
Queuing at a
revolving door

Identifying queues in trajectory data using
speed profiles

by

Daniël Rijnders

Student number: 4528786
Project duration: September 4, 2023 – October 23, 2023
Faculty: Civil Engineering and Geosciences
Department: Transport & Planning
Thesis committee: Yufei Yuan Supervisor / Examiner

Shadi Sharif Supervisor / Examiner
Kuldeep Kavta Supervisor

Preface
This report is the Bachelor Final Project (course code CTB3000) for the bachelor program of Civil
Engineering at Delft University of Technology. The general topic was offered by Winnie Daamen from
the department of Transport & Planning at the TU Delft, who was interested in what could be learned
about queues at the entrance of the Industrial Design faculty from trajectory data generated by a smart-
sensor.

For those interested in the methodological approach to detect a queue using the speed profile of
an individual object, the method used in this report can be found in chapter 4 and the results with
verification in chapter 5. The specifics of the Python code used in this report to process the trajectory
data and perform the queue detection can be found in appendix A .

A special thanks is given to Yufei Yuan, Kuldeep Kavta and Shadi Sharif for their continuous guid-
ance during the writing of this report. I would also like to thank the other students of the same supervi-
sion group: Tieme van Hijum, Antoon Poelmans and Arend-Jan Timmermans. Their combined efforts
during the weekly meetings with discussions, ideas and peer-reviewing greatly improved the quality of
this report. Lastly I would like to thank Winnie Daamen for providing the topic and necessary data.

Daniël Rijnders
Delft, October 2023

i

Summary
Background
No explicit studies have been performed for the queue type specific for a revolving door. Smart-sensors
providing trajectory data can be used to study this queue type. Before this can be studied, one has to
find the moments of queue formation from the provided trajectory data. Various methods are used in
previous studies but still without a definitive answer and often computationally demanding. Speed has
not been directly used to identify or describe a queue, but showed interesting properties for this queue
type.

Goal
This report investigates how queues can be identified using the speed and direction information from
trajectory data from the smart smart-sensor at the revolving door at the entrance of the Industrial Design
faculty.

Method
A specific ’stop and go’ motion was observed for objects in a queue, where objects first slow down (1),
then speed up to advance towards the entrance after other objects entered the door (2), and then slow
down again as there was not enough room or time to enter the door (3). This was used to formulate
a definition of being in a queue before entering the door. Each phase (1 to 3) was assigned to a
time interval based on the time between door openings. An object complying with all three interval
requirements was defined as a queue. A typical example of such an object is shown in Figure 1.

Results
Out of 69013 objects, 1109 were identified as being in a queue. Four of these were false positives
caused by unexpected pedestrian behaviour and could not have been avoided using this method. A
100 objects unidentified out of 3846 viable objects were visually checked using animations, showing 4
missed queues, with 3 coincidentally of the same instance due to a long door delay.

Conclusion
The method proves a useful tool to quickly identify queues in large sets of trajectory data with low
computational demand and fair reliability. Fine-tuning of the used parameters could improve the results.
Further study is needed to check viability during other circumstances.

Figure 1: Typical ’stop and go’ speed profile of an object in a queue

ii

Contents

Preface i

Summary ii

1 Introduction 1

2 Literature study 3
2.1 Queue definitions . 3
2.2 Variables to describe queues . 4
2.3 Queue density computation . 5
2.4 Pedestrian parameters . 5
2.5 Interpolation of data-points. 6

3 Data provided by the smart-sensor 7
3.1 Output files with object trace data . 7
3.2 Limitations of the smart-sensor . 8
3.3 Epoch Unix Timestamp. 8
3.4 Processing the smart-sensor data-set . 9
3.5 Visualisation . 9
3.6 Removing false reflection data. 10

4 Methodology 11
4.1 Definition of a queue based on a speed profile . 11
4.2 Steps needed to identify queues. 12

4.2.1 Speed computation. 12
4.2.2 Speed visualisation. 13
4.2.3 Speed threshold and required queue conditions 13
4.2.4 Selecting viable objects . 16

4.3 Verifying results. 16

5 Results 17
5.1 Queue identification . 17
5.2 Verification of the results . 17

6 Discussion 19
6.1 Queues and capacity . 19
6.2 Smoothing or smart-sensor hardware to compensate for speed fluctuations 19
6.3 Detection area size . 19
6.4 Influence of weather conditions . 19
6.5 Unexpected pedestrian behaviour . 20
6.6 Smart-sensor errors . 20
6.7 Minimal time limits . 20

7 Conclusion 21
7.1 Literature study . 21
7.2 Smart-sensor information . 21
7.3 Queue definition . 22
7.4 Steps to identify queues . 23
7.5 Verification . 24
7.6 Results . 25
7.7 Final conclusion . 25

iii

Contents iv

8 Recommendations 26
8.1 Smart-sensor placement and detection area adjustment. 26
8.2 Fine-tuning of the method . 26
8.3 Testing the method on different circumstances . 26
8.4 Applying the method to other revolving doors. 26

Appendix A Python code 27

Appendix B Smart-sensor output file example 45

Reference list 46

1
Introduction

Revolving doors are one of many different types of infrastructure used to facilitate and control access
between partitioned areas. The capacity of such doors are determined bymany factors and queuing will
occur when demand exceeds maximum capacity. For the interest in queuing behaviour, a smart-sensor
capable of object tracking was placed at the revolving door at the entrance of the Industrial Design
faculty on the TU Delft campus (Figure 1.1). The most common way to identify and describe queues
found in literature is using pedestrian density, but even though numerous ways have been proposed
to quantify it, a complete answer is still missing and solutions rely on situation specific assumptions
(Duives et al., 2015). Furthermore, pedestrians lining up in front of a revolving door due to unfortunate
timing would be indistinguishable from a queue based on a capacity limit using this method. A study
by Kneidl (2016) also reports that no explicit study has been performed concerning the specific queue
type matching the situation at the entrance door.

Figure 1.1: Detection area (orange) of the smart-sensor in front of the Industrial Design faculty (Daamen, 2023)

The tracking data provided by the smart-sensor can be used for countless fields of research and
practical applications. Movement patterns and queuing behaviour resulting in specific queue shapes
can be studied, as well as the factors that influence them. Not only during regular use, but also for safety
concerns in extreme situations. Studies in this field can help to create measures to improve waiting
times and door capacity, but also to increase safety during these extreme situations. Research can be
expanded to compare different types of doors, even as far as to improve sustainability, for example by
using revolving doors that prevent unwanted ventilation for situations found otherwise unfit.

Before queuing behaviour and shapes can be investigated, a method has to be created to identify
queues in the smart-sensor tracking information data-set. A specific characteristic movement pattern
during queue formation was observed at the entrance door that was not found to be used in literature

1

2

for queue identification. As speed has not yet been used explicitly to identify queues, the following
research questions was formed:

How can queues at the revolving door of the Industrial Design faculty entrance be identified using
the speed profile of objects from smart-sensor trajectory data?

This is answered using the following sub-questions:

• What is currently known in literature about queue identification?

• What information does the smart-sensor data provide?

• How can a queue be defined based on the speed profile of objects?

• What are the required steps to identify queues in the smart-sensor data using this definition?

• How can the identified queues be verified?

The smart-sensor tracking data is provided by external expert Winnie Daamen from the department of
Transport & Planning at the TU Delft. All required coding to process and visualise the information in the
smart-sensor data is done using Python. To reduce the data-set into an appropriate size for this report,
the workdays of the first two weeks of the academic year 2023/2024 at TU Delft are used as data-set
samples. The study only examines normal every day use of the revolving door, extreme situations like
evacuations are not included. Computation time considerations are not included in this report.

To answer the research question, a literature study was done in chapter 2. A description of the smart-
sensor data-set is given in chapter 3. In chapter 4, the used methodology for this report is worked out.
The results are shown in chapter 5 and discussed in chapter 6. The conclusions are given in chapter 7.
Finally, recommendations concerning further research that were encountered in the creation of this
report are given in chapter 8.

2
Literature study

The literature study was performed to find relevant information regarding queues and object trace data.
The information was used for the definition of a queue in this report and to find the variables that can
be used to describe one. It was found that the standard work by Fruin (1971) was cited often, even
in very recent literature such as by van den Heuvel (2022). A review by Buchmüller and Weidmann
(2006) shows that the studies performed since then are still relevant as their results have consistently
been confirmed by more recent studies and still serve as the basis for currently applied techniques.

Some research involving required computations on the data-set is also discussed.

2.1. Queue definitions
Studies show multiple definitions and classifications of queues, depending on their specific situation.
For the situation addressed this report, the following conceptual ideas for the definition of a queue were
used (Fruin, 1971)(van den Heuvel, 2022)(Okazaki & Matsushita, 1993):

1. A spatial component: a line or group of pedestrians is involved

2. A time component: there is waiting involved

3. A cause: there is a reason for a pedestrian to wait for their turn

The definition of a queue for this report is the combination of these three factors that arises in the
following situation: there are more pedestrians trying to enter the door than the capacity at that moment
allows (van den Heuvel, 2022)(Kneidl, 2016).

Research by Okazaki and Matsushita (1993) shows a classification of queues in three types based on
the movements of pedestrians in various public spaces:

• Type 1: in front of a counter, also known as a linear queue where the first person to arrive is the
first to be served (van den Heuvel, 2022).

• Type 2: through multiple parallel gates such as tourniquets, causing parallel linear queues.

• Type 3: in front of doors of vehicles, involving possible situations where arriving passengers must
exit before waiting passengers can enter.

As the visualisation of these types clearly shows (Figure 2.1), the third type is typical for the revolving
door in this report. Pedestrians using the door as an exit use the same ’vehicle’ as waiting pedestrians
wish to enter. The formed queues are undisciplined (Fruin, 1971), a mass of pedestrians, where some
join the end of the queue and others try to join at the bottleneck (van den Heuvel, 2022)(Daamen, 2004)
but still more or less ordered (no pushing or jostling interaction between pedestrians) (Kneidl, 2016).
The study by Kneidl (2016) reports that a no explicit study has been performed concerning this type of
queue and no new literature was found during this literature study.

3

2.2. Variables to describe queues 4

Figure 2.1: Three queue types according to Okazaki and Matsushita (1993)

A further distinction in queuing is made by Kneidl (2016) for bottlenecks (loose queue formation
where amodel with direction and velocity is used) and train boarding (bulk of people next to the entrance
where a model with waiting zones is used). Factors of both can be identified for the revolving door in
this report: a loose queue formation at a bottleneck (excluding emergency situations) combined with a
waiting zone next to the ’opening’ door.

