an
individual has with a certain traffic situation (Van der Meel, 2013). It is likely that experienced cyclists
are more inclined to violate traffic signals because they are more confident in their cycling abilities and
they can asses a traffic situation more easily. This assumption is backed by Johnson et al. (2013). They
found that individuals who cycle more (in this case 100+ km/week) are less likely to comply with traffic
signals (60.7%) than people who cycle less than 100 km/week (64.9%).

Herd behaviour among cyclists at a traffic light occurs when cyclists arrive at a red traffic light
and there are already people waiting. In this case they are more likely to stop as well. In the earlier
mentioned research on red-light running in The Hague, it was found that the percentages of cyclists
ignoring red-light are consequently lower (37.4% vs. 62.6%) when there are already people waiting
at the traffic light (Van der Meel, 2013). A study on social influence on cyclists behaviour at traffic
lights in Bologna, Italy found that when more cyclists were are already waiting at the intersection, more
cyclists who approached the intersection stopped as well. When zero cyclists were waiting, 30.3% of
approaching cyclists stopped. When cyclists in groups of 1, 2-4 or 5+ were already waiting, 34.8%,
42.3% and 62.4% stopped respectively (Fraboni et al., 2018). It must be added that this research does
not take into account the phenomenon where cyclists who are waiting block the bicycle lane and force
arriving cyclists to stop as well.

Herd behaviour among cyclists can also work vice versa. This occurs when one cyclist violates
a red-light and other cyclists follow suit. The same study on social influence on cyclists behaviour at
traffic lights in Bologna found that 27% of cyclists followed another cyclists whilst violating a red-light
(Fraboni et al., 2018).

The phenomenon of herd behaviour is corroborated by a study performed on e-bike riders and
cyclists in China. A logistic regression analysis was performed from which followed that the probability
of a cyclist running a red-light increases when there were fewer cyclist waiting at the traffic signal, and
when other cyclists were already crossing during red (Wu et al., 2012).

2.1.3. Meteorological factors

Meteorological factors can possibly influence red-light running behaviour. During adverse weather, cy-
clists are exposed to weather elements like cold temperatures, rain, snow and wind. If one or more bad-
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weather elements are present, the desire of cyclists to quickly arrive at their destination may increase
and therefore may influence cyclists’ behaviour at traffic signals. However, studies on meteorological
factors do not show an unambiguous picture. One study performed on cyclists’ crossing behaviour in
Taoyuan County, Taiwan showed that risk-taking crossing behaviour decreased from 10.3% during fine
weather to 5.1% during adverse weather, i.e. rain. Opportunistic crossing behaviour slightly increased
from 9.6% during fine weather to 11.7% during adverse weather. Overall, law-obeying behaviour in-
creased during adverse weather (83.3%) in respect to during fine weather (80.1%) (Pai & Jou, 2014).

2.1.4. Temporal factors

Does red-light ignorance vary during the day, or during the week? Is red-light running behaviour influ-
enced by the difference in traffic flows during peak and off-peak hours?

Pai and Jou (2014) found a significant decrease in red-light violations during peak hours. In total,
88.3% of cyclists obeyed traffic lights during peak hours (7-9;17-19), in respect to 83.9% during non-
peak hours. Furthermore, they observed that the portion of signal-obeying cyclists was slightly larger
during weekdays (90.2%) in comparison to weekends (87.0%).

2.1.5. Traffic Situation

Another factor that could influence traffic signal violations is the layout of the intersection. Are some
intersection designsmore prone to red-light violations? And how do traffic light cycles influence red-light
running behaviour?

The occurrence of red-light running by cyclists is likely to be partially determined by the type of road
that is crossed. Pai and Jou (2014) found that cyclists are more likely to ignore a red signal when
only crossing a pedestrian lane. They observed that cyclists who only crossed a pedestrian lane were
significantly less likely to obey the traffic signal (65.1%) in comparison to cyclists who (also) needed to
cross motorised traffic lanes (83.7%).

Speed limits are likely to be influential on the ignorance of traffic lights by cyclists. One would as-
sume that roads with a higher speed limit will lead to a reduction of red-light infringements as crossing
becomes more risky. However, looking at existing literature does not support this hypothesis unam-
biguously. Pai and Jou (2014) looked at roads with speed limits of 50 and 60 km/h and found increases
of risk-taking and opportunistic crossing behaviour of 72% and 76% respectively. They attributed this
to ”less law enforcement less dense traffic on roadways with speed limit of 60 km/h” (Pai and Jou, 2014,
p.191-198).

Traffic volume may be directly related to the frequency of red-light running. It is fair to assume that
low traffic volumes will lead to an increase in red-light violations as the probability that an approaching
cyclists encounters an empty intersection increases. This is confirmed by the findings of Pai and Jou
(2014). They found that low traffic volumes (<15motorised vehicles per minute) lead to increases in risk-
taking and opportunistic crossing behaviour. 69% and 53% respectively, whilst law-obeying crossing
behaviour decreases with 27%.

2.1.6. Type of Bicycle

Many different types of bicycles exists and characteristics of different types of bicycles can vary greatly.
Especially the speed of bikes can vary enormously between regular bicycles and racing bicycles or
e-bikes. An extensive study performed in Germany looked at the rates of red-violations between users
on regular bicycles, e-bikes and speed e-bikes by analysing video material. An overall signal violation
percentage of 18% was found. However, no substantial difference between the three types of bikes
could be noticed (Schleinitz et al., 2019). An observation study in China however, did find a significant
difference in red-light negations between bicyclists and e-bike users. According to Wu et al. (2012),
49% of regular cyclists showed traffic signal obeying behaviour. Whereas only 37% of e-bike riders
showed traffic signal obeying behaviour.
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2.2. Literature Gap

In section 2.1 many factors that influence red-light running behaviour have been named and researched
in existing literature. In all of those studies, two main types of research can be distinguished. Obser-
vational studies, and survey based studies. The observational studies monitored intersections, regis-
tered cyclists’s crossing behaviour and inventoried various cyclists’s attributions, sometimes by means
of cameras. The survey based studies asked respondents about their cycling and crossing behaviour
as well as personal attributes that cannot be (easily) determined in observational studies. For example,
age, income, cycling experience etc.

During the literature study for this thesis, only one study was found among the observational studies
that attempted to predict red-light running behaviour by means of regression analysis. This study was
performed by Wu et al. (2012) in Beijing, China and also included a large portion of e-bike riders.

Our research will therefore aim to build a predicting model based on linear regression analysis that
will hopefully provide new insights into red-light negating behaviour of bicyclists in The Netherlands. It
must be added that, due to the short period of time allowed for this research, no observations can be
gathered at the intersection. For that reason, only limited, existing data of crossing cyclists is used
for this research. This means the number of influencing factors that can be used to predict red-light
running behaviour will be limited.



3
Methodology

In this chapter, the methodology of the research is explained. In Section 3.1.1 the data used for this
research is described and is explained how the data was obtained. Next, in Section 3.2, a preliminary
data analysis is performed in preparation for the linear regression model. This section focuses on the
different methods of finding red-light violations. Also, the processing of the other variables is explained.
Section 3.3 elaborates on the linear regression analysis. Finally, in Section 3.4, the methodology chap-
ter is summarised.

3.1. Data Clarification

In this section is a description is given on every data set that has been used for this research. In detail
is explained how the data used for this research was obtained, what the data looks like and in what file
or format the data was provided.

3.1.1. Data Collection

Traffic light data and cyclist trajectory data used for this thesis were provided by Dr.ir. W. Daamen,
faculty of the Transport & Planning Section at the Faculty of Civil Engineering and Geosciences, TU
Delft. The cyclists’ trajectory data is purely anonymous, has only been used for research purposes
and was never shared with third parties. The meteorological data has been obtained from the publicly
accessible weather database of the Royal Netherlands Meteorological Institute (KNMI).

3.1.2. Trajectory Data

The trajectory data has been obtained from a smart sensor installed at the Jaffalaan-Mekelweg inter-
section. Trajectory data from only one smart sensor was available. The data provided covered the
period from January 20, 2021, to February 22, 2021. The smart sensor in question was installed on the
campus-side of the intersection, recording cyclists coming from the campus (south to north), crossing
the Jaffalaan before they continue straight (parallel to Mekelweg) or turn left (parallel to Jaffalaan). An
overview of the intersection can bee seen in Figure 3.1.

The data set was provided in MAT-file (MATLAB) format and consists of date, time and coordinates
assigned to unique ID’s. For the given time period, 816.569 trajectory coordinates of 36.502 unique
ID’s have been recorded.

7
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Figure 3.1: Jaffalaan-Mekelweg Interesection

3.1.3. Vlog Data

The data from the traffic light was available in Vlog-format. The Vlog files that were provided cover
the exact same time frame as the trajectory data. The Vlog files can be accessed and visualised
using CuteView software (Figure 3.2). The Vlog data contains data on the phase of the traffic light
for motorised vehicles, cyclists and pedestrians. Furthermore, data from several detection cables on
the road and bicycle lanes near the intersection is available. For the entire duration of the given time
frame, the data shows the colour of the four traffic lights. Two for motorised vehicles (02 and 08), one
for cyclists (26) and one for pedestrians (36). In addition, it can be seen which detection cables were
activated at what time and for how long they were activated.

Figure 3.2: A random vlog sample visualised in CuteView

From the Vlog data the green times, i.e. the times when the traffic light for cyclists showed green,
have been previously calculated for a different research project using MATLAB code and have been
exported into a MAT-file. The original code can be found in Appendix C.2. In this research, the MAT-file
with green times has been subsequently used to calculate the red times. In section 3.2.1 is precisely
explained how the red times have been obtained.
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3.1.4. Meteorological Data

Meteorological data has been obtained from the Royal Netherlands Meteorological Institute (KNMI).
For the city of Delft only daily values of precipitation are available. Because daily weather data is
not accurate enough for this research, hourly weather data from three surrounding weather stations is
used. Hourly values of precipitation, wind speed and temperature were downloaded for the time period
between 20-01-2021 and 22-02-2022. In order to find hourly weather for Delft the weighted average
of all three weather stations was calculated. The process of finding weighted meteorological data by
means of triangular interpolation is explained in section 3.2.6.

3.2. Data Analysis

In this section of the methodology chapter, the method on how the provided data has been systemat-
ically analysed, processed and visualised, is described. This process of finding the hourly values of
red-light violations is divided into four parts: calculation of red time intervals, calculation of times of
crossing, finding the red-light violations and a discussion on the used method. Lastly, the weather data
and the traffic data is analysed.