2.2. Variables to describe queues
Based on the conceptual components of a queue described in section 2.1, the following variables were
found to describe and/or measure queues in various studies:

• Amount [P] of pedestrians in a queue (spatial component) (Fruin, 1971) (van den Heuvel, 2022)

• Type of pedestrian, e.g. commuting or leisure (reason component) (Buchmüller & Weidmann,
2006) (Daamen, 2004)

• Area 𝐴 [m2] of a queue, also involving length and width (spatial component) (van den Heuvel,
2022)

• Density 𝜌 [P/m2] of a queue (spatial component) (Duives et al., 2015) (Daamen, 2004) (van den
Heuvel, 2022) (Steffen & Seyfried, 2009) (Fruin, 1971)

• Flow [P/ms] of a queue (spatial and time component) (Daamen, 2004) (Buchmüller & Weidmann,
2006) (Steffen & Seyfried, 2009)

• Distance [m] to other pedestrians in a queue (spatial component) (Duives et al., 2015) (Kneidl,
2016)

• Waiting time [s] for pedestrians in a queue (time component) (Fruin, 1971) (van den Heuvel, 2022)

• Speed 𝑣 [m/s] of pedestrians in a queue (spatial and time component) (Daamen, 2004) (Buch-
müller & Weidmann, 2006) (Steffen & Seyfried, 2009)

• Direction 𝑣⃗ of pedestrians in a queue (spatial and time component) (Daamen, 2004) (Steffen &
Seyfried, 2009)

2.3. Queue density computation 5

Figure 2.2: Example of a Voronoi diagram adjusted to compensate for lack of spatial boundaries (Mullick et al., 2022)

2.3. Queue density computation
Of all the variables to describe queues, density has been given the most attention by previous studies.
But even though numerous ways have been proposed to quantify it, a complete answer is still missing.
Each solution can only be applied for specific situations and more often than not, the parameters used
in the solutions depend heavily on assumptions (Duives et al., 2015).

The research of van den Heuvel (2022) points out the X-T method and Voronoi diagram gave the best
results for queue density computations in the overview study of Duives et al. (2015) for a bottleneck
situation in his report that is very similar to the bottleneck in this report. Even so, two different meth-
ods of density computations were used as the X-T method and Voronoi diagram were too technically
challenging to implement.

The first method is based on the research of Fruin (1971) with a classical partitioning in zones.
Density is computed from the number of pedestrians in the area of the zone.

The second method is based on the research of Helbing (van den Heuvel, 2022) where exponen-
tially weighted distance is used to create a normal distribution for density around a pedestrian. For a
predefined grid, the combined weight of each pedestrian based on its distance to a cell defines its den-
sity. A couple of assumptions are made like the size of pedestrians (for which he used a simplification
of dimensions used in Buchmüller and Weidmann (2006)) and the scale parameter of the distribution.

Since not only static pedestrian locations are known for this report, but also their traces with timestamps,
the study of Mullick et al. (2022) gives multiple approaches to density computation along the traced path
of objects. The Voronoi diagram gives the best results, but is especially problematic to apply in this
report because of the wide open space before the entrance. This gives rise to possible infinitely low
densities at the edges of a queue (Figure 2.2) that have to be corrected with new assumptions about
maximum Voronoi cell size or boundaries.

2.4. Pedestrian parameters
The walking speed of pedestrians in free flow conditions appears to have a normal distribution with
a mean 𝜇 = 1.34 m/s and a standard deviation 𝜎 = 0.37 m/s according to Daamen (2004). Several
factors can influence the walking speed, such as age, temperature and travel purpose (Buchmüller &
Weidmann, 2006). The speed at which there is a 99% chance (P ≤0.01) for deviation from the free flow
speed in the presented normal distribution is at 𝑣 ≤ 0.47 m/s. This corresponds with the observation
of van den Heuvel (2022) that pedestrian speeds do not exceed 0.5 m/s when inside a queue.

In the study of Steffen and Seyfried (2009), methods for reducing scatter in measuring density, flow,
speed and direction were presented for trajectory data. In case of speed, the scatter (variations) in
momentary pedestrian speed caused by swaying through the walking motion can be compensated by
finding moments of identical phase and interpolating between those points. It is unclear however if the
data from the smart-sensor is accurate enough apply this.

2.5. Interpolation of data-points 6

An approximation of the size of a pedestrian in the horizontal plane is given by Buchmüller and Weid-
mann (2006) as 50 x 30 cm with an average body ellipse of 60 x 50 cm to account for elbowroom in
different body positions. This was used as a reference for correct visual representation of pedestrians
in animations and plots of the detection area.

2.5. Interpolation of data-points
For basic computations on the traces, like the numerical first derivative for speed, it is desirable to know
an approximation of the location of an object at any given point in time instead of just the data-points
at random moments. Interpolation of the data-points of a trace provides this information.

Linear interpolation The largest distances between data-points for a trace, using high walking speeds
of 1.5 m/s (Daamen, 2004)(Buchmüller & Weidmann, 2006) and a rounded down average of 10 data-
points per second, are in the order of 200 mm. Combined with the fact that change of direction of
pedestrians is slower at higher speeds (inertia) and the scale of the detection area, linear interpolation
provides a smooth enough trace.

This piece-wise linear interpolation between each data-point in a trace as a function of time can be
described by the following equation:

𝑓𝑥,𝑛(𝑡) = 𝑥𝑛 + (
𝑥𝑛+1 − 𝑥𝑛
𝑡𝑛+1 − 𝑡𝑛

) (𝑡 − 𝑡𝑛), for 𝑡 ∈ [𝑡𝑛 , 𝑡𝑛+1), 𝑛 = 0, 1, ... , 𝑚 − 2 (2.1)

where: 𝑓𝑥,𝑛(𝑡) [mm] = the x-coordinate at timestamp 𝑡 between data-point 𝑛 and 𝑛 + 1
𝑥𝑛 [mm] = the x-coordinate of data-point 𝑛
𝑡𝑛 [mm] = the timestamp of data-point 𝑛
𝑚 [−] = the amount of data-points in the trace

Higher-order interpolation and smoothing It could be convenient to have a smooth function through
all data-points in a trace with techniques like higher-order Lagrange interpolation. However, using a
higher-order Lagrange interpolation to create single function for an object trace can lead to large os-
cillation at the end points, also known as Runge’s phenomenon (Vuik et al., 2016). As the end points
are exactly the point of interest in this study, the moment where queues exist before an object leaves
the detection area through the door, this is highly undesirable. More advanced techniques could be
used that prevent this, as well as other piece-wise functions with smooth transitions like splices. This
would however greatly increase the computational load while linear interpolation is already sufficiently
smooth for the extent of this report.

3
Data provided by the smart-sensor

All the data used in this report is gathered by a smart-sensor capable of tracking individual objects in its
detection area. A permanent smart-sensor attached to the building above the entrance was installed on
December 13, 2021 and has provided data since. The detection area of the smart-sensor can be seen
in Figure 3.1. First, the output files of the smart-sensor are discussed in section 3.1. The limitations
of the smart-sensor are discussed in section 3.2. The timestamp used in the data is discussed in
section 3.3. The way the data was processed into a usable data-set is briefly described in section 3.4.
Visualisation of the data-set is described in section 3.5 and lastly, the removal of false reflection data
is worked out in section 3.6.

Figure 3.1: Detection area (orange) of the smart-sensor in front of the Industrial Design faculty (Daamen, 2023)

3.1. Output files with object trace data
The smart-sensor tracks moving objects across its detection area. It is capable of distinguishing individ-
ual objects, and stores their x and y coordinates in millimetres, as well as their unique object-id number
and the Epoch Unix Timestamp (section 3.3) accurate in milliseconds at the moment of detection. The
origin of the coordinate system is just in front of the entrance, with the x-axis parallel to the front of the
building and going to the right and the y-axis perpendicular to the front of the building pointing away
from the building. The limits of the detection area are from approximately -7000 mm to 6000 mm in
x-direction and -3000 mm to 5000 mm in y-direction. The detection occurs a few times per second on
a continuous basis (24 hours per day). The combined set of points in time for a single object gives the
trace of the object through the detection area.

About every 27 seconds, an .JSON format output file is created containing the collected information
for that time period. An example of such an output file can be seen in Appendix B. Object id-numbers

7

3.2. Limitations of the smart-sensor 8

Figure 3.2: Object traces projected on the detection area showing reflections

are not limited to one output file, the same id-number is retained through other output files. Care has
to be taken when parsing the .json files in python, as the complete trace of an object can be spread out
across multiple output files.

3.2. Limitations of the smart-sensor
Although the smart-sensor can distinguish between different objects, it is incapable of identifying the
objects themselves. A bird flying through the detection area, as well as a sliding piece of cardboard,
are registered the same as pedestrians. These false sets of data are not accounted for in this report
(chapter 6).

The size of objects is not registered, only their centre. Therefore, the data can not be used to distinguish
between different types of objects, for example pedestrians with or without a backpack.

A part of the detection area of the smart-sensor is covered by the glass on the front of the building.
The smart-sensor is incapable of distinguishing between objects in the walking area and reflections,
causing some additional false data. This can be seen in Figure 3.2.

3.3. Epoch Unix Timestamp
The time information in the smart-sensor data is given as an Epoch Unix Timestamp accurate in mil-
liseconds. This timestamp gives the amount of seconds passed since 00:00:00 UTC on the 1st of
January 1970 (UnixTime.org, 2023). It is therefore time-zone independent. Each second is a full inte-
ger with the three decimal places used for milliseconds. Conversion to a date-time format can be done
in various ways. The following is an example of a Unix Timestamp and its corresponding date-time
(milliseconds are not given for the date-time):

Epoch Unix Timestamp: 1693567815.329
Local date-time: Fri Sep 01 2023 13:30:15 GMT+0200

3.4. Processing the smart-sensor data-set 9

index object_id timestamp first_timestamp last_timestamp x y
0 201 [𝑡0, 𝑡1, ..., 𝑡𝑖] 𝑡0 𝑡𝑖 [𝑥0, 𝑥1, ..., 𝑥𝑖] [𝑦0, 𝑦1, ..., 𝑦𝑖]
1 202 [𝑡0, 𝑡1, ..., 𝑡𝑖] 𝑡0 𝑡𝑖 [𝑥0, 𝑥1, ..., 𝑥𝑖] [𝑦0, 𝑦1, ..., 𝑦𝑖]
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
n 200 + n [𝑡0, 𝑡1, ..., 𝑡𝑖] 𝑡0 𝑡𝑖 [𝑥0, 𝑥1, ..., 𝑥𝑖] [𝑦0, 𝑦1, ..., 𝑦𝑖]

Table 3.1: pandas DataFrame shape, with 𝑖 depending on the amount of data for that object

3.4. Processing the smart-sensor data-set
The information of the output files of the smart-sensor was parsed to a pandas DataFrame (pandas,
2023). Special care was taken while parsing the information as .json files are seen as unordered
(Python Software Foundation, 2023a) (Python Software Foundation, 2023b). This could cause the
timestamp, x and y values to become scrambled.

The most convenient way to use the data was to store the data of each individual object on a single
row in the DataFrame with the columns and cell values shown in Table 1. Objects spread over multiple
output files had to be merged into a single row while ensuring the timestamps and corresponding x
and y values were still in chronological order. The columns ’first_timestamp’ and ’last_timestamp’ were
added for convenience to quickly show the extent of each object.