3.2.1. Calculation of Red Time Intervals

The first step into gaining insight in the occurrence of red-light violation is to determine when the traffic
light for cyclists was showing red. As explained in chapter 3.1.3, the green times had already been
calculated for a previous BEP by Janneke Wind (Wind, 2022). The green times data set comprises of
one matrix consisting of four columns. The four columns represent data for: date, cycle count, start
time of green cycle (in decimal seconds) and end time of green cycle (in decimal seconds). The start
time of each red cycle was calculated by adding exactly three seconds to end green time. The three
seconds represent the three seconds of yellow light between the end of each green period en the start
of each red period. From the Vlog data followed that the yellow time is exactly three seconds for each
cycle. Finally, the end time of each red cycle is set equal to the start of the green time of the next cycle,
as there is no yellow light when a signal turns from red to green in The Netherlands. All time values
are in seconds. A sample of the resulting DataFrame can be seen in Appendix A. The Python code of
this process can be found in Appendix C.1.

3.2.2. Calculation of Times of Crossing

In the next section, an explanation is given on how the red-light negating cyclists have been found. The
first step to calculate the number of red-light violations is to find out what the exact time of crossing is
of each passing cyclist. The crossing time of a cyclist is defined as the moment in time a cyclist passes
the stopping line. In order to determine the crossing time of each cyclist, two possible methods of
approach have been identified, given the provided data. The first method addresses how the trajectory
data could be used to find crossing times. The second method explains how the crossing times were
found using data from the detection cables coming from the Vlog files. Finally, a motivation for the
chosen method is given.

1. Method 1: Determine each cyclist’s crossing time based on their respective trajectory data.
2. Method 2: Determine cyclists’ crossing times based on data from the detection cables of the traffic

light.

For this research both methods have been attempted. In the following section both methods are
illustrated in broad terms. A detailed, step-by-step explanation accompanied with the used Python
code can be found in Appendix C.
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Method 1: Crossing Times Based on Trajectory Data

The first method looks at the cyclists’ trajectory data. The trajectory data was recorded by a smart
sensor that was installed on a pole and placed next to the bicycle lane. The smart sensor recorded
cyclists on a section of the bicycle lane south of the intersection going south to north. For each recorded
cyclist, the smart sensor registered a series of x- and y-coordinates together with a date and timestamp.

When the first analysis of the trajectory data was being performed, some issues came to light. The
first problem is that there was no reference available of how the x- and y-coordinates of the trajectories
relate to any real world coordinate system. In other words, it can only be seen how the individual
trajectories relate to each other but not how they relate to the real world situation.

One way to find red-light violating cyclists using this method is, for example, to identify cyclists
who have at some point stopped based on their trajectory. If other cyclists have (at a constant speed)
passed these stopping cyclists, they could be identified as red-light violators. However, this method
leaves much room for errors. For example:

• This method will not allow us to find violating cyclists if no other cyclists are present who have
stopped.

• No exact crossing time can be extracted which makes further analysis very difficult.
• The smart sensor usually stopped recording between 17:00 and 18:00. This means between the
time of final recording and 20:00, when the traffic signal goes on stand-by, no cyclist trajectories
are recorded.

The trajectory data was plotted to give a general idea of what the trajectories data looks like. The
trajectory plot can be seen in Figure 3.3. It must be added that the trajectories are manually fitted.
The real scale and extent of the trajectories may be different. The process of plotting the trajectories,
including Python code, can be seen in Appendix C.3.

Figure 3.3: Manually fitted trajectories of cyclists

Method 2: Crossing Times Based on Detection Cable Data

The second method to find accurate times of crossing uses the activation times of a detection loop
that is installed underneath the bicycle lane at the intersection. The detection cable is in the shape of
a parallelogram where the two edges perpendicular to the cycling direction are roughly 60 cm apart
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(Figure 3.4). The times when the detection loop is activated are recorded and can be visualised using
CuteView software. The time between the start and end of each activation is represented by the blue
bars in CuteView, see Figure 3.2. The detection cable of the bicycle lane going south to north is
number ’263’. The method to find the number of red-light violations using data from the detection cable
is illustrated in the remainder of this section and in subsequent section 3.2.3. The general steps of
this method are listed below. A detailed, step-by-step explanation of the process of finding red-light
violations using method 2, accompanied with Python code, can be found in Appendix C.4.

1. Export detection times from CuteView.
2. Combine detection times of all dates into one DataFrame.
3. Drop all long detection periods.
4. Calculate time to stopping line and add to time of crossing.
5. Check for every time of crossing if it falls into any of the red-light intervals during that day.

Figure 3.4: Intersection Detection Cable

In order to find the times of crossing using the data from the detection cables the following method
was used. First, the detection times were exported from CuteView to Excel. Next, the Excel files were
modified into a workable format and combined into one DataFrame using Python.

After that, the length of the activation time is considered. Due to the limitations of the information the
detection cable provides, only cyclists with a short detection time, i.e. the time between the start and
end of the detection period, can be safely considered to be crossing or ’not-stopping’ cyclists. During
longer activation periods, individual cyclists can no longer be identified. Also, for longer activation
periods it is impossible to accurately determine times of crossing as people have to accelerate from
zero speed and acceleration can vary greatly between cyclists. Because of these reasons, longer
activation periods are excluded.

In order to find which cyclists can be identified as not-stopping crossers we must determine a max-
imum activation period for which we can safely say only one cyclist crossed. From technical drawings
of the intersection follows that the distance between the edges of the detection loop in cycling direction
is roughly 60 cm (Figure 3.4).

In this case the speed of a cyclist is determined by dividing the distance between the detection
cables (0.60 m) by the difference in detection time (detection period). A minimum speed of 2 m/s is
chosen because for any lower speed it is more difficult to assume a cyclist who passed the detection
loop actually went on and crossed the intersection. Any higher speed would result in toomany activation
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periods to be removed because detection times are recorded in deciseconds. This means only cyclists
with crossing times of 0.1, 0.2 and 0.3 are included in the final DataFrame (see equation 3.1).

The calculation for the maximum detection period, based on the chosen minimum speed for a cyclist
is as follows:

t =
s

v
=

0.6

2
= 0.3s (3.1)

As can be seen in Figure 3.4, there is some distance between the second detection cable and the
stopping line. The time it takes to cross this distance must be taken into account. The distance lies
between 0.75 m and 1.25 m, depending on where exactly the cyclist crosses. An average of 1 m is
taken. Based on the activation time and thus speed of each cyclist, the time between the second edge
of the detection cable and the stopping line can be calculated using a simple formula. The results can
be seen in Table 3.1.

t = s ∗ v (3.2)

Length Detection Period [s] Speed [m/s] Time to Stopping Line [s]

0.3 2 0.5
0.2 3 0.33
0.1 6 0.17

Table 3.1: Added times per speed

The time it takes for each cyclist to reach the stopping line are added to the DataFrame. The
DataFrame is now complete and can be seen in Appendix A.

3.2.3. Finding Red-Light Violations

Having obtained the crossing times in subsection 3.2.2, we can combine these results with the traffic
light data calculated in subsection 3.2.1.

All registered times of crossings were passed through all red-time intervals of their respective date.
A time of crossing is registered as a red-light violation if the time of crossing falls into any of the red-time
intervals. All violations with date and time are stored.

3.2.4. Red-Light Violations Discussion

After performing the steps of section 3.2.2 and 3.2.3, the number of red-light violations is found. It
must be stressed that the found number of violations is only a minimum number due to limitations of
the traffic light data and assumptions that were made. The imperfections of the traffic light negation
numbers found using the detection cable data are mentioned below:

• Only short detection periods can be identified as crossing cyclists. Cyclists who crossed when at
least one other cyclist was activating the detection loop are not counted.

• Cyclist who crossed the intersection while (illegally) using the side of the bicycle lane of the op-
posite direction are not counted as they not cycled over the detection cables.

• The calculated time of crossing might be slightly off due to assumptions made to calculate the
time from the detection loop to the stopping line. Therefore, some cyclist who crossed close to
the start or end of a red-time interval may be falsely identified as a red-light violator.
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However, it must be added that the occurrence of the phenomenon mentioned in the first bullet point
is less frequent as one would initially think. When other cyclists stop at the traffic light they often block
the lane forcing arriving cyclists to stop as well. This phenomenon is also mentioned in the research
of Fraboni et al. (2018). Secondly, the probability of falsely identifying a cyclist as a red-light violator
(third bullet point) is likely to be just as high as falsely identifying a cyclist passing during a green light.
Therefore, these effects likely cancel each other out and thus can be considered to be negligible.

In addition, method 2 allows us to find a part of the red-light runners that cannot be identified using
the trajectory data. The smart sensor stops recording between 17:00 and 18:00. However, the traffic
light does not go on stand-by until 20:00. This means the cable detection data provides an extra number
of crossing cyclists each day that are missing in the trajectory data.

3.2.5. Red-Light Violations Validation

As described in section 3.2.2, Method 2 only allows us to find a part of the red-light runners because
cyclists who may have crossed during a longer detection period are not accounted for. In order to
attempt to validate the found number of crossing cyclists with Method 2 (only not-stopping cyclists), a
comparison is made between the number of crossing cyclists found by both methods. Bar plots of four
arbitrary days are displayed in Figure 3.5, divided into five minute intervals for the hour 12:00-12:59.

Figure 3.5: Crossing cyclists between 12:00-12:59 on four arbitrary days, found by Method 1 and Method 2

After studying the graphs, two interesting conclusions can be drawn. First, no clear pattern can
be noticed between both methods. Ideally, the values found with the detection cable data would be
roughly be a fixed percentage of the values from the trajectory data. This would have strongly solidified
the choice for Method 2. This is not the case however. As a matter of fact, some five-minute intervals
indicate a larger number of crossing cyclists found by means of detection cable data than with the
trajectory data. This should be by no means possible. However, the five minute intervals in question
have been manually verified and no discrepancies were found. This implicates that the smart sensor
has failed to record all passing cyclists.

To conclude, the choice for Method 2 cannot be corroborated with the trajectory data from Method 1.
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Nevertheless, Method 2 remains the more accurate method due to the fact that not all passing cyclists
have been recorded and stored in the trajectory data.

3.2.6. Weather Data Analysis

As mentioned in section 3.1.4, hourly weather data is not available for the city of Delft. To obtain reason-
ably accurate weather data, the data of three surrounding weather stations has been averaged using
triangular interpolation. Hourly weather data was obtained from three surrounding weather stations:
Hoek van Holland (17 km away), Voorschoten (16 km away) and Rotterdam-The Hague Airport (7 km
away). See image 3.6. The values of the middle point of the triangle, i.e. the intersection in Delft are
calculated by using the following formula, obtained from Tiberius et al. (2022).

ẑ0 =
A0jk

Aijk
yi +

Ai0k

Aijk
yj +

Aij0

Aijk
yk (3.3)

Where Aijk denotes the area of triangle with vertices i, j, k.

Figure 3.6: These lengths and areas have been used to perform triangular interpolation

After triangular interpolation the results have been stored in a DataFrame, which can be seen in
Appendix A.