3.5. Visualisation
The smart-sensor information is visualised using matplotlib in Python. An example of a trajectory plot
can be seen in Figure 3.3. The plot gives insight in the location of the door in the detection area and
the general directions of the object traces.

Animations are used to visualise the trajectories and speed of objects. If a queue is identified, an
animation of the moment in time can be used to verify the correctness of the identification. It can also
be used to see if queue formation was missed by determining busy periods and visually inspecting the
queue formations.

Figure 3.3: Trajectory plot

3.6. Removing false reflection data 10

3.6. Removing false reflection data
In the provided data-set containing the information from the smart-sensor for the first two weeks of the
academic year 2023/2024, 77705 individual objects were detected. As can be seen in Figure 3.4 (left),
some objects are actually reflections picked up in the glass front of the building. After removing objects
with a total travel distance of less than 1000 mm (reflections usually showed very short traces) or a
y-coordinate below -1000 mm (a safe cut-off point without risking correct traces to be deleted), a total
of 69013 objects remained. A sample from the remaining data-set can be seen in Figure 3.4.

Figure 3.4: Detection area of the smart-sensor showing reflections (outside the yellow square) before (left) and after (right)
correction of the data-set

4
Methodology

This chapter describes the steps that were taken to answer the following three sub-questions:

• section 4.1: How can a queue be defined based on the speed profile of objects?

• section 4.2: What are the required steps to identify queues in the smart-sensor data using this
definition?

• section 4.3: How can the identified queues be verified?

The actions and computations were performed using the Python programming language. A detailed
description of the code can be seen in appendix A.

4.1. Definition of a queue based on a speed profile
From the three queue components found in section 2.1, the spatial and time component can be found in
the data-set. From an animation of queue formation in the data-set, a distinct ’stop and go’ movement
pattern was observed that was used to describe a definition of a queue in terms of the speed profile
of an individual object just before entering the door. This definition revolves (pun intended) around
capacity rather than the actual ’waiting in line’.

Revolving door cycle
Pedestrians arriving at a revolving door often have to wait for the door to be in the correct position to
enter. This is from now on referred to as a door cycle, where each cycle is the moment pedestrians can
enter or leave the door (not a full rotation). Even though waiting for the next door cycle would look like
a queue formation, the ’stop and go’ motion is not due to a lack of capacity but mere timing. Even with
multiple pedestrians waiting for the door opening to be accessible, as long as every pedestrian can
enter the door on the first opportunity (the first cycle after they arrive), capacity has not been reached.

Queue condition
From the moment a pedestrian is not able to enter the door at the first door cycle after they arrive, the
capacity of the door is reached and a queue is formed. Even a single pedestrian would then count as
a queue. Any pedestrian affected was given the formal definition of being in a queue before entering
the door.

Queue condition described by a speed profile
The movement of pedestrians using a revolving door will have a typical ’stop and go’ pattern when they
have to wait before they can enter the door. This can be seen in the speed profile of an object: the
speed variations of an object over time. As described earlier, one such ’stop and go’ moment does not
yet indicate a queue. When capacity is reached and a pedestrian is not able to enter the door at the first
cycle, two such ’stop and go’ patterns were observed. An arriving pedestrian first slows down to wait
with other pedestrians. As the next door opening comes, the pedestrian moves with other pedestrians
towards the door as they enter. If because of a capacity limit there was not enough time or room to

11

4.2. Steps needed to identify queues 12

enter the door, the pedestrian has to wait for the next cycle. From the moment a pedestrian exhibits
two or more ’stop and go’ motions, a queue formation based on capacity could be argued.

These ’stop and go’ patterns can be described in terms of speed. With a certain speed threshold
𝑣𝑙𝑖𝑚, a ’stop’ movement has a lower speed than 𝑣𝑙𝑖𝑚 and a ’go’ movement a higher speed than 𝑣𝑙𝑖𝑚.
The timing of these relative low and high speeds is synchronised with the timing of the door cycles.
This was mathematically expressed in the following way:

𝑣(𝑡) ∶ {’stop’: 𝑣 < 𝑣𝑙𝑖𝑚 , 𝑡 ≠ 𝑡0 − 𝑘Δ𝑡𝑑 ± 𝜀
’go’: 𝑣 > 𝑣𝑙𝑖𝑚 , 𝑡 = 𝑡0 − 𝑘Δ𝑡𝑑 ± 𝜀

(4.1)

where: 𝑣(𝑡) [m/s] = the speed of a pedestrian
𝑣𝑙𝑖𝑚 [m/s] = the speed threshold separating ’stop’ and ’go’ movements
𝑡 [s] = the moment in time
𝑡0 [s] = the moment in time the door was entered
Δ𝑡𝑑 [s] = the time between two door cycles
𝜀 [s] = the error to compensate for Δ𝑡𝑑 fluctuations and movement wave

propagation delay
𝑘 [-] = 0, 1, 2, ...

A pedestrian was defined as being in a queue when two ’stop and go’ motions are observed. In a
simple descriptive way: there is a ’stop’ movement, followed by a ’go’ movement and a second ’stop’
movement before the door is entered (the last ’go’ movement where the door is entered was omitted to
simplify the definition as it is not needed and often incomplete in the trajectory data). This was explicitly
described using Equation 4.1 in the following way:

A pedestrian is defined as being in a queue when all three following conditions are met:

1. There is a ’stop’ movement halfway between 𝑡0 − 2Δ𝑡𝑑 and 𝑡0 − Δ𝑡𝑑: the first ’stop’

2. There is a ’go’ movement at 𝑡 = 𝑡0−Δ𝑡𝑑: moving towards the door when the door can be entered

3. There is a ’stop’ movement halfway between 𝑡0 and 𝑡0 − Δ𝑡𝑑: the second ’stop’ movement when
a pedestrian can not enter the door due to a capacity limit

4.2. Steps needed to identify queues
From this section onward, the word ’object’ is used instead of ’pedestrian’ as the trajectory data is being
used and no confirmation can be given that a detected object was indeed a pedestrian.

4.2.1. Speed computation
To find the momentary speed of an object (in the direction of movement), first the speed of an object
was computed in x and y direction using a backward difference formula. A backwards difference was
chosen in order to get a result for the speed computation up to the last moment before the door was
entered. To get the interpolated value of x and y for any time, the linear interpolation described in
section 2.5 was used. The speed in the direction of movement was computed using the sum of the x
and y components:

𝑣(𝑥(𝑡), 𝑦(𝑡)) = √(𝑥(𝑡) − 𝑥(𝑡 − Δ𝑡)Δ𝑡)
2
+ (𝑦(𝑡) − 𝑦(𝑡 − Δ𝑡)Δ𝑡)

2
(4.2)

where: 𝑣(𝑥(𝑡), 𝑦(𝑡)) [m/s] = the speed of an object at time 𝑡 in the direction of movement
𝑡 [s] = the moment in time
𝑥(𝑡) [m] = the x-coordinate of an object at time 𝑡
𝑦(𝑡) [m] = the y-coordinate of an object at time 𝑡
Δ𝑡 [s] = the time difference for the backward difference formula

4.2. Steps needed to identify queues 13

4.2.2. Speed visualisation
A strong visual aid to assess the ’stop and go’ movement is a plot of the speed of an object over the
time before it enters the door. For these plots, the speed was computed and plotted for 0.1 second
intervals. Even though animations of the data-set showed fluent movement of objects, large varia-
tions of the momentary speed of objects were observed when the data was plotted for speeds directly
computed between successive data-points. By using the speed computation shown in Equation 4.2.1
and increasing the time difference Δ𝑡, a value of Δ𝑡 = 1 s was found to give a sufficiently fluent result
without flattening the curve too much. The different results are shown in Figure 4.1. At the smallest
scale of Δ𝑡 = 0.001 s, the speed computation is completely dependent on the linear interpolation and
corresponds with speeds computed directly between successive data-points.

It must also be noted that a surprising effect was shown when the speed was plotted between
successive data points (visible in Figure 4.1 for Δ𝑡 = 0.001 s): recurring speeds over time, seemingly
forming lines with slightly decreasing values over time. These were considered as artifacts from the
smart-sensor detection methods and were not further investigated for the extent of this report as their
effect was no longer visible for larger values of Δ𝑡.

Figure 4.1: Comparison between 2Δ𝑡 = [0.001, 0.01, 0.1, 1] [s] for speed computation.

A time window of 20 seconds before entering the door was chosen for the speed profile plots. Looking
back further in time for each object has no added value, as pedestrians rarely dwell in the detection
area for longer than 20 seconds. As the detection area is quite small, objects are often already out
of bounds before this time window when waiting in a longer queue. The rest of the queue can not
be detected. This can be seen in the animation snapshot in Figure 4.2. For the detection of queues
however, this is not a problem, for if a pedestrian is queuing out of bound, another pedestrian will be
queuing inside the detection area.

4.2.3. Speed threshold and required queue conditions
As a first estimation for the speed threshold 𝑣𝑙𝑖𝑚, the value of 0.5 m/s found in section 2.4 was used.
When the speed profiles of multiple objects were compared, large variations in timing were observed

4.2. Steps needed to identify queues 14

Figure 4.2: Animation snapshot showing a queue with real life size approximation of pedestrians

Figure 4.3: Plot of speed profiles of multiple objects showing a large spread in ’stop and go’ timing

for the ’stop and go’ movements. The large spread in timing can be seen in Figure 4.3. Because of
this spread, as well as large fluctuations in speed (add figure), a simple and clear implementation of
the queue conditions described in section 4.1 was not possible without adjustments.

Door cycle time and error interval
The interval for the error 𝜀 in Equation 4.1 to compensate for the large spread in timing was first es-
timated by visual observation of speed profiles from objects showing ’stop and go’ movements. The
interval for which each condition was valid (𝑣 < 𝑣𝑙𝑖𝑚 for conditions 1 and 3 and 𝑣 > 𝑣𝑙𝑖𝑚 for condition 2)
was noted. For all three conditions, the interval was found to be around 7 seconds (𝜀 = 3.5 s) centered
around 11.5, 8.5 and 4.5 seconds before entering the door for condition 1, 2 and 3 respectively.

Animations were used to determine the door cycle length Δ𝑡𝑑. On average, the waiting time between
two moments of entry (between the last object entering the door and the first one of the next cycle) was
around 7 seconds. The average time between two full cycles (between the first object to enter the door
and the first object of the next cycle) was around 10 seconds. As only a maximum of two ’stop and
go’ movements are needed and can be seen, a Δ𝑡𝑑 = 7 s between to moments of entry was chosen
as more appropriate as movement starts immediately after this interval, compared to the entire cycle.
This was also in perfect unison with the estimated intervals based on observations. Adding a 1 second
shift to Equation 4.1 to compensate for the delay before an object starts moving also lined up the timing
with the observations.

add example 3712 (fast) and 4504 (slow) Two examples are shown in Figure 4.4.

Due to speed fluctuations and large overlaps for condition intervals due to spread in timing, a single

4.2. Steps needed to identify queues 15

Figure 4.4: Example of the speed graph of two objects for the last 20 seconds before they go through the entrance. The speed
threshold arbitrarily set at 0.5 m/s based on section 2.4

point in the speed profile where the speed was above or below 𝑣𝑙𝑖𝑚 for each condition was deemed
insufficient. A minimal time limit for these conditions (Δ𝑡1, Δ𝑡2 and Δ𝑡3) was added to make sure ’stop’
and ’go’ movements were not incidental spikes in speed measurement. Additionally, to make sure such
an incidental spike does not dismiss a valid queue identification, a maximum of 10% mismatch was
allowed. For the length of Δ𝑡2 and Δ𝑡3, 2 consecutive seconds was estimated based on observations,
as both conditions have to be fully present for all conditions to be valid. The first condition however
could be very short because an object could arrive just before the start of the first ’go’ wave. As
observations indicated that queues could be missed otherwise, the time limit for condition 1, Δ𝑡1 was
set to 0.5 seconds. Just like the plots of the speed profiles, the speed in the intervals was checked for
every 0.1 seconds.

The resulting conditions based on the description in section 4.1 are now as follows:

1. 𝑣 < 𝑣𝑙𝑖𝑚 for > 90% of Δ𝑡1 during 𝑡 = 𝑡0 − (1.5Δ𝑡𝑑 + 1) ± 0.5Δ𝑡𝑑
2. 𝑣 > 𝑣𝑙𝑖𝑚 for > 90% of Δ𝑡2 during 𝑡 = 𝑡0 − (Δ𝑡𝑑 + 1) ± 0.5Δ𝑡𝑑
3. 𝑣 < 𝑣𝑙𝑖𝑚 for > 90% of Δ𝑡3 during 𝑡 = 𝑡0 − (0.5Δ𝑡𝑑 + 1) ± 0.5Δ𝑡𝑑

where: 𝑣 [m/s] = the speed of an object at time 𝑡, checked every 0.1 seconds
𝑣𝑙𝑖𝑚 [m/s] = the speed threshold for ’stop’ or ’go’ movement
Δ𝑡1 [s] = the minimal time limit for condition 1: 0.5 seconds
Δ𝑡2 [s] = the minimal time limit for condition 2: 2 seconds
Δ𝑡3 [s] = the minimal time limit for condition 3: 2 seconds
𝑡0 [s] = the moment in time the door was entered
Δ𝑡𝑑 [s] = the time between two door cycles: 7 seconds

Speed threshold
The threshold 𝑣𝑙𝑖𝑚 was estimated at 0.35 m/s in later iterations which indeed gave better results. Even
though the literature mentions 0.5 m/s as threshold, it also mentions it usually never being exceeded
in a queue. Observations do however show that 0.5 m/s is occasionally exceeded in stop and go
waves, emphasizing the difference between classical queues and the situation at a revolving door. The
application of the threshold with the three intervals in a speed profile plot can be seen in Figure 4.5.

During inspection of missed queues using the 0.35 m/s threshold, it was observed that a single fixed
threshold was not able to detect queues precisely enough due to varying circumstances. In order to
make sure that all variations were captured, the final method uses an accumulation of all queues found
for various speed limits: 𝑣𝑙𝑖𝑚 = 0.2, 0.3, 0.4, 0.5

4.3. Verifying results 16

Figure 4.5: Three intervals for queue detection: 1) red: 𝑣⃗ < 𝑣⃗𝑙𝑖𝑚, 2) green: 𝑣⃗ > 𝑣⃗𝑙𝑖𝑚 and 3) blue: 𝑣⃗ < 𝑣⃗𝑙𝑖𝑚

4.2.4. Selecting viable objects
To make sure only viable objects were checked for the conditions of section 4.1, objects with the wrong
direction of movement and a shorter total detection time than needed were filtered out of the data-set.

The direction of movement was used to identify objects that did not leave the detection area through
the door. Using the trajectory plot in Figure 3.3, it can be seen that all trajectories converge at the door
at the top of the figure. It was estimated that objects going in the negative y-direction during the last 5
seconds (to compensate for small movements while standing still) of their trajectory path were leaving
the detection area through the door. This was expressed as 𝑦′(𝑡) < 0.

The minimal total detection time needed to meet all three conditions in section 4.1 was determined
by the limits given in subsection 4.2.3. With an estimated door cycle length of Δ𝑡𝑑 = 7 seconds, the 1
second compensation shift before movement starts, a consecutive length of 0.5 seconds for condition 1
and 1 second needed for the time difference in the speed computation, the minimal required detection
time added up to 9.5 seconds.

After these objects were filtered out, 3846 viable objects were left from the total 69013 objects in the
data-set.

4.3. Verifying results
Verifying the results was done by visual inspection of the speed profiles of random objects in the data-
set. Discrepancies are easily spotted in the speed profiles. Where speed profiles were inconclusive,
animations were created for a last visual inspection. This allowed for a thorough, though labour inten-
sive verification of the results.

5
Results

With the method and conditions for queue detection described in chapter 4, a list was generated with
objects that were identified as being in a queue. First, the observations of the identified queues are
given in section 5.1. The results are verified in section 5.2.

5.1. Queue identification
The Python code in Appendix A was used to check each of the 69013 objects in the database for the
queue requirements defined in subsection 4.2.3. After filtering out viable objects for direction and total
detection time, 3846 were left. Of these objects, a total of 1109 were found to satisfy all requirements,
or in other words: were identified as being in a queue before entering the door. The results were verified
in the next section to see if the found objects are indeed correctly identified as being in a queue.

5.2. Verification of the results
To verify the results, the identified objects and random samples from all objects were manually checked
for correct identification. The manual check consisted of a visual check of the speed profile for each
object, as inconsistencies are easily spotted. For the situations where the speed profile of an object
was inconclusive, an animation was used as a final confirmation.

Identified queues
Of all the 1109 identified objects being in a queue, 4 could be found as incorrectly identified (false
positives). All of these were caused by objects moving seemingly at random in front of the door before
entering. As there is no video confirmation available, the exact nature of the situations can only be
guessed. As an example, a simple explanation could be a pedestrian waiting for someone else before
entering the door. All these occurrences were unavoidable with using the speed profile method in this
report.

Around 20 random objects were also checked using an animation which indeed showed queuing
behaviour. As queuing is often with multiple pedestrians at the same time, other objects in the ani-
mations that also showed queuing behaviour were checked for identification as well. All these objects
were indeed correctly identified.

Random samples
To check for false negatives (where a queue was not identified when it should have been), two different
random manual verifications were performed. A 1000 random objects out of the original data-set of
69013 and 100 random objects out of the viable 3846 objects were manually checked for discrepancies.

Of those 1000 objects:

• 4 were previously identified as queues by the program

• 34 showed a speed profile with possible queuing or other discrepancies and were animated for
visual confirmation

17

5.2. Verification of the results 18

• 1 of those 34 was found to be a false negative, though an edge case with room for discussion,
all others were correctly dismissed as queues

Out of the 100 random objects from the set of 3846 viable objects (in this case the identified queues
were not included):

• all were checked using animations

• 4 were found as false negatives

• 3 of those coincidentally were from the same situation, where an unusually long period was ob-
served before the door could be entered again, causing the first ’stop and go’ wave to fall outside
of the selected intervals.

6
Discussion

6.1. Queues and capacity
The emphasis on the definition of a queue in this report is the moment capacity is reached. With the
more classical approach however, using the same three conceptual ideas (section 2.1: a line or group
waiting for their turn), it could also be argued that for the situation of a revolving door, there is already
queue formation before capacity is reached. With the more common density computations used for
queues (section 2.3), these formations would also count as queues.

The method to identify queues discussed in this report is especially useful when studying the capacity
of a revolving door, as it can distinguish between queues formed due to capacity limits and queues
formed during normal use of the door. Classical computations like using density are typically not able
to make this distinction.

6.2. Smoothing or smart-sensor hardware to compensate for speed
fluctuations

Like discussed in Equation 2.5, smoothing of the trajectory data using higher-order functions or other
methods was not used for this report. Even though animations showed that linear interpolation was
sufficiently smooth, a relatively large Δ𝑡 of 1 second was needed for the speed computation as the
momentary speed still showed large fluctuations (subsection 4.2.1). New studies are needed to see if
smoothing or other compensation could improve the results.

This also depends largely on the type of smart-sensor for the trajectory data. Fine tuning will be
needed depending on the situation for which the method is used.

6.3. Detection area size
While viewing animations during queue formation, it was noticed that the size of the detection area was
barely larger than the portion of the queue that is able to enter during one cycle of the door. This means
that the path of a pedestrian entering the detection area and joining the queue is often very short and
that longer queue formations can not be studied.

6.4. Influence of weather conditions
Although the relatively small span of two workweeks gave plenty of data for creating and testing the
method in this report, it is not enough to investigate the influences of weather conditions on the results.
The two weeks had high temperatures with little fluctuations. The described method to identify queues
could very well give different results due to behaviour changes in (heavy) rain or cold temperatures.
This still needs to be tested in future studies.

19

6.5. Unexpected pedestrian behaviour 20

6.5. Unexpected pedestrian behaviour
The method of finding queues from trajectory data derived in this report can not account for unexpected
behaviour of pedestrians. Situations like stopping and looking at one’s phone just before entering the
door could lead to false queue identifications. As there is no video footage to compare to the trajectory
data, some situations can not be explained through the trajectory data. Though exact numbers were
not found, results indicate that the contribution of these situations to false data is very small.

6.6. Smart-sensor errors
Some errors due to limitations of the smart-sensor were noticed that could influence the results of this
report. For example: an object was seen to merge with another, possibly due to likeliness. Two objects
were also seen with an extremely close and consistent proximity to one other, possibly a pedestrian
carrying a large item. Even though this prevents the possibility for exact measurements, the encounters
of such errors were so rare that they are considered negligible for the purpose of this report.

6.7. Minimal time limits
The minimal consecutive time limits for the interval conditions were chosen as 2 seconds for condition
2 and 3 and 0.5 seconds for condition 1. As discussed in section 4.2, the 0.5 seconds was already
quite limited due to the detection area size. For condition 2 and 3 however, the 2 second limit was
estimated by observation. When using a longer limit of 3 seconds, only two-thirds of the queues were
found, resulting in a large number of false negatives. With a shorter limit of 1 second however, almost
double the amount of queues were identified with an enormous amount of false positives, indicating
the importance of this interval approach. More fine-tuning could be studied for better results.

7
Conclusion

The goal of this report was to answer the research question: ”How can queues at the revolving door of
the Industrial Design faculty entrance be identified using speed and direction information from smart-
sensor trajectory data?”. The sub-questions and the sections in which they are answered are as follows:

• section 7.1: What is currently known in literature about queue identification?

• section 7.2: What information does the smart-sensor data provide?

• section 7.3: How can a queue be defined for the specific situation?

• section 7.4: What are the required steps to identify queues in the smart-sensor data using this
definition?

• section 7.5: How can the identified queues be verified?

• section 7.6: Results

7.1. Literature study
Literature showed that the specific queue type in front of a revolving door has not yet been explicitly
studied (Kneidl, 2016). Density was used most often for queue description and definition but there is no
complete answer. Each application is dependent on specific solutions and assumptions (Duives et al.,
2015). Although speed is occasionally used for description and comparisons to other variables, it has
not yet been used explicitly to identify queues.