3.2.7. Traffic Data Analysis

Vehicle Frequency

The hourly numbers of passing vehicles have been obtained from the Vlog data. The activation times
of the detection loops for vehicles have been registered. The detection loops in question are labeled
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21, 22, and 81 in CuteView (Figure 3.2). There are three different detection loops for vehicles at this
intersection because the intersection can be approached from three directions. Data from the detection
cables was exported from CuteView to Excel. Python was used to arrange the data in the same format
as the weather data and the red-light violations. Also, the number of detections of all three detection
loops are combined for each hour. The Python code for processing the traffic data can be found in
Appendix B.2. The resulting DataFrame can be seen in Appendix A.

Traffic Light Cycle Frequency

Also, the hourly numbers of completed traffic light cycles for cyclists have been obtained from the V-log
data using the same method as for the vehicle frequency. The Python code for the process of finding
the number of traffic light cycles per hour can be found in Appendix B.2. The resulting DataFrame can
be seen in Appendix A.

3.3. Linear Regression

3.3.1. Dependent and independent variables

In order to determine linear relationships one must define what the dependent variable and what the
independent variables are. In this case the dependent variable is the number of hourly red-light viola-
tions at the Jaffalaan-Mekelweg intersection calculated in chapter 3.2.3. The independent variables are
the variables that have influence on the dependent variable, i.e. the red-light running. In this research
the following variables are evaluated: hourly values of wind speed [m/s], temperature [C◦], rain [mm],
passing vehicles and red traffic lights (or traffic light cycles).

3.3.2. R2-value

R2 is value that describes the level of accuracy of the fitted model and is defined by Field (2000) as:

R2 =
|SSR − SST |

SST
(3.4)

Where:

• SST is the sum of the squared residuals of the most basic model, i.e. the mean as horizontal line.
• SSR is the sum of the squared residuals of the most fitted model, i.e. the linear regression line.

R2 indicates the level of improvement of how well the model can predict the outcome variables
compared to the most basic model. An R2 value of 0 would mean the model has not improved at all.
An R2 value nearing 1 would imply the model has improved tremendously.

3.3.3. F-Ratio

According to Field (2000), ”F-ratio is a measure of how much the model has improved the prediction of
the outcome compared to the level of inaccuracy of the model”.

F =
MSM

MSR
(3.5)

Where:
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• MSM is the mean squares for the model.
• MSR is the residual mean squares.

A good model will result in improved predictions by the model, which means MSM will be large. The
difference between the model and the observed data points will be small if the model is good, i.e. a
small MSR. In summary, a good model must have a large value for the F-ratio, at least higher than one
(Field, 2000).

3.3.4. Linear Relationships

After completing the steps of 3.2.3 and 3.2.7 an attempt can bemade to find linear relationships between
the dependent variable (red-light violations) and the independent variables (rain, wind, temperature,
cars per hour and traffic light cycles per hour). Scatter plots are used to give an initial insight into the
relationship between the number of violations per hour and the different independent variables. Also
the Pearson correlation coefficient is calculated. The resulting scatter plots and Pearson coefficients
can be seen in section 4.2.

3.3.5. Simple Linear Regression Model

In order to evaluate the strength of the linear relation between the dependent variable and the indepen-
dent variables a Simple Linear Regression (SLR) Model will be built using Statsmodels. Statsmodels
is a Python module that can be used for ”many different statistical models, as well as for conducting
statistical tests, and statistical data exploration” (Statsmodels-0.14.0, 2023). Statsmodels outputs many
statistical measures like R-squared, adjusted R-squared, F-statistic and many more.

With just a few lines of code, Statsmodels uses the method of Ordinary Least Squares (OLS) to fit
a linear regression line. It can output a statistical summary of the results, which can be subsequently
interpreted. Also, Statsmodels can output the intercept and slope values allowing the user to plot the
regression line. SLR models are built for all the chosen variables.

A significance level of p<0.05 is chosen because this level of significance is commonly accepted
and the statistical analysis of this report is not based on previous research.

Summaries of the results of the OLS Models can be found in section 4.3, including the values of R2

and F-statistic. The corresponding Python code can be seen in Appendix D.2.

3.3.6. Multiple Linear Regression Model

Hypotheses

Hypothesis testing can be used to determine if there is enough evidence in the data set to draw con-
clusions. If there is enough statistical significance, the null hypothesis can be rejected and thus the
alternative hypothesis can be accepted (Field, 2000). The null hypothesis (h0) and alternative hypoth-
esis (ha) for this research are as follows:

• H0: Rain, wind speed, temperature, the frequency of passing vehicles and completed traffic light
cycles are not related to red-light violations at the Jaffalaan-Mekelweg intersection.

• Ha: At least one of the independent variables is a significant predictor of red-light violations at
the Jaffalaan-Mekelweg intersection.

The results of the hypothesis testing can be found in section 4.4.6.

Choosing an Entry Method

When constructing a multiple linear regression model it is important to consider the order in which the
independent variables are entered. Field (2000) describes three main methods of order of entry. The
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first method is hierarchical or blockwise entry. In this case the order is determined by the experimenter.
However, the variables that are selected based on previous research should be entered first. After that,
new variables can be entered (Field, 2000). This thesis is not based on previous work. Therefore this
method is not chosen.

Another method of entry order is called the stepwise method. Using this method the computer
chooses the order of entry based on which variable can explain the not yet explained remainder of
variance of the outcome variable best. This method is especially useful when many predictor variables
are available (Field, 2000). In this research only five predictor variables are considered. Therefore, this
method is not chosen.

The third method is called forced entry. Using this method all predictor variables are entered at the
same time. It is crucial that only predictor values are chosen that can predict a large part of the variance
of the outcome variable (Field, 2000). The forced entry method is chosen for this research because in
section 3.3.5 the relationship between the individual independent variables and the outcome variable
is proven.

Building the Model

First, Statsmodels is used to build the MLR model in the same way as for the SLR models. The results
of which can be found in section 4.4. Again, a significance level of p<0.05 is chosen. Next, a prediction
model is made using train test split from Scikit-learn. With train test split the examiner can use one
part of the data to train the model. The remaining part of the data set is used to test the model. The
data is divided randomly (scikit-learn.org, 2023). For this MLR model, 70% of the data is used to train
the regression model. The other 30% is used to the test the model. The results of the MLR model, built
with train test split from Scikit-learn can be seen in section 4.4.5.

3.4. Summary

To summarise, the following steps have been defined in the methodology for this research. First, the
origin of the used data is clarified. After that, an elaborate description was given on which method is
used to find hourly values of crossing cyclists, why this method is appropriate and how values for red-
light negation have been subsequently found. Lastly the steps of the linear regression analysis were
demonstrated.



4
Results

Chapter 4 contains the results of the data analysis for this research. In section 4.1.1 the found numbers
for crossing cyclists and red-light violators are demonstrated. Section 4.2 elaborates on the relations
between the dependent and independent variables. Lastly, section 4.3 and 4.4 contain the results of
the SLR and MLR models.

4.1. Data Results

This section gives the results of the two different methods defined to find numbers of daily crossing
cyclists. The daily number of crossing cyclist is displayed in bar plots. Also the daily number of red-
light violations and percentage of red-light violations are displayed by means of a bar plot in 4.1.2. The
horizontal dashed red lines indicate the means of of daily crossings and red-light violations over the
given period.
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4.1.1. Crossing Cyclists

Figure 4.1: Number of crossings per date, using trajectory data

• In total 27.431 cyclists have been registered by the smart sensor during weekdays between 2021-
01-20 and 2021-02-22 by use of the trajectory data.

• The mean daily crossers for this period is 1143.

Figure 4.2: Number of crossings per date, using detection cable data

• In total 21.045 cyclists have been registered during weekdays between 2021-01-20 and 2021-02-
22 using the detection cable data.

• The mean daily crossers for this period is 947.
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4.1.2. Red-Light Violations

Figure 4.3: Number of red-light violations per date

• A minimum of 4686 cyclists violated a red-light signal during the given period.
• This means 4668 out of 21.045 ’not-stopping’ cyclists (22.2%) violated a red signal.
• This means 4668 out of 27.431 trajectory cyclists (17.0%) violated a red signal.
• The mean number of daily red-light violations is 210.

Figure 4.4: Percentage of red-light violations per date

• Noticeable is the fairly consistent percentage of daily violators (± 22%).
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4.2. Linear Relationships

This subsection shows the relationships between the hourly red-light violations and the individual in-
dependent variables by means of scatter plots and Pearson correlation coefficients. All variables are
stored in a DataFrame, of which the values for the first day of the period can be found in Appendix A.

Table 4.1 shows the Pearson correlation coefficient for each independent variable. A perfect positive
correlation is indicated with 1. A perfect negative correlation is indicated with -1. 0 means there is no
correlation at all (Kent-State-University, 2023).

Figure 4.5: Scatter plots of red-light violations v. predictor variables

Independent Variable Pearson Correlation Coefficient

Rain -0.14
Wind Speed -0.04
Temperature -0.05

Hourly Passing Vehicles 0.45
Hourly Traffic Light Cycles 0.46

Table 4.1: Pearson correlations coefficients

It can be noted that regarding the weather data there is no linear relationship shown between the
three independent weather variables and the red-light violations. This is supported by the low values
of the Pearson correlation coefficient. The scatter plot of the rain data looks distorted due to the fact
that for many hourly intervals no rainfall was recorded during the time period. The non-zero data points
show some negative linear relationship. However, there are not enough non-zero data points available
to allow for further research. The scatter plots for temperature and wind speed do not show any form
of linear relation. Therefore, rain, temperature and wind speed will not be used for linear regression
analysis.

Unlike the weather data, the independent variables for passing vehicles and traffic light cycles do
have somewhat of a linear relationship with the dependent variable. In both scatter plots a positive
linear relation with the number of red-light violations per hour can be observed. Albeit not a very strong
linear relations, the Pearson correlation coefficients are 0.45 and 0.46 respectively. In other words,
a higher frequency of passing vehicles suggests an increased number of hourly red-light violations.
Similarly, more completed traffic light cycles mean more violations per hour.

In conclusion, the hourly passing of vehicles and the hourly number of completed traffic light cycles
will be used for the SLR model and the subsequent MLR model.