7.2. Smart-sensor information
The information provided by the smart-sensor consists of an x and y coordinate in mm together with
an Epoch Unix Timestamp (UnixTime.org, 2023) accurate in milliseconds for each detection of an indi-
vidual object in the detection area. The origin of the coordinate system is just in front of the entrance.
There are multiple detection moments per second. The combination of all coordinates and timestamps
of an individual object gives the trace (or trajectory) of an object in the detection area. The smart-
sensor creates a .JSON format output file (an example can be seen in appendix B) for the accumulated
information every 27 seconds.

The smart-sensor has the following limitations:

• The smart-sensor can distinguish between individual objects but is incapable of identifying ob-
jects: a piece of sliding cardboard is registered the same as a pedestrian

• The size of objects is not registered, only their centre

• A part of the detection area consists of glass of the front of the building, reflections in the glass can
be registered as objects (these objects were removed where possible to prevent false readings)

21

7.3. Queue definition 22

Figure 7.1: The detection area (left) and a sample of object trajectories including false data from reflections plotted on the
detection area (right)

The timestamps used in the smart-sensor information are given in the Epoch nix Timestamp format:
the amount of seconds since the ’Epoch’ on the 1st of January 1970. The timestamps are accurate in
milliseconds.

7.3. Queue definition
The definition of a queue in this report is based on a distinct movement pattern of pedestrians when
the door capacity is reached. This movement pattern was observed using an animation of queuing
pedestrians and consists of a ’stop and go’ pattern. Pedestrians arriving at a revolving door often have
to wait for the door to be in the correct position to enter. Even though waiting for the next door cycle
would look like a queue formation, the ’stop and go’ motion is not due to a lack of capacity but mere
timing.

From the moment a pedestrian is not able to enter the door at the first door cycle after they arrive,
the capacity of the door is reached and a queue is formed. Even a single pedestrian would then count
as a queue. Any pedestrian affected was given the formal definition of being in a queue before entering
the door.

These ’stop and go’ patterns can be described in terms of speed. With a certain speed threshold
𝑣𝑙𝑖𝑚, a ’stop’ movement has a lower speed than 𝑣𝑙𝑖𝑚 and a ’go’ movement a higher speed than 𝑣𝑙𝑖𝑚.
The timing of these relative low and high speeds is synchronised with the timing of the door cycles.
This was mathematically expressed in the following way:

𝑣(𝑡) ∶ {’stop’: 𝑣 < 𝑣𝑙𝑖𝑚 , 𝑡 ≠ 𝑡0 − 𝑘Δ𝑡𝑑 ± 𝜀
’go’: 𝑣 > 𝑣𝑙𝑖𝑚 , 𝑡 = 𝑡0 − 𝑘Δ𝑡𝑑 ± 𝜀

(7.1)

where: 𝑣(𝑡) [m/s] = the speed of a pedestrian
𝑣𝑙𝑖𝑚 [m/s] = the speed threshold separating ’stop’ and ’go’ movements
𝑡 [s] = the moment in time
𝑡0 [s] = the moment in time the door was entered
Δ𝑡𝑑 [s] = the time between two door cycles
𝜀 [s] = the error to compensate for Δ𝑡𝑑 fluctuations and movement wave

propagation delay
𝑘 [-] = 0, 1, 2, ...

A pedestrian was defined as being in a queue when two ’stop and go’ motions are observed. There
is a ’stop’ movement, followed by a ’go’ movement and a second ’stop’ movement before the door is
entered. This was explicitly described in the following way:

A pedestrian is defined as being in a queue when all three following conditions are met, looking back-
wards from the moment the door was entered:

7.4. Steps to identify queues 23

Figure 7.2: Plot of speed profiles of multiple objects showing a large spread in ’stop and go’ timing

1. There is a ’stop’ movement halfway between 𝑡0 − 2Δ𝑡𝑑 and 𝑡0 − Δ𝑡𝑑: the first ’stop’

2. There is a ’go’ movement at 𝑡 = 𝑡0−Δ𝑡𝑑: moving towards the door when the door can be entered

3. There is a ’stop’ movement halfway between 𝑡0 and 𝑡0 − Δ𝑡𝑑: the second ’stop’ movement when
a pedestrian can not enter the door due to a capacity limit

7.4. Steps to identify queues
Speed computation
Themomentary speed was computed using a backward differencemethod based on linear interpolation
for the speeds in x and y direction and computing their sum:

𝑣(𝑥(𝑡), 𝑦(𝑡)) = √(𝑥(𝑡) − 𝑥(𝑡 − Δ𝑡)Δ𝑡)
2
+ (𝑦(𝑡) − 𝑦(𝑡 − Δ𝑡)Δ𝑡)

2
(7.2)

where: 𝑣(𝑥(𝑡), 𝑦(𝑡)) [m/s] = the speed of an object at time 𝑡 in the direction of movement
𝑡 [s] = the moment in time
𝑥(𝑡) [m] = the x-coordinate of an object at time 𝑡
𝑦(𝑡) [m] = the y-coordinate of an object at time 𝑡
Δ𝑡 [s] = the time difference for the backward difference formula

Speed visualisation
The speed of objects was visualised plotting it over the time before an object entered the door. Even
though animations of the data-set showed fluent movement of objects, large variations of the momen-
tary speed of objects were observed. A value of Δ𝑡 = 1 s was found to give a sufficiently fluent result
without flattening the curve too much.

Speed threshold and required queue conditions
As a first estimation for the speed threshold 𝑣𝑙𝑖𝑚, the value of 0.5 m/s found in section 2.4 was used.
Large variations in timing were observed for the ’stop and go’ movements. The large spread in timing
can be seen in Figure 7.2.

Door cycle time and error interval
Animations were used to determine the door cycle length Δ𝑡𝑑. On average, the waiting time between
two moments of entry (between the last object entering the door and the first one of the next cycle) was
around 7 seconds. As only a maximum of two ’stop and go’ movements are needed and can be seen,

7.5. Verification 24

a Δ𝑡𝑑 = 7 s between to moments of entry was chosen. This was also in perfect unison with estimated
intervals based on observations. Adding a 1 second shift to compensate for the delay before an object
starts moving also lined up the timing with the observations.

Due to speed fluctuations and large overlaps for condition intervals due to spread in timing, a minimal
time limit was added for each condition (Δ𝑡1, Δ𝑡2 and Δ𝑡3). Additionally, to make sure such an incidental
spike in speed does not dismiss a valid queue identification, a maximum of 10%mismatch was allowed.
For the length of Δ𝑡2 and Δ𝑡3, 2 consecutive seconds was estimated based on observations. The first
condition however could be very short because an object could arrive just before the start of the first
’go’ wave. As observations indicated that queues could be missed otherwise, the time limit for condition
1, Δ𝑡1 was set to 0.5 seconds.

The resulting conditions based on the description in section 4.1 are now as follows:

1. 𝑣 < 𝑣𝑙𝑖𝑚 for > 90% of Δ𝑡1 during 𝑡 = 𝑡0 − (1.5Δ𝑡𝑑 + 1) ± 0.5Δ𝑡𝑑
2. 𝑣 > 𝑣𝑙𝑖𝑚 for > 90% of Δ𝑡2 during 𝑡 = 𝑡0 − (Δ𝑡𝑑 + 1) ± 0.5Δ𝑡𝑑
3. 𝑣 < 𝑣𝑙𝑖𝑚 for > 90% of Δ𝑡3 during 𝑡 = 𝑡0 − (0.5Δ𝑡𝑑 + 1) ± 0.5Δ𝑡𝑑

where: 𝑣 [m/s] = the speed of an object at time 𝑡, checked every 0.1 seconds
𝑣𝑙𝑖𝑚 [m/s] = the speed threshold for ’stop’ or ’go’ movement
Δ𝑡1 [s] = the minimal time limit for condition 1: 0.5 seconds
Δ𝑡2 [s] = the minimal time limit for condition 2: 2 seconds
Δ𝑡3 [s] = the minimal time limit for condition 3: 2 seconds
𝑡0 [s] = the moment in time the door was entered
Δ𝑡𝑑 [s] = the time between two door cycles: 7 seconds

Speed threshold
The threshold 𝑣𝑙𝑖𝑚 was estimated at 0.35 m/s in iterations. Even though the literature mentions 0.5 m/s
as threshold, it also mentions it usually never being exceeded in a queue. Observations do however
show that 0.5 m/s is occasionally exceeded in stop and go waves, emphasizing the difference between
classical queues and the situation at a revolving door.

During inspection of missed queues using the 0.35 m/s threshold, it was observed that a single fixed
threshold was not able to detect queues precisely enough due to varying circumstances. In order to
make sure that all variations were captured, the final method uses an accumulation of all queues found
for various speed limits: 𝑣𝑙𝑖𝑚 = 0.2, 0.3, 0.4, 0.5

Selecting viable objects
To make sure only viable objects were checked for being in a queue, objects with the wrong direction
of movement and a shorter total detection time than needed were filtered out of the data-set. The
direction of movement was found using 𝑦′(𝑡) < 0 for the last 5 seconds of an object. The minimal total
detection time needed to meet all three conditions in section 4.1 was determined to be to 9.5 seconds.
After these objects were filtered out, 3846 viable objects were left from the total 69013 objects in the
data-set.

7.5. Verification
Verifying the results was done by visual inspection of the speed profiles of random objects in the data-
set. Discrepancies are easily spotted in the speed profiles. Where speed profiles were inconclusive,
animations were created for a last visual inspection. This allowed for a thorough, though labour inten-
sive verification of the results.

7.6. Results 25

7.6. Results
The Python code found in Appendix A was used to check each of the 69013 objects in the database
for the defined queue requirements. After filtering out viable objects for direction and total detection
time, 3846 were left. Of these objects, a total of 1109 were found to satisfy all requirements, or in other
words: were identified as being in a queue before entering the door.

To verify the results, the identified objects and random samples from all objects were manually checked
for correct identification. The manual check consisted of a visual check of the speed profile for each
object, as inconsistencies are easily spotted. For the situations where the speed profile of an object
was inconclusive, an animation was used as a final confirmation.

Identified queues
Of all the 1109 identified objects being in a queue, 4 could be found as incorrectly identified (false pos-
itives). All of these were caused by objects moving seemingly at random in front of the door before
entering. All these occurrences were unavoidable with using the speed profile method in this report.
Around 20 random objects were also checked using an animation which indeed showed queuing be-
haviour. As queuing is often with multiple pedestrians at the same time, other objects in the animations
that also showed queuing behaviour were checked for identification as well. All these objects were
indeed correctly identified.

Random samples
To check for false negatives (where a queue was not identified when it should have been), two different
random manual verifications were performed. A 1000 random objects out of the original data-set of
69013 and 100 random objects out of the viable 3846 objects were manually checked for discrepancies.