4.3. Simple Linear Regression Model Results 22

4.3. Simple Linear Regression Model Results

4.3.1. Passing of Vehicles

Ordinary Least Squares Regression Result Summary

Figure 4.6: Regression results with constant: red-right violations v. passing of vehicles

From the result summary of the OLS Model follows that the model that R2 is 0.201. This means the
variance of hourly red-light violations for 20.1 % is explained by the hourly passing of vehicles. This
percentage is not extremely high, but it is significant enough to include this independent variable in
the MLR Model. However, the adjusted R2 is rather close to the R2 value. This means adding more
variables will not improve the model significantly (Field, 2000). An F-ratio of 70.96 and the associated p-
value of near zero suggests the model overall is statistically significant. In other words, the independent
variable has a significant effect on the dependent variable. Looking at the coefficients, one can see that
the constant has a coefficient of 3.0966 with a p-value of 0.074. Which is not statistically significant
at a significance level of 0.05. However, the p-value of the predictor value is zero. Therefore, the
independent variable is statistically significant. In this case it means that for each unit increase of
passing vehicles the number of hourly red-light violations increases with 0.0573.

Another way a linear regression model can be interpreted is by looking at the residuals distribution.
Preferably, the residual histogram is normally distributed meaning that the model equally over- and
underestimates its predictions. Looking at the residuals histogram of the passing vehicles independent
variable (Figure 4.7), one can immediately see the histogram skews somewhat to the left and is centered
slight left of zero. This would indicate the model tends to overestimate the dependent variable resulting
in a systematic bias in the model’s predictions (Field, 2000). In addition, some outliers can be seen.
Outliers can indicate that the model is not adequately capturing certain data points (Field, 2000).
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Figure 4.7: Residual Histogram of Passing Vehicles

In summary, the model has some statistical significance as indicated by the low p-value for the F-
statistic and the coefficient for hourly passing vehicles. However, the low R-squared value suggests
that the model may not explain a large portion of the variance in the number of red-light violations. Also,
there is some bias in the model. For the purpose of this research, the model is deemed good enough
to enter the predictor varibale in the MLR Model. The regression line, fitted through the data points can
be seen in Figure 4.8.

Figure 4.8: Linear regression with Statsmodels
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4.3.2. Traffic Light Cycles

Figure 4.9: Regression results red-right violations v. traffic light cycles

Roughly the same conclusions can be drawn from this OLS Regression Results Summary. The R2

value indicates that the number of completed traffic light cycles can for 20.9% explain the variance
in hourly red-light violations. Again, Adjusted R2 is almost equal to R2, indicating that adding this
independent variable will most likely not improve the MLR Model significantly. However, the F-statistic
and its probability show that the model is statistically significant. The constant or intercept of this SLRM
is negative and has a probability much larger (0.33) than 0.05. This is obviously wrong because the
number of red-light violations cannot be negative.

Again looking at the residual histogram of the residuals from the traffic light cycles SLRM, one can
see the histogram skews to the left. Once more, indicating that the model tends to overestimate the
dependent variable. Also, some outliers are present. Most likely occurring due the inaccuracy of this
model.

Figure 4.10: Residual Histogram of Traffic Light Cycles

The same conclusion can be drawn for this independent variable as for the independent variable of
the passing vehicles. Therefore, the hourly number of traffic light cycles will be included in the MLRM.
The fitted regression line can be seen in Figure 4.11.
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Figure 4.11: Linear regression with Statsmodels

4.4. Multiple Linear Regression Model Results

In Figure 4.12, the summary of the results of the multiple linear regression model is displayed. In
section 4.4.1 the performance of the model will be analysed. In section 4.4.2 it will be checked if the
model can be applied to other data sets.

Figure 4.12: Multiple Linear regression with Statsmodels
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4.4.1. Does the Model Fit Well?

The result summary produces an R2 value of 0.223. This means only 22.3% of the variance in the
dependent variable (Red-Light Violations) is explained by the independent variables in the MLR model.
However, this is a slight increase compared to the R2 of the SLR models individually (0.201 and 0.209).
See section 4.3.

The p-values associated with the predictor variables are both below 0.05, with ”Sum” (Passing Vehi-
cles) at 0.027 and ”Traffic Light” at 0.005. This suggests that both independent variables are statistically
significant in predicting the dependent variable. Also, the F-statistic is 40.26, and the associated p-value
is very close to zero (4.23e-16). This indicates that the model, as a whole, is statistically significant.

TheDurbin-Watson statistic is close to 1.0 (1.026), which suggests that theremay not be a significant
autocorrelation in the residuals (Glen, 2020).

Normality of Residuals

From the histogram of the residuals in Figure 4.13 can be deducted that again the model tends to
overestimate the dependent variable because the histogram skews to the left. Also, the mean of the
distribution lies slightly left of zero.

Figure 4.13: MLRM Residuals Histogram

Homoscedasticity of Residuals

The homoscedasticity of the residuals is analysed by looking at the residuals scatter plot in Figure 4.14.
Ideally, a residual scatter plot should have no clear pattern. This would suggest homoscedasticity
of residuals (Taylor, 2022). In the residuals scatter plot of the MLRM a funnel or cone shape can
be detected. This suggests heteroscedasticity of the residuals. In other words, the spread of the
residuals changes as you move along the values of the independent variables (Taylor, 2022). Overall,
heteroscedasticity does not create bias. However, it makes the results of a regression analysis less
trustworthy (Taylor, 2022).
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Figure 4.14: MLRM Residuals Plot

4.4.2. Can the Model Be Generalised?

4.4.3. Sample Size

As a rule of thumb, literature suggests the sample size should be at least 10-20 times the number of
independent variables (Field, 2000). With only two independent variables in the model and 284 data
points, the size of the data set should be more than sufficient. However, the measured effects of the
predictor variables on the response variable are rather low. A smaller effect size usually requires a
larger sample (Field, 2000). Therefore, this model could benefit from a larger sample size.

4.4.4. Multicollinearity

”Multicollinearity exists when there is a strong correlation between two or more predictors in a regression
model” (Field, 2000). When independent variables are strongly correlated, it becomes challenging
to distinguish the individual effects of each variable on the dependent variable. The coefficients of
the correlated variables may become unstable and difficult to interpret because they depend on each
other. From a simple scatter plot (Figure 4.15) it can immediately seen the two predictor variables have
strong linear relationship. This strong linear relation can be explained by the fact that the traffic lights
on the Jaffalaan-Mekelweg intersection are demand controlled. In other words, when more cars pass
the intersection, more often the traffic signal for cyclists will show red. This high level of co-linearity
significantly reduces the predicting power of the MLR model.
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Figure 4.15: Scatter plot of the two independent variables

4.4.5. MLRM Testing

Despite aforementioned limitation of this MLRM, the model has been used to predict red-light violations
using Sckit-learn, described in 3.3.6. In Figure 4.16 can be seen that the predicted violations do not
accurately match the observed values. Ideally, the predicted and observed values follow the dashed
line and there is an equal amount of scatter points left and right of the dashed line. In the case of our
MLR model, it can be noticed that more scatter points are located left of the dashed line. This means
the model generally over predicts the number of hourly traffic light negations.
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Figure 4.16: MLRM Scikit-learn results

4.4.6. MLRM Conclusions

Coefficient Estimates

In the MLR model the coefficients represent the change in the dependent variable associated with a
one-unit change in the corresponding independent variable, while holding the other variable constant.
The first step to check if the null hypothesis (h0) can be rejected, is to verify if the coefficient estimates
are not equal or close to zero. From the result summary follows that the coefficients are 0.0278 and
0.1200, for passing vehicles and traffic light cycles respectively.

P-Values

The p-values associated with the predictor variables are 0.027 and 0.005. Both p-values are smaller
than the chosen significance level of p < 0.05. This suggests that both variables are significant predic-
tors of red-light violations.

Hypothesis Testing

Because the coefficient estimates and the associated p-values of both predictor variables meet the
given requirements, the null hypothesis can be safely rejected and the alternative hypothesis can be
accepted.

Final Conclusions

The null hypothesis is rejected, meaning the frequency of passing vehicles and completed traffic light
cycles have a significant influence on the number of red-light violations. However, due to the lack of
more predictor variables and the presence of co-linearity between the used predictor variables, the
MLR model cannot accurately predict hourly red-light violations.



5
Discussion

In this chapter the limitations of the research are discussed. Three main points of discussion are
considered. First the used method of finding hourly values of red-light violations is mentioned. After
that, a brief analysis is given on the amount of data and the types of data that have been used in this
research.

5.1. Method of Finding Red-Light Violations

In section 3.2 the method of finding hourly values of red-light violations by cyclists on the Jaffalaan-
Mekelweg intersection is precisely demonstrated. In this section is explained that the the time of
crossing of each cyclist is determined by looking at the detection times of the detection loop that lies
underneath the bicycle lane. However, it was not possible to identify all individual cyclists. During
longer activation periods of the detection cable, individual cyclists are not registered and were there-
fore dropped and thus not included in following parts of the data analysis. As a result, an unknown
number of potential red-light runners is not included in the research.

In order to improve the preciseness and validity of this research, a method should be formulated
to include the trajectory data of the cyclists and combine this data with the traffic light data from the
intersection. Not only will this method prevent possible red-light runners to be missed. It will also
allow for cross-reference, which can help validate both data sets. Cross-reference would make the
foundation of this research much stronger and therefore improve the validation of potential results.

Lastly, the trajectory data can provide more information on individual cyclists. For example, the
variance in speed over the trajectory. Obtaining more data on crossing cyclists can be used to identify
more predictor variables, which will further improve the research. More on the number of predictor
variables is mentioned in section 5.3.

5.2. Amount of Data

Another way to improve the results of this research could be to input more data into the model. For
this thesis, data has been studied of the intersection and cyclists for a period of 35 days. 10 of which
were weekend days, which could not be included in the research because the traffic light is inactivated
on weekends. This is means only 25 days remained to be studied, which is rather limited. Especially
considering the fact that this period took place in the winter of 2021. During this period, multiple Covid 19
restrictions were in place, including a curfew active from 23-01-2021 (Rijksoverheid, 2023). It is very
likely that as a result less people crossed the intersection because many facilities on campus were
closed. This limited the number of daily crossers, which subsequently complicated the data research.

Besides the number of daily crossers, also the weather data was less significant due to the short
period of registration. The weather data registered during is rather homogeneous, as can be seen in
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the scatter plots in section 4.2. In other words, the weather did not vary enough to be able to identify
patterns indicating that weather might influence cyclists’s red-light running behaviour. It is safe to say
that studying weather data registered over a whole year will most likely increase the probability to find
relations between adverse weather for cyclists and traffic signal violations.

5.3. Number of Predictor Variables

In order to build a model that can accurately predict red-light running behaviour it is quintessential to
identify and gather data of more predictor variables. In this report only two predictor variables have
been identified that correlate with the response variable and have been used for the model. Moreover,
these two predictor variables have a high level of collinearity. This reduced the predicting power of the
model greatly.

In order to end up with a model that can make accurate predictions on red-light negation numbers,
more predictor variables should be identified. Especially predictor variables of different fields could be
useful. Factors of influence like age, gender, cycling experience, type of bike etc. could be used to gain
better understanding in the behaviour of red-light runners. However, it must be stressed that it is rather
difficult to combine survey data like socio-psychological and demographic data with observational data,
for example cyclist trajectories.