Of those 1000 objects:

• 4 were previously identified as queues by the program

• 34 showed a speed profile with possible queuing or other discrepancies and were animated for
visual confirmation

• 1 of those 34 was found to be a false negative, though an edge case with room for discussion,
all others were correctly dismissed as queues

Out of the 100 random objects from the set of 3846 viable objects (in this case the identified queues
were not included):

• all were checked using animations

• 4 were found as false negatives

• 3 of those coincidentally were from the same situation, where an unusually long period was ob-
served before the door could be entered again, causing the first ’stop and go’ wave to fall outside
of the selected intervals.

7.7. Final conclusion
The results show that the speed of objects can indeed be used to identify queues from trajectory data.
The computations are quick (200 seconds for 70000 objects on an average computer) compared to
known density methods, while also being able to focus on the capacity of the door and can distinguish
between queues and groups of pedestrians standing in close proximity to the door.

The results also show that with rough estimations for the used parameters, a very solid result is
produced with very limited false positive and false negative results. With further fine-tuning of the
method, it could prove to be a very useful tool in identifying queues.

8
Recommendations

8.1. Smart-sensor placement and detection area adjustment
Due to a part of the detection area of the smart-sensor overlapping with the glass front of the building,
false data is accumulated due to reflections in the glass. A repositioning of the smart-sensor could help
not only to improve the quality of the data, but also to create a larger view of the actual pavement.

8.2. Fine-tuning of the method
As there was not enough time to improve the method of queue identification in this report, it is recom-
mended that the used parameters are studied for improvement of the results.

8.3. Testing the method on different circumstances
As only a small portion of the available data of the smart-sensor was used, other weather conditions
like rain and cold temperatures could not be accounted for. Research is needed to verify the results of
the method for different circumstances.

8.4. Applying the method to other revolving doors
As only one data-set of one smart-sensor was available, the method could not be tested for different
revolving doors and surroundings. Before the method can be used in general, this has to be studied
first.

26

Appendix A
Python code

Python code to parse JSON file data into Pandas DataFrame: In order to access and work with the
data provided by the smart-sensor (section 3.1), the output files were parsed to a pandas DataFrame
(pandas, 2023) using the Python programming language. Due to the nested json object format of
the output files (Appendix B), pandas could not be used to directly create a DataFrame from the files
themselves. A workaround was used where the json files were opened and then parsed into a Python
dictionary using the json.load() method from the json module:

import json
with open('file_name') as user_file:

file_cont_dict = json.load(user_file)

Special care has to be taken due to the nature of the json and python dictionary format. Both json
and python dictionary store data as key/value pairs without a corresponding index, meaning they are
unordered by nature and data can only be accessed by calling the key as opposed to an index number
(Python Software Foundation, 2023a)(Python Software Foundation, 2023b). Since the json parser
json.load() processes the file data in the order of the file contents and Python dictionaries retain their
order since Python version 3.7 (Python Software Foundation, 2023a)(Python Software Foundation,
2023b), nested for loops could be used to extract the ’x’, ’y’ and ’timestamp’ data from within the
nested dictionaries without risking corruption of data:

for key1, value1 in file_cont_dict.items():
for key2, value2 in value1.items():

traces = value2.get('traces')
for trace_key, trace_value in traces.items():

data = {}
data['object_id'] = trace_key
data['timestamp'] = trace_value.get('timestamp')
data['first_timestamp'] = min(trace_value.get('timestamp'))
data['last_timestamp'] = max(trace_value.get('timestamp'))
data['x'] = trace_value.get('x')
data['y'] = trace_value.get('y')

Python dictionaries have strictly unique key names, if a key/value pair is added to a dictionary that
already has the same key, only the last added entry is retained (Python Software Foundation, 2023b).
As shown in Appendix B, the json file is structured such that each key is unique, making it safe to parse
without the risk of losing data. When combining the output files into one DataFrame however, objects
spread over multiple files will have the same object-id number as key. To prevent data from being
overwritten, each object-id number from each file with its corresponding data was stored as a separate
dictionary in a list. Using the pandas.DataFrame() method, the list of dictionaries was turned into a
pandas DataFrame with a row for each dictionary:

import pandas as pd
data_list = [{dict_1}, {dict_2}, ..., {dict_n}]
df = pd.DataFrame(data_list, index=None)

The objects spread out over multiple rows were grouped together without changing the order of the
data using the pandas.DataFrame.groupby().agg() method, creating a DataFrame with each
row a unique and complete trace of a single object:

27

Appendix A Python code 28

index object_id timestamp first_timestamp last_timestamp x y
0 201 [𝑡0, 𝑡1, ..., 𝑡𝑖] 𝑡0 𝑡𝑖 [𝑥0, 𝑥1, ..., 𝑥𝑖] [𝑦0, 𝑦1, ..., 𝑦𝑖]
1 202 [𝑡0, 𝑡1, ..., 𝑡𝑖] 𝑡0 𝑡𝑖 [𝑥0, 𝑥1, ..., 𝑥𝑖] [𝑦0, 𝑦1, ..., 𝑦𝑖]
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
n 200 + n [𝑡0, 𝑡1, ..., 𝑡𝑖] 𝑡0 𝑡𝑖 [𝑥0, 𝑥1, ..., 𝑥𝑖] [𝑦0, 𝑦1, ..., 𝑦𝑖]

Table 1: pandas DataFrame shape, with 𝑖 depending on the amount of data for that object

df = df.groupby('object_id',
as_index=False
).agg({'timestamp': 'sum',

'first_timestamp': 'first',
'last_timestamp': 'last',
'x': 'sum',
'y': 'sum'})

The shape of the resulting pandas DataFrame can be seen in Table 1.
The complete code is as follows:

1 # loading required packages
2 import json
3 import pandas as pd
4 import numpy as np
5 import matplotlib.pyplot as plt
6 import os
7 import time
8 from datetime import datetime
9

10 # monitor code execution time
11 start = time.time()
12

13 # initialise list to store file contents as dictionary of a
14 data_list = []
15 for folder in os.listdir():
16 if folder[:4] == '2023':
17 path = f'{folder}/{folder}/traces_json'
18 for file_name in os.listdir(path):
19 # open the file and load in python as dictionary with json.load()
20 with open(str(path + '/' + file_name)) as user_file:
21 file_contents = json.load(user_file)
22 # loop through the (key,value) combinations of the dictionary

items↪

23 for key1, value1 in file_contents.items():
24 # loop through the (key,value) combinations of the
25 # second nested dictionary
26 for key2, value2 in value1.items():
27 # store the next nested dictionary as variable 'traces'
28 traces = value2.get('traces')
29 # Loop through the 'traces' dictionary, keys are the

object id's↪

30 # with values of 'timestamp', 'x', and 'y'.
31 # Each object id creates a new dictionary to add to the

data_list.↪

32 for trace_key, trace_value in traces.items():
33 # initialise new dictionary to store object id data
34 data = {}
35 # store the object id in the 'object_id' column

Appendix A Python code 29

36 data['object_id'] = trace_key
37 # store the timestamp values as list in the

'timestamp' column↪

38 data['timestamp'] = trace_value.get('timestamp')
39 # store the first and last timestamps in separate
40 # columns for convenience
41 data['first_timestamp'] =

min(trace_value.get('timestamp'))↪

42 data['last_timestamp'] =
max(trace_value.get('timestamp'))↪

43 # store x and y values as lists in the 'x' and 'y'
columns↪

44 data['x'] = trace_value.get('x')
45 data['y'] = trace_value.get('y')
46 # add the new dictionary filled with the file contents
47 # to the data_list
48 data_list.append(data)
49

50

51 # convert the data_list of dictionaries to a pandas DataFrame
52 df_traces_json = pd.DataFrame(data_list, index=None)
53

54 # group measurements of objects that were saved in separate save files
55 # together in one row (every object has a single row with all datapoints)
56 df_traces_json = df_traces_json.groupby('object_id',
57 as_index=False
58).agg({'timestamp': 'sum',
59 'first_timestamp': 'first',
60 'last_timestamp': 'last',
61 'x': 'sum',
62 'y': 'sum'})
63 df_traces_json = df_traces_json.sort_values('first_timestamp')
64 # Reset index starting at 0
65 df_traces_json = df_traces_json.reset_index(drop=True)
66 df_traces_json.to_pickle('df_traces_json_raw')
67

68

69 df = df_traces_json
70 drop_list = []
71 for i in range(len(df)):
72 dist = 0
73 x = df.iloc[i]['x']
74 y = df.iloc[i]['y']
75 for j in range(len(x) - 1):
76 dist += np.sqrt(((x[j] - x[j+1]) ** 2)
77 + ((y[j] - y[j+1]) ** 2))
78 if (dist < 1000) or (np.min(y) < -1000):
79 # print('idx ', i, ' dropped')
80 drop_list.append(i)
81

82 df = df.drop(drop_list)
83 df = df.reset_index(drop=True)
84

85 # store the DataFrame as pickle (save the DataFrame as is instead of CSV)
86 df.to_pickle('df_traces_json')
87 # load the saved DataFrame in variable df_traces_json

Appendix A Python code 30

88 df = pd.read_pickle('df_traces_json')
89

90

91 # Print execution time of the code
92 end = time.time()
93 print('Time needed for execution: ', int(end - start), 'seconds.')

Python code for plots:

1 #loading requred packages
2 import json
3 import pandas as pd
4 import numpy as np
5 import matplotlib as mpl
6 import matplotlib.pyplot as plt
7 import os
8 import time
9

10 # monitor code execution time
11 start = time.time()
12

13 # df = pd.read_pickle('df_traces_json')
14 df = pd.read_pickle('df_traces_json_queue_finder')
15

16

17 def xt(index, timestamp, df=df):
18 obj_id, t, t0, tn, x, y = df.iloc[index][:]
19 if t0 <= timestamp < tn:
20 for k in range(len(t)):
21 if t[k] == timestamp:
22 return x[k]
23 if t[k] > timestamp:
24 k = k - 1
25 x_i = (x[k]
26 + (x[k + 1] - x[k])
27 * ((timestamp - t[k]) / (t[k + 1] - t[k])))
28 return x_i
29 else:
30 return False
31

32

33 def yt(index, timestamp, df=df):
34 obj_id, t, t0, tn, x, y = df.iloc[index][:]
35 if t0 <= timestamp < tn:
36 for k in range(len(t)):
37 if t[k] == timestamp:
38 return y[k]
39 if t[k] > timestamp:
40 k = k - 1
41 y_i = (y[k]
42 + (y[k + 1] - y[k])
43 * ((timestamp - t[k]) / (t[k + 1] - t[k])))
44 return y_i
45 else:
46 return False
47

48

Appendix A Python code 31

49 def lin_x_y_value(df, index, timestamp):
50 '''Returns [x, y] coordinates for given index and timestamp as a list
51 computed by linear interpolation if object exists during the timestamp.
52

53 Parameters
54 ----------
55 df : pandas DataFrame
56 A pandas DataFrame to perform the computations on.
57

58 index : int
59 Index of df to perform computation on.
60

61 time : float
62 Moment in time for [x, y] coordinate computation.
63

64 Returns
65 -------
66 [x_i, y_i] : list
67 List of length 2 with the interpolated x and y coordinate if
68 the object at the given index exists at given timestamp
69

70 False : boolean
71 If object at given index doesn't exist at given timestamp.
72 '''
73

74 obj_id, t, t0, tn, x, y = df.iloc[index][:]
75 if t0 <= timestamp < tn:
76 for k in range(len(t)):
77 if t[k] == timestamp:
78 return [x[k], y[k]]
79 if t[k] > timestamp:
80 k = k - 1
81 x_i = (x[k]
82 + (x[k + 1] - x[k])
83 * ((timestamp - t[k]) / (t[k + 1] - t[k])))
84 y_i = (y[k]
85 + (y[k + 1] - y[k])
86 * ((timestamp - t[k]) / (t[k + 1] - t[k])))
87 return [x_i, y_i]
88 else:
89 return False
90

91

92 def speed(index, timestamp, df=df, dt=0.5):
93 '''returns the average speed in m/s of the object at the specified index
94 and timestamp for the interval 2 * dt'''
95 i = index
96 t = timestamp
97 if xt(i, t - dt) and xt(i, t + dt):
98 vx = (0.001 * xt(i, t + dt) - 0.001 * xt(i, t - dt)) / (2 * dt)
99 vy = (0.001 * yt(i, t + dt) - 0.001 * yt(i, t - dt)) / (2 * dt)
100 v = np.sqrt((vx ** 2) + (vy ** 2))
101 return v
102 else:
103 return False
104

Appendix A Python code 32

105

106 def b_speed(index, timestamp, df=df, dt=0.5):
107 '''returns the average speed in m/s of the object at the specified index
108 and timestamp for the interval dt'''
109 i = index
110 t = timestamp
111 if xt(i, t - dt) and xt(i, t):
112 vx = (0.001 * xt(i, t) - 0.001 * xt(i, t - dt)) / (dt)
113 vy = (0.001 * yt(i, t) - 0.001 * yt(i, t - dt)) / (dt)
114 v = np.sqrt((vx ** 2) + (vy ** 2))
115 return v
116 else:
117 return False
118

119

120 def col_rg(h, col_lim=0.5):
121 '''returns color red for 'h' < col_lim and green for 'h' >= col_lim'''
122 if h >= col_lim:
123 return 'g'
124 if h < col_lim:
125 return 'r'
126

127

128 def col_inf(h, a=0, b=2):
129 '''returns color from colormap 'inferno' on scale of [a, b] for value
130 of 'h', where a <= h <= b'''
131 color = mpl.colormaps['inferno']
132 return color((1 / (b - a)) * (h - a))
133

134

135 def rng(seed): return np.random.default_rng(seed).random()
136

137

138 color_hsv = mpl.colormaps['hsv']
139 def col(u, colormap=color_hsv): return colormap(rng(u))
140

141

142

143 def speed_plot_rg(index, df=df, dt=0.5, col_lim=0.5, t_len=30):
144 obj_id, t, t0, tn, x, y = df.iloc[index][:]
145 t_start = t[-1] - t_len
146 plt.figure()
147 for w in range(len(t) - 1):
148 if t[w] > t_start:
149 plt.plot(t_len - (t[w] - t_start),
150 speed(index, t[w], dt=dt),
151 'o',
152 c=col_rg(speed(index, t[w], dt=dt), col_lim=col_lim))
153 plt.xlabel('Time [s]')
154 plt.ylabel('Speed [m/s]')
155 plt.title(f'Speed of object at index {index} from {t_len} s before

entering the door,'↪

156 '\n'
157 rf'$2 \Delta t = {dt}$ s for speed computation')
158 plt.ylim(0, 1.5)
159 plt.xlim(t_len, 0)

Appendix A Python code 33

160 return
161

162 def speed_plot_rg_cont(index, df=df, dt=1.0, col_lim=0.5, t_len=20,
163 intvl=0.05, cl=[1, 8, 5, 12, 8, 15],
164 test=False):
165 obj_id, t, t0, tn, x, y = df.iloc[index][:]
166 t_start = t[-1] - t_len
167 plt.figure()
168 for w in np.arange(t_start, t[-1] + intvl, intvl):
169 spd = b_speed(index, w, dt=dt)
170 if spd:
171 plt.plot(t_len - (w - t_start),
172 spd,
173 'o',
174 c=col_rg(spd, col_lim=col_lim))
175 plt.xlabel('Time [s]')
176 plt.ylabel('Speed [m/s]')
177 plt.title(f'Speed of object at index {index} before '
178 'entering the door at t_{entry},'
179 '\n'
180 rf'$ \Delta t = {dt}$ s for speed computation, '
181 'speed limit v_{lim} '
182 f'= {col_lim} m/s')
183 plt.ylim(0, 1.5)
184 plt.xlim(t_len, 0)
185

186 plt.hlines(col_lim, 0, 20, colors='tab:gray', label=('$v_{lim} = $' +
f'{col_lim} m/s'), linewidth=2)↪

187

188 plt.hlines(col_lim - 0.1, cl[0], cl[1], colors='tab:orange',
linewidth=2)↪

189 plt.vlines(cl[0:2], col_lim - 0.14, col_lim - 0.06,
colors='tab:orange',↪

190 label=(f'Interval for condition 1: ' + '$v \leq v_{lim}$ in '
+ f'[-{cl[1]},-{cl[0]}]'), linewidth=2)↪

191

192 plt.hlines(col_lim + 0.1, cl[2], cl[3], colors='tab:blue', linewidth=2)
193 plt.vlines(cl[2:4], col_lim + 0.06, col_lim + 0.14, colors='tab:blue',
194 label=f'Interval for condition 2: ' + '$v \geq v_{lim}$ in '

+ f'[-{cl[3]},-{cl[2]}]', linewidth=2)↪

195

196 plt.hlines(col_lim - 0.1, cl[4], cl[5], colors='tab:purple',
linewidth=2)↪

197 plt.vlines(cl[4:], col_lim - 0.14, col_lim - 0.06, colors='tab:purple',
198 label=f'Interval for condition 3: ' + '$v \leq v_{lim}$ in '

+ f'[-{cl[5]},-{cl[4]}]', linewidth=2)↪

199

200 plt.xticks(np.arange(0, 22, 2),
201 ['t_{entry}', '-2', '-4', '-6', '-8', '-10', '-12', '-14',

'-16', '-18', '-20'])↪

202 plt.legend(loc='upper left')
203 if not test:
204 if not os.path.isfile(f'plots/rg_plot_{index}.png'):
205 plt.savefig(f'plots/rg_plot_{index}')
206 if test:
207 test_path = test + f'rg_plot_{index}'

Appendix A Python code 34

208 plt.savefig(test_path)
209

210 # plt.hlines(0.5, 8, 20)
211 return
212

213

214 def speed_plot_line(index, df=df, dt=1.0, col_lim=0.5, t_len=20,
intvl=0.05):↪

215 obj_id, t, t0, tn, x, y = df.iloc[index][:]
216 t_start = t[-1] - t_len
217 xtim = []
218 yspd = []
219 for w in np.arange(t_start, t[-1] + intvl, intvl):
220 spd = b_speed(index, w, dt=dt)
221 if spd:
222 yspd.append(spd)
223 xtim.append(t_len - (w - t_start))
224 plt.plot(xtim, yspd, label=f'Obj. index {index}')
225 plt.xlabel('Time [s]')
226 plt.ylabel('Speed [m/s]')
227 plt.title(f'Speed of object from {t_len} s before entering the door,'
228 '\n'
229 rf'$\Delta t = {dt}$ s for speed computation')
230 plt.ylim(0, 1.5)
231 plt.xlim(t_len, 0)
232 return
233

234

235 def speed_plot_distance(index, df=df, dt=1.0, col_lim=0.5, t_len=20,
intvl=0.05):↪

236 obj_id, t, t0, tn, x, y = df.iloc[index][:]
237 t_start = t[-1] - t_len
238 xdist = []
239 yspd = []
240 for w in np.arange(t_start, t[-1] + intvl, intvl):
241 spd = b_speed(index, w, dt=dt)
242 if spd:
243 lok = lin_x_y_value(df, index, w)
244 dist = np.sqrt((lok[0])**2 + (lok[1] + 500)**2)
245 yspd.append(spd)
246 xdist.append(dist)
247 plt.plot(xdist, yspd, label=f'Obj. index {index}')
248 plt.xlabel('Distance to door (at 0, -500) [mm]')
249 plt.ylabel('Speed [m/s]')
250 plt.title(f'Speed of object for distance to the door,'
251 '\n'
252 rf'$ \Delta t = {dt}$ s for speed computation')
253 plt.ylim(0, 1.5)
254 plt.xlim(5000, 0)
255 return
256

257

258

259 # Print execution time of the code
260 end = time.time()
261 print('Time needed for execution: ', int(end - start), 'seconds.')

Appendix A Python code 35

262

263

264

265

266

Python code for animation using linear interpolation:

1 # loading required packages
2 import json
3 import pandas as pd
4 import numpy as np
5 import matplotlib.pyplot as plt
6 import os
7 import time
8 from datetime import datetime
9 import matplotlib.animation as animation
10 import matplotlib as mpl
11 from matplotlib.lines import Line2D
12

13 # monitor code execution time
14 start = time.time()
15

16 # Load saved DataFrame
17 df = pd.read_pickle('df_traces_json_queue_finder')
18

19 # Load list of found queues (index numbers of objects defined as a queue)
20 queue_list = np.load('queue_list.npy')
21 long_queue_list = np.load('long_queue_list.npy')
22

23

24

25 def unix_from_datetime(day, hour, minute, second, year=2023, month='09'):
26 '''Returns unix timestamp from given date and time parameters for GMT+2.
27 day (int) = day of the month;
28 hour (int) = hour of the day (24-hour format);
29 minute (int) = the minute of the specified time;
30 second (int) = the second of the specified time;
31 year (int) = the year of the specified time;
32 month (str) = month of the specified time in a two number format

string'''↪

33 # Create isoformat string from parameters
34 if len(str(day)) == 1:
35 day = f'0{day}'
36 if len(str(hour)) == 1:
37 hour = f'0{hour}'
38 if len(str(minute)) == 1:
39 minute = f'0{minute}'
40 if len(str(second)) == 1:
41 second = f'0{second}'
42 isoform_str = f'{year}-{month}-{day}T{hour}:{minute}:{second}+02:00'
43 unix_time = int(datetime.fromisoformat(isoform_str).timestamp())
44 return unix_time
45

46

47 def lin_x_y_value():
48 '''Returns [x, y] coordinates for given index and timestamp as a list

Appendix A Python code 36

49 computed by linear interpolation if object exists during the timestamp.
50

51 Parameters
52 ----------
53 df : pandas DataFrame
54 A pandas DataFrame to perform the computations on.
55

56 index : int
57 Index of df to perform computation on.
58

59 time : float
60 Moment in time for [x, y] coordinate computation.
61

62 Returns
63 -------
64 [x_i, y_i] : list
65 List of length 2 with the interpolated x and y coordinate if
66 the object at the given index exists at given timestamp
67