5.4. Summary

To summarize, a method must be found to incorporate the cyclists trajectory data in finding the number
of red-light violations. In addition, data should be gathered of more different predictor variables and
over a longer period of time. This way the research can be greatly improved and possibly a model can
be built to accurately predict red-light runners.



6
Conclusions and Recommendations

Chapter 6 provides the conclusions and recommendations of this thesis. Section 6.1 contains the
findings of research. In section 6.2, recommendations are provided based on the the results of this
research. Section 6.3 lists some points that explain in which ways this thesis can be used for further
research. Finally, a summary of this chapter is given in section 6.4

6.1. Findings

The aim of this research is to investigate if a multiple linear regression model can be built that can
predict hourly values of red-light violations based on various predictor variables. In this research two
groups of independent variables have been included in the research. First, adverse weather condi-
tions are researched. To be more precise: hourly values of precipitation, wind speed and temperature.
Secondly, data from the intersection is used. Namely, the hourly number of vehicles passing the inter-
section and the hourly number of red-lights. The first step of building the model is to find out if there
exists any relationship between the predictor variables and red-light violations. From scatter plots dis-
playing correlations between the adverse weather variables and hourly traffic light violations, no linear
relations could be identified. In the case of rain, there were many hourly intervals where no precipitation
was registered. This makes the precipitation data unusable for further analysis. The other two mete-
orological factors, temperature and wind speed, both do not show any correlation with the frequency
of red-light violations. As a result, none of the meteorological factors have been incorporated in the
regression models.

In case of the predictor variables that were extracted from the intersection data, some linear rela-
tion could be identified. Both traffic data variables show a significant (positive) linear relation with the
response variable. 20.1% of the variance in hourly red-light negation can be explained by the number
of passing vehicles. For the variable of hourly red-lights, 20.9% of the variance in red-light violations
can be explained. Both predictor variables are statistically significant at a significance level of p<0.05.
In conclusion, both variables can for a small part explain the variance in red-light violations

Finally, the two remaining predictor variables are combined into a multiple linear regression model
(MLRM). From the MLRM follows that the two predictor variables combined can explain for 22.3% of
the variance in red-light violations. This is only a slight increase from the simple linear regression
models. The small increase can be explained by the high level co-linearity between the predictor
variables. Despite the limited predicting power of the variables, a MLRM using machine learning is
used to predict red-light violations. The model uses 70% of the data to train itself in predicting red-light
violations. The other 30% is used to test the model. The resulting scatter plot shows that the model
generally overestimates the number of red-light violations.

In conclusion, the model produces statistically significant results. However, due to the small number
of predictor variables, the predicting powers of the model remain rather limited. As a result, no real
conclusions can be drawn from this model.
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6.2. Recommendations

The goal of this research was to predict red-light negation behaviour based on various predicting factors.
Unfortunately no substantial conclusions could have been drawn from this research. As a result, no
recommendations can be made to possibly reduce the number of red-light violations by managing one
or more of the predictor variables. However, this research could provide a starting point for further
research. In the next section is explained in what ways the research can be improved. After applying
these improvement measures, the model can perhaps make accurate predictions. These results can
subsequently be used to present useful recommendations.

6.3. Further Research

Trajectory Data

To advance this research, a crucial step is the integration of trajectory data into the analysis. The
trajectory data can provide more information on passing cyclists. For example, their speed at the time
of crossing. Secondly, it will lead to more accurate violation numbers than the current method used.
Incorporating the trajectory data will improve any future regression model and provide more accurate
predictions of violation numbers.

When employing trajectory data of cyclists in further research two main factors must be considered.
First, the exact location of the origin of the local coordinate system of the trajectories must be able to be
placed in the real world. This will allow the researcher to accurately determine the exact time of crossing
of each cyclist. Secondly, the trajectory data should cover the exact time range of the traffic light data.
As a result, the time of crossing for all cyclists can be checked for possible a red-light violation and no
possible red-light violators are missed.

Time Period

Another way to improve this research is to gather data over a longer time period. A longer time period
will not only provide more data to work with. It can perhaps also allow us to find correlations between
violation numbers and weather data. Weather data will likely vary more over a longer time period,
possibly allowing us to see correlations between weather conditions and red-light running.

Predictor Variables

Lastly, more predictor variables will definitely improve any regression model. Many different factors of
influence have been identified in previous research. Data of more possible predictor variables should
be gathered in order to make better predictions.

6.4. Summary

In conclusion, this study aimed to predict red-light violations using various predictor variables. Weather
conditions did not show significant correlations, while data from the intersection revealed positive re-
lationships with violations. A machine learning model, though statistically significant, had limited pre-
dictive power. Further research could incorporate trajectory data, extend the period of research, and
include more predictor variables to enhance predictions.
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A
DataFrames

Appendix A contains all DataFrames that have been referred to in this document.

Figure A.1: Sample of start and end times of green- and red-light cycles

Figure A.2: Detection times and times of crossings
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Figure A.3: Hourly weather data for a random day, averaged with triangular interpolation

Figure A.4: DataFrame with all dependent and independent variables for the first day.



B
Independent Variables Source Code

This appendix contains the Python code of data processing of the independent variables. Appendix B.1
shows the code for the processing of the weather data. In Appendix B.2 the for the processing of the
traffic intersection data is shown.

B.1. Weather Data
1 # Construct data set with hourly meteorological and red-light violation data
2

3 # Load data for all three weather stations
4 hourly_data_voorschoten = np.loadtxt('hourly_data_voorschoten.txt', dtype='int', skiprows=4,

delimiter=',')
5 hourly_data_hvh = np.loadtxt('hourly_data_hvh.txt', dtype='int', skiprows=4, delimiter=',')
6 hourly_data_rotterdam = np.loadtxt('hourly_data_rotterdam.txt', dtype='int', skiprows=4,

delimiter=',')
7

8 # Create dataframes for all three weather stations
9 df_voorschoten = pd.DataFrame(hourly_data_voorschoten)

10 df_hvh = pd.DataFrame(hourly_data_hvh)
11 df_rotterdam = pd.DataFrame(hourly_data_rotterdam)
12

13 # Create empty lists for triangular interpolated data
14 hourly_windspeed = np.zeros(816)
15 hourly_temperature = np.zeros(816)
16 hourly_rain = np.zeros(816)
17

18 # Use a loop to interpolate and store hourly weather data
19 for i in range(816):
20 hourly_windspeed[i] = (df_voorschoten.iloc[i,-3] * (43.2/220)) + (df_hvh.iloc[i,-3] *

(49.8/220)) + (df_rotterdam.iloc[i,-3] * (126.9/220))
21 hourly_temperature[i] = (df_voorschoten.iloc[i,-2] * (43.2/220)) + (df_hvh.iloc[i,-2] *

(49.8/220)) + (df_rotterdam.iloc[i,-2] * (126.9/220))
22 hourly_rain[i] = (df_voorschoten.iloc[i,-1] * (43.2/220)) + (df_hvh.iloc[i,-1] *

(49.8/220)) + (df_rotterdam.iloc[i,-1] * (126.9/220))
23

24 # Create data frame with new, average values
25 df_model = df_voorschoten
26 df_model[1] = pd.to_datetime(df_model[1], format='%Y%m%d')
27 df_model.columns = ['Station', 'Date', 'Hour', 'Wind speed', 'Temperature', 'Rain']
28 df_model.set_index('Date', inplace=True)
29 df_model.drop('Station', axis=1, inplace=True)
30

31 df_model['Wind speed'] = hourly_windspeed
32 df_model['Temperature'] = hourly_temperature
33 df_model['Rain'] = hourly_rain
34

35 # Change all negative rain values to zero
36 df_model['Rain'] = df_model['Rain'].apply(lambda x: max(0, x))
37

37
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38 # Set all values to the correct unit [m/s, C, mm]
39 df_model['Wind speed'] = df_model['Wind speed'].div(10)
40 df_model['Temperature'] = df_model['Temperature'].div(10)
41 df_model['Rain'] = df_model['Rain'].div(10)
42 df_model.columns = ['Hour', 'Wind speed [m/s]', 'Temperature [C]', 'Rain [mm]']
43 df_model = df_model.round(2)
44

45 df_model.reset_index(inplace=True)
46

47 df_model.to_csv('df_model.csv', index=False)

B.2. Traffic Data
1 # Passing vehicle count
2 # Read the Excel file
3 vehicle_data = pd.read_excel('traffic_light_sensor.xlsx')
4 df_vehicles = pd.DataFrame(vehicle_data)
5

6 # Remove last rows of dataframe
7 df_vehicles = df_vehicles[:-11]
8

9 # Initialize the 'date' column
10 df_vehicles['date'] = '2021-01-20'
11 # df_vehicles['date'] = pd.to_datetime(df_vehicles['date'])
12

13 date_list = ['2021-01-20', '2021-01-21', '2021-01-22', '2021-01-23', '2021-01-24', '
2021-01-25', '2021-01-26', '2021-01-27', '2021-01-28', '2021-01-29',

14 '2021-01-30', '2021-01-31', '2021-02-01', '2021-02-02', '2021-02-03', '2021-02-04', '
2021-02-05', '2021-02-06', '2021-02-07', '2021-02-08',

15 '2021-02-09', '2021-02-10', '2021-02-11', '2021-02-12', '2021-02-13', '2021-02-14', '
2021-02-15', '2021-02-16', '2021-02-17', '2021-02-18',

16 '2021-02-19', '2021-02-20', '2021-02-21', '2021-02-22']
17

18 date_count = 0
19

20 for i in range(len(df_vehicles)):
21 if df_vehicles['periode'].iloc[i] == '00:00-00:05':
22 date_count += 1
23

24 df_vehicles.loc[i, 'date'] = date_list[date_count]
25

26 # Remove first two rows and reset index
27 df_vehicles = df_vehicles[2:]
28 df_vehicles = df_vehicles.reset_index(drop=True)
29

30 # Rename columns
31 df_vehicles.columns = ['periode', '21', '22', '81', 'date']
32

33 # Convert the 'periode' column to datetime format
34 df_vehicles['periode_start'] = pd.to_datetime(df_vehicles['periode'].str.split('-').str[0],

format='%H:%M')
35 df_vehicles['hour'] = df_vehicles['periode_start'].dt.hour
36

37 # Group by 'date', 'hour', and aggregate the sum of '21', '22', and '81' columns
38 df_grouped = df_vehicles.groupby(['date', 'hour']).agg({
39 '21': 'sum',
40 '22': 'sum',
41 '81': 'sum'
42 }).reset_index()
43

44 # Reset the index and rename the columns
45 df_grouped = df_grouped.rename(columns={'date': 'Date', 'hour': 'Hour', '21': 'Sum_21', '22':

'Sum_22', '81': 'Sum_81'})
46

47 # Change hour column into 1-24 hour format
48 df_grouped['Hour'] = df_grouped['Hour'] + 1
49

50 # Insert row for first hour, first day
51 first_row = {'Date': '2021-01-20', 'Hour': 1, 'Sum_21': 0, 'Sum_22': 0, 'Sum_81': 0}
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52 df_grouped = pd.concat([pd.DataFrame(first_row, index=[0]), df_grouped], ignore_index=True)
53 df_grouped['Date'] = pd.to_datetime(df_grouped['Date'])
54

55 # Sum hourly car presence
56 df_grouped['Sum'] = df_grouped.apply(lambda row: row['21'] + row['22'] + row['81'], axis=1)
57

58 # Remove weekend days
59 df_grouped = df_grouped[df_grouped['Date'].dt.weekday < 5]
60 df_grouped = df_grouped.reset_index(drop=True)
61

62 # df_grouped.to_csv('df_grouped.csv', index=False)
63

64 # Traffic light cycle count
65 # Read the Excel file
66 cycle_data = pd.read_excel('traffic_light_cycles.xlsx')
67 df_cycles = pd.DataFrame(cycle_data)
68

69 #Remove last rows that go past midnight
70 df_cycles = df_cycles[:-11]
71

72 # Initialize the 'date' column
73 df_cycles['date'] = '2021-01-20'
74

75 date_list = ['2021-01-20', '2021-01-21', '2021-01-22', '2021-01-23', '2021-01-24', '
2021-01-25', '2021-01-26', '2021-01-27', '2021-01-28', '2021-01-29',

76 '2021-01-30', '2021-01-31', '2021-02-01', '2021-02-02', '2021-02-03', '2021-02-04', '
2021-02-05', '2021-02-06', '2021-02-07', '2021-02-08',

77 '2021-02-09', '2021-02-10', '2021-02-11', '2021-02-12', '2021-02-13', '2021-02-14', '
2021-02-15', '2021-02-16', '2021-02-17', '2021-02-18',

78 '2021-02-19', '2021-02-20', '2021-02-21', '2021-02-22']
79

80 date_count = 0
81

82 for i in range(len(df_cycles)):
83 if df_cycles['periode'].iloc[i] == '00:00-00:05':
84 date_count += 1
85

86 df_cycles.loc[i, 'date'] = date_list[date_count]
87

88 # Remove first two rows and reset index to start on full hour
89 df_cycles = df_cycles[2:]
90 df_cycles = df_cycles.reset_index(drop=True)
91

92 # Rename columns
93 df_cycles.columns = ['periode', 'traffic light', 'date']
94

95 # Convert the 'periode' column to datetime format
96 df_cycles['periode_start'] = pd.to_datetime(df_cycles['periode'].str.split('-').str[0],

format='%H:%M')
97 df_cycles['hour'] = df_cycles['periode_start'].dt.hour
98

99 # Group by 'date', 'hour', and aggregate the sum of '21', '22', and '81' columns
100 df_grouped_cycles = df_cycles.groupby(['date', 'hour']).agg({'traffic light': 'sum'}).

reset_index()
101

102 # Reset the index and rename the columns
103 df_grouped_cycles = df_grouped_cycles.rename(columns={'date': 'Date', 'hour': 'Hour', '

traffic light': 'Traffic Light'})
104

105 # Change hour column into 1-24 hour format
106 df_grouped_cycles['Hour'] = df_grouped_cycles['Hour'] + 1
107

108 # Insert row for first hour, first day
109 first_row = {'Date': '2021-01-20', 'Hour': 1, 'Traffic Light': 0}
110 df_grouped_cycles = pd.concat([pd.DataFrame(first_row, index=[0]), df_grouped_cycles],

ignore_index=True)
111 df_grouped_cycles['Date'] = pd.to_datetime(df_grouped_cycles['Date'])
112

113 # Remove weekend days
114 df_grouped_cycles = df_grouped_cycles[df_grouped_cycles['Date'].dt.weekday < 5]
115 df_grouped_cycles = df_grouped_cycles.reset_index(drop=True)



C
Red-Light Violations Source Code

Appendix C describes the steps that have been performed in order to find the number of red-light
violations. The original Python code has been divided into several parts. Every part of code is preceded
by a descriptive text. Appendix C is made up of five sections. The first two sections explain how the
green and red time intervals have been extracted from the Vlog data. The third section describes the
analysis of the trajectory data. Section Appendix C.4 illustrates the way the times of crossing of each
cyclist were found. Finally, in Appendix C.5 is explained how the red-light violations were found.

C.1. Finding Red Time Intervals

To start, the green time intervals of the traffic light are loaded and converted from a MATLAb file into
a Pandas DataFrame. The green-time intervals for this period have been previously calculated by a
Bachelor End Work (BEP) student. The source code of this process can be found in Appendix C.2.

Next, the columns are renamed and the date columns is set as datetime. Then the start and end
time of each red-light cycle is calculated. First, a StartRed column is created with all values set to zero.
Then, the greentime values are converted from deciseconds to seconds. After that, the StartRed values
are calculated by adding three seconds to the EndGreen times and stored in the new column. These
three seconds are the exact length of each yellow-light period between the end of a green-light period
and the start of a red-light period. The EndRed times are set equal to the start of the next green-light
interval. Also, the lenght of each red-light cycle is calculated and stored. Finally, the first and last row of
each date is removed because every day starts and end with the traffic signal on stand-by, i.e. flashing
yellow.

1 # GreenTime Data
2

3 greentimes_matdata = scipy.io.loadmat('GreenTimes.mat')
4 greentimes_matvariable = greentimes_matdata['GreenTimes']
5

6 df_greentimes = pd.DataFrame(greentimes_matvariable)
7

8 df_greentimes[0] = pd.to_datetime(df_greentimes[0], format='%Y%m%d')
9 df_greentimes.columns = ['Date', 'Count', 'StartGreen', 'EndGreen']

10

11 # Calculate RedTime Data
12 # Create columns for start and end red times
13 df_greentimes = df_greentimes.assign(StartRed=0)
14

15 # Convert times to seconds
16 df_greentimes['StartGreen'] = df_greentimes['StartGreen'].div(10)
17 df_greentimes['EndGreen'] = df_greentimes['EndGreen'].div(10)
18

19 # Calculate red times
20 df_greentimes['StartRed'] = df_greentimes['EndGreen'] + 3
21 df_greentimes['EndRed'] = df_greentimes['StartGreen'].shift(-1)
22 df_greentimes['LengthRed'] = df_greentimes['EndRed'] - df_greentimes['StartRed']

40
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23

24 # Remove first and last row for every date due to traffic light being on stand-by
25 def remove_first_last_rows(group):
26 return group.iloc[1:-1]
27

28 df_greentimes = df_greentimes.groupby('Date').apply(remove_first_last_rows)
29

30 # Reset the index of the modified groups
31 df_greentimes = df_greentimes.reset_index(drop=True)

C.2. Green Time Source Code
1 clear all; clc; close all; fclose all;
2 %--------------------------------------------------------------------------
3 % This code is meant to identify green periods for the traffic light
4 % Jaffalaan
5 %--------------------------------------------------------------------------
6 % Load file with start times
7 dirname = 'C:\Users\wdaamen\TrafficLight\Data\';
8 fname = 'startTimes.txt';
9 fileID = fopen([dirname fname],'r');

10 formatSpec = '%d %d %d %d %d';
11 sizeA = [5 Inf];
12 startTimes = fscanf(fileID,formatSpec,sizeA);
13 startTimes = startTimes';
14

15 GreenTimes =[];
16 %% Add a loop over all days
17 for day = 1:size(startTimes ,1)
18 day
19 % Load files with vlog data
20 fname = ['kr067_' num2str(startTimes(day,1)) '.txt'];
21 fileID = fopen([dirname fname],'r');
22 formatSpec = '%d %d';
23 sizeA = [2 Inf];
24 VRIdata = fscanf(fileID,formatSpec,sizeA);
25 VRIdata = VRIdata';
26

27         % Correct times
28         correction = startTimes(startTimes(:,1) == str2double(fname(findstr(fname,'_')+1:

findstr(fname,'.')-1)),2:5);
29         VRIdata(:,1) = VRIdata(:,1) + correction(1)*36000 + correction(2)*600 + correction(3)

*10 + correction(4);
30

31         % Calculate internal green
32         VRIdata(:,3) = mod(VRIdata(:,2),32);
33

34         startG = sort(VRIdata(find(VRIdata(:,3)==1),1));
35         endG = sort(VRIdata(find(VRIdata(:,3)==6),1));
36

37         % Create day boundaries
38         % day ends with orange so if necessary add last green
39         if endG(end) > startG(end)
40             startG(end+1) = endG(end)+1;
41         end
42         endG(end+1) = 23*36000 + 59*600 + 59*10; % Still green at midnight (orange)
43

44         % day starts with orange
45         if endG(1) < startG(1)
46             startG = [0; startG];
47         else
48             startG(1) = 0; % First green at midnight (orange)
49         end
50

51         Rec = 0;
52         % check for incomplete cycles
53         if length(endG) == length(startG)
54             Rec = sum(startG<endG);
55             if Rec ~= length(endG)
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56                 for c = 1:min(length(endG),length(startG))
57                     if startG(c)>endG(c)
58                         endG(c)=[];
59                         tbr = abs(length(endG)-length(startG));
60                         countR = countR+1;
61                         if tbr == 0
62                             break
63                         end
64                     elseif startG(c+1)<endG(c)
65                         startG(c+1)=[];
66                         tbr = abs(length(endG)-length(startG));
67                         countR = countR+1;
68                         if tbr == 0
69                             break
70                         end
71                     end
72                 end
73             end
74         else
75             countR = 0;
76             tbr = abs(length(endG)-length(startG));
77             for c = 1:min(length(endG),length(startG))
78                 if startG(c)>endG(c)
79                     endG(c)=[];
80                     tbr = abs(length(endG)-length(startG));
81                     countR = countR+1;
82                     if tbr == 0
83                         break
84                     end
85                 elseif startG(c+1)<endG(c)
86                     startG(c+1)=[];
87                     tbr = abs(length(endG)-length(startG));
88                     countR = countR+1;
89                     if tbr == 0
90                         break
91                     end
92                 end
93             end
94

95         end
96

97

98         % Restructure time into desired format
99         GreenTimes = [GreenTimes; startTimes(day,1).*ones(length(startG),1) (1:length(startG)

)' startG endG];
100 end
101

102 %% Save green times
103 save('GreenTimes','GreenTimes')

C.3. Plotting Trajectory Data

The trajectory is loaded converted from MAT (MATLAB) to a Pandas DataFrame. The columns are
renamed and a DateTime column is added. Lastly, unnecessary columns are dropped.

1 #Trajectory Data
2

3 trajectories_matdata = scipy.io.loadmat('LabeledRawlTrajectories.mat')
4 trajectories_matvariable = trajectories_matdata['Trajectories']
5

6 df_trajectories = pd.DataFrame(trajectories_matvariable)
7

8 df_trajectories.columns = ['ID', 'Year', 'Month', 'Day', 'Hour', 'Minute', 'Second', '
Second_Count', '?', 'x', 'y']

9

10 df_trajectories['Date'] = pd.to_datetime(df_trajectories[['Year', 'Month', 'Day']])
11
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12 df_trajectories = df_trajectories.loc[:, ['Date', 'Year', 'Month', 'Day', 'Hour', 'Minute', '
Second', 'Second_Count', 'ID', '?', 'x', 'y']]

13 df_trajectories.drop('?', axis=1, inplace=True)
14

15 display(df_trajectories)

Next, all trajectories are plotted onto the provided background image. The extent of the image is
changed in order to fit the trajectories more or less accurately. Also, the trajectories are slightly rotated
to fit better onto the path of the bicycle lane.

1 # Display trajectories
2

3 background_image = mpimg.imread('JaffalaanX.png')
4

5 fig, ax = plt.subplots(figsize=(10,6.8))
6 ax.imshow(background_image, extent=[-2.75, 20.25, -14.3, 3.35], aspect='auto', origin='upper'

)
7

8 ax.set_xlabel('X-axis')
9 ax.set_ylabel('Y-axis')

10

11 angle_degrees = -5
12 angle_radians = math.radians(angle_degrees)
13

14 for i in range(36502):
15

16 plot_trajectory = df_trajectories[df_trajectories['ID'] == i+1]
17

18 x = plot_trajectory['x']
19 y = plot_trajectory['y']
20

21 x_rotated = x * math.cos(angle_radians) - y * math.sin(angle_radians)
22 y_rotated = (x * math.sin(angle_radians) + y * math.cos(angle_radians)) + 0.2
23

24 ax.plot(x_rotated, -y_rotated, color='red', alpha=0.1)
25

26 plt.show()

The daily crossings based on the trajectory data are plotted as follows.
1 # Display crossing cyclists per day - trajectory data
2

3 # Remove duplicates to end up with only unique ID's, obtain frequencies
4 df_unique_ID = df_trajectories.drop_duplicates(subset='ID', keep='first')
5

6 # Weekdays only
7 df_unique_ID_week = df_unique_ID[df_unique_ID['Date'].dt.weekday < 5]
8 df_unique_ID_frequency_week = df_unique_ID_week.groupby('Date').size().reset_index(name='

Frequency')
9

10 # Some statistics
11 lowest_daily_crossings = df_unique_ID_frequency_week['Frequency'].min()
12 lowest_daily_crossings_row = df_unique_ID_frequency_week[df_unique_ID_frequency_week['

Frequency'] == lowest_daily_crossings]
13 lowest_daily_crossings_date = lowest_daily_crossings_row['Date'].dt.date.values[0]
14

15 highest_daily_crossings = df_unique_ID_frequency_week['Frequency'].max()
16 highest_daily_crossings_row = df_unique_ID_frequency_week[df_unique_ID_frequency_week['

Frequency'] == highest_daily_crossings]
17 highest_daily_crossings_date = highest_daily_crossings_row['Date'].dt.date.values[0]
18

19 mean_daily_crossings = df_unique_ID_frequency_week['Frequency'].mean()
20

21 plt.figure(figsize=(10,6))
22

23 daily_crossers = df_unique_ID_week.groupby('Date').size()
24 daily_crossers.plot(kind='bar', label='Daily Crossers')
25

26 plt.axhline(y=mean_daily_crossings , color='red', linestyle='--', label='Mean Daily Crossings'
)

27
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28 date_labels = df_unique_ID_frequency_week['Date'].dt.strftime('%Y-%m-%d')
29 plt.xticks(range(len(date_labels)), date_labels, rotation=45)
30 plt.tight_layout()
31 plt.xlabel('Date')
32 plt.ylabel('Daily Crossings')
33 plt.legend();

C.4. Calculation of Time of Crossings

The detection times were exported from CuteView to Excel for every date in our time period except for
weekend days, as the traffic light is on stand-by (flashing yellow signal) during weekends. Some dates
consisted of multiple Vlog files. These Vlog files were then combined into one Excel file.

Then, the Excel files are read and converted to a Pandas DataFrame. Next, the one single time
column of the Excel file is converted to an end- and a start-time column. Because the Vlog files of each
date do not start at the same time, an additional file with starting times for each date was provided
together with the rest of the data. These starting times are subsequently added to the detection times.
For the dates that consist of multiple Vlog files the start times were calculated manually and were
already added in the Excel file. After that, the end-time column is copied to a time column and converted
from decimal-seconds into hh:mm:ss format. Also, a date column with respective date is added. Next,
the rows with detection times that run after midnight are removed. Removing the columns poses no
problem as the traffic light is on stand-by during those hours. Finally, the DataFrames with detection
times are converted to as csv-file and subsequently stored.

1 # Start times
2

3 start_times = np.loadtxt('startTimes.txt')
4

5 # Convert start times to deci-seconds
6 start_times_ds = np.zeros(24)
7

8 for i in range(24):
9

10 start_times_sec = (start_times[i,1] * 3600) + (start_times[i,2] * 60) + (start_times[i
,3]) + (start_times[i,4] / 10)

11 start_times_ds[i] = start_times_sec * 10

1 # Detection cable 263 - an example for 2021-01-20
2

3 # Construct dataframe
4 sensor263 = pd.read_excel('Sensor_263\sensor263_2021 -01-20.xlsx')
5 df_sensor = pd.DataFrame(sensor263)
6

7 # Create end time column
8 df_sensor['eindtijd'] = df_sensor['starttijd'].shift(-1)
9

10 # Remove first and last row
11 df_sensor = df_sensor.iloc[1:]
12 df_sensor = df_sensor.iloc[:-1]
13

14 # Rename columns
15 df_sensor.columns = ['Unnamed', 'starttijd', 'detector263', 'eindtijd']
16

17 # Drop unnecessary columns
18 df_sensor = df_sensor.drop('Unnamed', axis=1)
19 df_sensor = df_sensor.drop('detector263', axis=1)
20

21 # Add start time
22 df_sensor = df_sensor + start_times_ds[0]
23

24 # Remove all even index rows
25 even_index_mask = df_sensor.index % 2 == 0
26 df_sensor = df_sensor[~even_index_mask]
27 df_sensor = df_sensor.reset_index(drop=True)
28
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29 # Convert to hh:mm:ss
30 def deciseconds_to_hh_mm_ss(deciseconds):
31 seconds = deciseconds / 10
32 hours = seconds // 3600
33 minutes = (seconds % 3600) // 60
34 seconds = (seconds % 3600) % 60
35

36 return f'{int(hours):02d}:{int(minutes):02d}:{int(seconds):02d}'
37

38 df_sensor['Time'] = df_sensor['eindtijd'].apply(deciseconds_to_hh_mm_ss)
39

40 df_sensor['Date'] = '2021-01-20'
41

42 df_sensor_20_01 = df_sensor.iloc[:-12]
43

44 df_sensor_20_01.to_csv('df_sensor_20_01.csv', index=False)

A slightly different procedure was followed for the dates 2021-02-02 and 2021-02-18, because on
these days the detection cable was activated at the moment registration of that day had started. In this
case all uneven rows had to be removed instead of the even numbered rows. Also, the first row was
not removed.

1 # Repeat process for 04-02 and 18-02
2

3 # Construct dataframe
4 sensor263 = pd.read_excel('Sensor_263\sensor263_2021 -02-18.xlsx') #Change date here
5 df_sensor = pd.DataFrame(sensor263)
6

7 # Create end time column
8 df_sensor['eindtijd'] = df_sensor['starttijd'].shift(-1)
9

10 # Remove last row
11 df_sensor = df_sensor.iloc[:-1]
12

13 # Rename columns
14 df_sensor.columns = ['starttijd', 'detector263', 'eindtijd']
15

16 # Drop unnecessary columns
17 df_sensor = df_sensor.drop('detector263', axis=1)
18

19 # Add start time
20 df_sensor = df_sensor + start_times_ds[21] #Change index here
21

22 # Remove even number rows
23 uneven_index_mask = df_sensor.index % 2 != 0
24 df_sensor = df_sensor[~uneven_index_mask]
25 df_sensor = df_sensor.reset_index(drop=True)
26

27 # Convert to hh:mm:ss
28 def deciseconds_to_hh_mm_ss(deciseconds):
29 seconds = deciseconds / 10
30 hours = seconds // 3600
31 minutes = (seconds % 3600) // 60
32 seconds = (seconds % 3600) % 60
33

34 return f'{int(hours):02d}:{int(minutes):02d}:{int(seconds):02d}'
35

36 df_sensor['Time'] = df_sensor['eindtijd'].apply(deciseconds_to_hh_mm_ss)
37

38 df_sensor['Date'] = '2021-02-18' #Change date here
39

40 df_sensor_18_02 = df_sensor.iloc[:] #Change date, delete all rows over 24:00:00
41

42 df_sensor_18_02.to_csv('df_sensor_18_02.csv', index=False) #Rename date twice

For the next step, the csv-files of all dates are read and converted into a new DataFrame. All the
single DataFrames are then stored in a list and subsequently concatenated into one large DataFrame,
which is sorted by date and time. Now we are left with one dataframe for all dates consisting of the
following columns: start-time (deciseconds), end-time (deciseconds), crossing time (hh:mm:ss) and
date (yyyy-mm-dd).
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1 # Regroup all dataframes into one dataframe
2 import glob
3

4 directory = 'df_sensor/'
5 file_pattern = '*.csv'
6 sensor_dataframes = []
7

8 csv_file_list = glob.glob(directory + file_pattern)
9

10 for csv_file in csv_file_list:
11 sensor_df = pd.read_csv(csv_file)
12 sensor_dataframes.append(sensor_df)
13

14 sensor_dataframe = pd.concat(sensor_dataframes, ignore_index=True)
15

16 sensor_dataframe = sensor_dataframe.sort_values(by=['Date', 'Time'])
17 sensor_dataframe = sensor_dataframe.reset_index(drop=True)

Now we have a DataFrame with all detection times, all rows with a too large detection time can be
removed. Also the time it takes to reach the stopping line can be added.

1 # Filter out all rows with a too large time difference
2

3 sensor_dataframe['Time Difference'] = sensor_dataframe['eindtijd'] - sensor_dataframe['
starttijd']

4 mask = sensor_dataframe['Time Difference'] > 3
5

6 df_filtered_sensor = sensor_dataframe[~mask]
7

8 df_filtered_sensor = df_filtered_sensor.copy()
9 df_filtered_sensor['Crossing Time [s]'] = df_filtered_sensor['eindtijd'].div(10)

10

11 # Add extra time to crossing times
12 df_filtered_sensor.loc[df_filtered_sensor['Time Difference'] == 1.0, 'Crossing Time [s]'] +=

0.17
13 df_filtered_sensor.loc[df_filtered_sensor['Time Difference'] == 2.0, 'Crossing Time [s]'] +=

0.33
14 df_filtered_sensor.loc[df_filtered_sensor['Time Difference'] == 3.0, 'Crossing Time [s]'] +=

0.5
15

16 df_filtered_sensor = df_filtered_sensor.reset_index(drop=True)
17

18 df_filtered_sensor.columns = ['Start Time [ds]', 'End Time [ds]', 'Time', 'Date', 'Time 
Difference [ds]', 'Crossing Time [s]']

C.5. Calculation of Violations

First, a new column is added to the crossing times DataFrame of which all values are by default set to
False. Subsequently, a function is applied to the DataFrame in which, for all crossing times, is checked
if each crossing time falls into one of the red time intervals. If this is the case the False value is set to
True. The resulting DataFrame is exported to csv-file, due to the long running time of the code. The
final results of the red-light violation data can be seen in Chapter 4.

1 # Run times of crossing through the greentime data
2

3 # Create new column to store true/false value
4 df_filtered_sensor = df_filtered_sensor.copy()
5 df_filtered_sensor.loc[:, 'Within Red Interval'] = False
6

7 def check_within_interval(row):
8 for index, interval_row in df_greentimes[df_greentimes['Date'] == row['Date']].iterrows()

:
9 if interval_row['StartRed'] <= row['Crossing Time [s]'] <= interval_row['EndRed']:

10 return True
11 return False
12

13 # Apply the function to update the 'Within_Red_Interval' column
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14 df_filtered_sensor['Within Red Interval'] = df_filtered_sensor.apply(check_within_interval ,
axis=1)

15

16 df_filtered_sensor.to_csv('df_filtered_sensor.csv', index=False)
17

18 # Construct dataframe violators
19 violators = pd.read_csv('df_filtered_sensor.csv')
20 df_violators = pd.DataFrame(violators)
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Linear Regression Source Code

Appendix D contains the code used for the linear regression analysis. In Appendix D.1 is explained
how the hourly values of all dependent and independent variables are merged into one DataFrame.
Appendix D.2 shows the code for the SLR models. Next, Appendix D.3 shows the code for the MLR
model. This section includes both the Statsmodels and the Scikit-learn code.

D.1. Constructing the DataFrame
1 import numpy as np
2 import pandas as pd
3 import scipy.io
4 import math
5 from matplotlib import pyplot as plt
6

7 # Weather data
8 weather = pd.read_csv('df_model.csv')
9 df_weather = pd.DataFrame(weather)

10

11 df_weather['Date'] = pd.to_datetime(df_weather['Date'])
12

13 # Vehicle data
14 vehicles = pd.read_csv('df_grouped.csv')
15 df_cars = pd.DataFrame(vehicles)
16

17 df_cars['Date'] = pd.to_datetime(df_cars['Date'])
18

19 # Traffic light data
20 traffic_light = pd.read_csv('df_grouped_cycles.csv')
21 df_traffic_light = pd.DataFrame(traffic_light)
22

23 df_traffic_light['Date'] = pd.to_datetime(df_traffic_light['Date'])
24

25 # Add violation data to DataFRame
26 crossers = pd.read_csv('df_filtered_sensor.csv')
27 df_crossers = pd.DataFrame(crossers)
28

29 # Combine date and time columns into a single datetime column
30 df_crossers['Datetime'] = pd.to_datetime(df_crossers['Date'] + ' ' + df_crossers['Time'])
31

32 # Extract the date and hour
33 df_crossers['Date'] = df_crossers['Datetime'].dt.date
34 df_crossers['Hour'] = df_crossers['Datetime'].dt.hour
35

36 # Create a pivot table to count the violations
37 violators = df_crossers.pivot_table(index=['Date', 'Hour'], values='Within Red Interval',

aggfunc='sum', fill_value=0)
38 violators.reset_index(inplace=True)
39 violators.rename(columns={'Within Red Interval': 'Violation Count'}, inplace=True)
40

48
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41 # Create a date-hour grid for all hours from 1 to 24
42 date_range = pd.date_range(start=violators['Date'].min(), end=violators['Date'].max(), freq='

H')
43 date_hour_grid = pd.DataFrame({'Date': date_range.date, 'Hour': date_range.hour})
44

45 # Merge the grid with the violation data and fill missing counts with zeros
46 violators = date_hour_grid.merge(violators, on=['Date', 'Hour'], how='left').fillna({'

Violation Count': 0}).astype({'Violation Count': int})
47

48 # Change DataFrame to 1-24 hour format
49 violators['Hour'] = violators['Hour'] + 1
50 violators['Date'] = pd.to_datetime(violators['Date'])
51

52 # Merge dataframes
53 df_merged = pd.merge(df_weather, violators, on=['Date', 'Hour'])
54 df_merged = pd.merge(df_merged, df_cars, on=['Date', 'Hour'])
55 df_merged = pd.merge(df_merged, df_traffic_light, on=['Date', 'Hour'])
56

57 df_filtered = df_merged[df_merged['Violation Count'] != 0] #Remove hours without violations

D.2. Simple Linear Regression Model
1 # Statsmodels
2 import statsmodels.api as sm
3

4 # Vehicles
5

6 X_cars = df_filtered['Sum'] # independent variable
7 y_cars = df_filtered['Violation Count'] # dependent variable
8

9 X_cars = sm.add_constant(X_cars) # add constant
10

11 slr_model_cars = sm.OLS(y_cars, X_cars) # Ordinary Least Squares
12 slr_reg_cars = slr_model_cars.fit()
13

14 print(slr_reg_cars.summary())
15

16 intercept = slr_reg_cars.params[0]
17 slope = slr_reg_cars.params[1]
18 y_pred = slr_reg_cars.predict(X_cars)
19

20 plt.figure(figsize=(10,6))
21

22 plt.scatter(cars, violations, marker='o', alpha=0.5, label='Data Points')
23 plt.plot(X_cars['Sum'], y_pred, color='red', label='Regression Line')
24 plt.xlabel('Cars per Hour')
25 plt.ylabel('Violations per Hour')
26 plt.title('Simple Linear Regression Passing Vehicles')
27 plt.grid()
28 plt.legend(loc='upper left')
29

30 residuals = slr_reg_cars.resid
31

32 # Histogram of residuals
33 plt.figure(figsize=(14, 6))
34 plt.subplot(1, 2, 1)
35 plt.hist(residuals, bins=30, edgecolor='k')
36 plt.xlabel('Residuals')
37 plt.ylabel('Frequency')
38 plt.title('Residual Histogram of Passing Vehicles')
39

40 # Traffic light cycles
41

42 X_tlc = df_filtered[['Traffic Light']] # independent variable
43 y_tlc = df_filtered['Violation Count'] # dependent variable
44

45 X_tlc = sm.add_constant(X_tlc) # add constant
46

47 slr_model_tlc = sm.OLS(y_tlc, X_tlc) # Ordinary Least Squares
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48 slr_reg_tlc = slr_model_tlc.fit()
49

50 print(slr_reg_tlc.summary())
51

52 intercept_tlc = slr_reg_tlc.params[0]
53 slope_tlc = slr_reg_tlc.params[1]
54 y_pred_tlc = slr_reg_tlc.predict(X_tlc)
55

56 plt.figure(figsize=(10,6))
57

58 plt.scatter(traffic_light, violations, marker='o', alpha=0.5, label='Data Points')
59 plt.plot(X_tlc['Traffic Light'], y_pred_tlc, color='red', label='Regression Line')
60 plt.xlabel('Traffic Light Cycles per Hour')
61 plt.ylabel('Violations per Hour')
62 plt.title('Simple Linear Regression Traffic Light Cycles')
63 plt.grid()
64 plt.legend(loc='upper left')
65

66 residuals_tlc = slr_reg_tlc.resid
67

68 # Histogram of residuals
69 plt.figure(figsize=(14, 6))
70 plt.subplot(1, 2, 1)
71 plt.hist(residuals_tlc, bins=30, edgecolor='k')
72 plt.xlabel('Residuals')
73 plt.ylabel('Frequency')
74 plt.title('Residual Histogram of Traffic Light Cycles')

D.3. Multiple Linear Regression Model
1 # MLRM
2

3 X1_var = df_filtered[['Sum','Traffic Light']] # independent variables
4 y_var = df_filtered['Violation Count'] # dependent variable
5

6 X1_var = sm.add_constant(X1_var)
7

8 mlr_model = sm.OLS(y_var, X1_var).fit()
9

10 print(mlr_model.summary())
11

12 plt.figure(figsize=(10,6))
13

14 fitted_values = mlr_model.fittedvalues
15 residuals = mlr_model.resid
16 plt.scatter(fitted_values, residuals)
17 plt.xlabel("Fitted Violations")
18 plt.ylabel("Residuals")
19 plt.title("Residuals vs. Fitted Violations")
20 plt.axhline(y=0, color='r', linestyle='--')
21 plt.show()
22

23 import seaborn as sns
24 import statsmodels.graphics.regressionplots as smg
25

26 # Create a scatterplot with a regression line
27 sns.lmplot(x='Violation Count', y='Sum', data=df_filtered, ci=None)
28 plt.title(f'Partial Regression Plot for Passing Vehicles')
29

30 sns.lmplot(x='Violation Count', y='Traffic Light', data=df_filtered, ci=None)
31 plt.title(f'Partial Regression Plot for Traffic Light Cycles')
32 plt.show()
33

34 residuals_mlr = mlr_model.resid
35

36 # Histogram of residuals
37 plt.figure(figsize=(14, 6))
38 plt.subplot(1, 2, 1)
39 plt.hist(residuals_mlr, bins=30, edgecolor='k')
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40 plt.xlabel('Residuals')
41 plt.ylabel('Frequency')
42 plt.title('Residual Histogram of MLRM')
43

44 # MLRM Scikit-learn
45

46 from sklearn.model_selection import train_test_split
47 from sklearn.linear_model import LinearRegression
48

49 X_train, X_test, y_train, y_test = train_test_split(X1_var, y_var, test_size=0.3,
random_state=42)

50

51 model = LinearRegression()
52 model.fit(X_train, y_train)
53

54 y_pred = model.predict(X_test)
55

56 plt.figure(figsize=(6, 6))
57 plt.scatter(y_test, y_pred)
58 plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=2)
59 plt.xlabel('Observed Violations', fontsize=12,)
60 plt.ylabel('Predicted Violations', fontsize=12)
61 plt.title('Observed vs. Predicted Red-Light Violations', fontsize=13, y=1.02)
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