68 False : boolean
69 If object at given index doesn't exist at given timestamp.
70 '''
71

72 # obj_id, t, t0, tn, x, y = df.iloc[index][:]
73 if t0 <= timest < tn:
74 for k in range(len(t)):
75 if t[k] == timest:
76 return [x[k], y[k]]
77 if t[k] > timest:
78 k = k - 1
79 x_i = (x[k]
80 + (x[k + 1] - x[k])
81 * ((timest - t[k]) / (t[k + 1] - t[k])))
82 y_i = (y[k]
83 + (y[k + 1] - y[k])
84 * ((timest - t[k]) / (t[k + 1] - t[k])))
85 return [x_i, y_i]
86 else:
87 return False
88

89

90 def xt(index, timestamp, df=df):
91 obj_id, t, t0, tn, x, y = df.iloc[index][:]
92 if t0 <= timestamp < tn:
93 for k in range(len(t)):
94 if t[k] == timestamp:
95 return x[k]
96 if t[k] > timestamp:
97 k = k - 1
98 x_i = (x[k]
99 + (x[k + 1] - x[k])
100 * ((timestamp - t[k]) / (t[k + 1] - t[k])))
101 return x_i
102 else:
103 return False
104

Appendix A Python code 37

105

106 def yt(index, timestamp, df=df):
107 obj_id, t, t0, tn, x, y = df.iloc[index][:]
108 if t0 <= timestamp < tn:
109 for k in range(len(t)):
110 if t[k] == timestamp:
111 return y[k]
112 if t[k] > timestamp:
113 k = k - 1
114 y_i = (y[k]
115 + (y[k + 1] - y[k])
116 * ((timestamp - t[k]) / (t[k + 1] - t[k])))
117 return y_i
118 else:
119 return False
120

121

122 def speed(index, timestamp, df=df, dt=0.5):
123 '''returns the average speed in m/s of the object at the specified index
124 and timestamp for the interval 2 * dt'''
125 i = index
126 t = timestamp
127 if xt(i, t - dt) and xt(i, t + dt):
128 vx = (0.001 * xt(i, t + dt) - 0.001 * xt(i, t - dt)) / (2 * dt)
129 vy = (0.001 * yt(i, t + dt) - 0.001 * yt(i, t - dt)) / (2 * dt)
130 v = np.sqrt((vx ** 2) + (vy ** 2))
131 return v
132 else:
133 return False
134

135

136 def col_rg(h, a=0, b=2):
137 '''returns color from colormap 'inferno' on scale of [a, b] for value
138 of 'h', where a <= h <= b'''
139 # color = mpl.colormaps['inferno']
140 # return color((1 / (b - a)) * (h - a))
141 if h >= 0.5:
142 return 'g'
143 if h < 0.5:
144 return 'r'
145

146

147 def rng(seed): return np.random.default_rng(seed).random()
148

149

150 color_hsv = mpl.colormaps['hsv']
151 def col(u, colormap=color_hsv): return colormap(rng(u))
152

153

154

155

156

157 def update(frame):
158 '''Update function for animation.FuncAnimation(), returns scatter plot
159 per requested frame;
160 frame = frame number given by animation.FuncAnimation() for which a new

Appendix A Python code 38

161 scatterplot must be returned
162 '''
163 global obj_id, t, t0, tn, x, y, timest
164 # Compute timestamp for the current frame, start_time (unix timestamp)
165 # and interval (in milliseconds) are declared globally.
166 timest = start_time + frame * interval * 0.001
167 # Plot datetime information in title
168 ax.set(title=f'{datetime.fromtimestamp(int(timest))} {int(timest)}')
169 # Create list of object x-y coordinates.
170 xy_cor_list = []
171 # Create lis of object specific colors.
172 ob_col_list = []
173 # Create list of legend elements.
174 legend_el = []
175 # Add x-y coordinates to the list for every object present in the
176 # timeframe of the animation.
177 for i in obj_in_anim_idx_lst:
178 obj_id, t, t0, tn, x, y = df.iloc[i][:]
179 xy_cor = lin_x_y_value()
180 # If object is present in frame.
181 if xy_cor:
182 legend_el.append(Line2D([0],
183 [0],
184 color='w',
185 markerfacecolor=col(i),
186 markeredgecolor='k',
187 marker='o',
188 label=f'{i}'))
189 xy_cor_list.append(xy_cor)
190 ob_col_list.append(rng(i))
191 if xy_cor_list:
192 data = np.array(xy_cor_list)
193 # print(data)
194 # Set new scatter plot data for the frame
195 scat.set_offsets(data)
196 scat.set_array(ob_col_list)
197 ax.legend(handles=legend_el, loc=1)
198 return (scat)
199 else:
200 scat.set_offsets(np.array([-10000, -10000]))
201 scat.set_array([0])
202 return (scat)
203

204

205 def make_animation(l_start_time=False,
206 year=2023,
207 month='09',
208 day=19,
209 hour=13,
210 minute=41,
211 second=4,
212 end_time=False,
213 duration=3,
214 max_duration=10,
215 l_interval=30,
216 fps=60,

Appendix A Python code 39

217 save=True,
218 save_name=False,
219 background=False):
220

221 # Declare list of global variables used in the 'update' function
222 global start_time, interval, ax, obj_in_anim_idx_lst, scat
223 # Declare real time starting point of the animation, year=2023 and

month='09'↪

224 day = day
225 hour = hour
226 minute = minute
227 second = minute
228 if not l_start_time:
229 start_time = unix_from_datetime(day, hour, minute, second,
230 year=year, month=month)
231 else:
232 start_time = l_start_time
233

234 # declare animation file fps
235 fps = fps
236 # declare interval between frames in milliseconds (60 fps real time ~

16,7 ms)↪

237 interval = l_interval
238 # end_time for object index list
239 if end_time:
240 total_frames = min(int((end_time - start_time) / (interval *

0.001)),↪

241 fps * 60 * max_duration)
242 start_time = end_time - total_frames * interval * 0.001
243 if not end_time:
244 # declare total number of frames
245 total_frames = fps * 60 * duration
246 end_time = start_time + total_frames * interval * 0.001
247

248

249 # Create list of objects present during the timeframe of the animation
250 obj_in_anim_idx_lst = []
251 for i in range(len(df)):
252 if (
253 ((df.iloc[i]['first_timestamp'] <= start_time) and
254 (df.iloc[i]['last_timestamp'] > start_time)) or
255 ((start_time <= df.iloc[i]['first_timestamp']) and
256 (end_time > df.iloc[i]['first_timestamp']))):
257 obj_in_anim_idx_lst.append(i)
258 # print(obj_in_anim_idx_lst)
259

260

261 # Create figure as basis for the animation
262 fig, ax = plt.subplots()
263 ax.set(xlim=[-6000, 6000],
264 ylim=[5000, -1000],
265 title='Object locations in detection area',
266 xlabel='x-coordinate in [mm]',
267 ylabel='y-coordinate in [mm]')
268 scat = ax.scatter(0,
269 0,

Appendix A Python code 40

270 c=0.5,
271 cmap='hsv',
272 edgecolor='b',
273 s=400,
274 vmin=0,
275 vmax=1)
276

277 if background:
278 background_plot = plt.imread('permanent_sensor_view.png')
279 plt.imshow(background_plot, extent=[-6000, 6000, 5000, -4000])
280 # plt.hlines(0, -5000, 5000)
281 # Create animation object
282

283 ani = animation.FuncAnimation(fig=fig,
284 func=update,
285 frames=total_frames,
286 interval=30)
287

288 if save:
289 save_name_str = 'time_animation.mp4'
290 if save_name:
291 save_name_str = save_name
292 # Set filetype and save location
293 writervideo = animation.FFMpegWriter(fps=fps)
294 ani.save(save_name_str, writer=writervideo)
295 return
296

297

298 for b in range(150):
299 if b not in long_queue_list:
300 print(f'Making animation for obj {b}')
301 make_animation(l_start_time=df.iloc[b]['first_timestamp'],
302 year=2023,
303 month='09',
304 day=19,
305 hour=13,
306 minute=41,
307 second=4,
308 end_time=(df.iloc[b]['last_timestamp'] + 1),
309 duration=3,
310 max_duration=1,
311 l_interval=90,
312 fps=30,
313 save=True,
314 save_name=f'test_plots/animation_object_{b}.mp4',
315 background=False)
316

317 # Print execution time of the code
318 end = time.time()
319 print('Time needed for execution: ', int(end - start), 'seconds.')

Python code for queue identification:

1 #loading requred packages
2 # loading required packages
3 import json
4 import pandas as pd

Appendix A Python code 41

5 import numpy as np
6 import matplotlib.pyplot as plt
7 import os
8 import time
9 from datetime import datetime
10 import matplotlib.animation as animation
11 import matplotlib as mpl
12 from matplotlib.lines import Line2D
13

14 # monitor code execution time
15 start = time.time()
16

17 # Load saved DataFrame
18 df = pd.read_pickle('df_traces_json')
19 obj_id, t, t0, tn, x, y = df.iloc[0][:]
20

21

22 def xt(timestamp):
23 if t0 <= timestamp < tn:
24 for k in range(len(t)):
25 if t[k] == timestamp:
26 return x[k]
27 if t[k] > timestamp:
28 k = k - 1
29 x_i = (x[k]
30 + (x[k + 1] - x[k])
31 * ((timestamp - t[k]) / (t[k + 1] - t[k])))
32 return x_i
33 else:
34 return False
35

36

37 def yt(timestamp):
38 '''returns y-coordinate from linear interpolation for given timestamp

for↪

39 the row information given through *kwargs'''
40 if t0 <= timestamp < tn:
41 for k in range(len(t)):
42 if t[k] == timestamp:
43 return y[k]
44 if t[k] > timestamp:
45 k = k - 1
46 y_i = (y[k]
47 + (y[k + 1] - y[k])
48 * ((timestamp - t[k]) / (t[k + 1] - t[k])))
49 return y_i
50 else:
51 return False
52

53

54 def b_speed(timestamp, dt=1):
55 '''returns the average speed in m/s of the object at the specified index
56 and timestamp for the interval dt using backward difference'''
57 ti = timestamp
58 if xt(ti - dt) and xt(ti):
59 vx = (0.001 * xt(ti) - 0.001 * xt(ti - dt)) / (dt)

Appendix A Python code 42

60 vy = (0.001 * yt(ti) - 0.001 * yt(ti - dt)) / (dt)
61 v = np.sqrt((vx ** 2) + (vy ** 2))
62 return v
63 else:
64 return False
65

66

67 def intvl_cond(arr):
68 global lim_e
69 a = arr[0]
70 b = arr[1]
71 t_len = arr[2]
72 below = arr[3]
73 con_sp = []
74 time_arr = np.arange(tn - a,
75 tn - b - intvl_dt,
76 -1 * intvl_dt)
77 for j in time_arr:
78 if b_speed(j):
79 if below:
80 if b_speed(j) <= cut_off:
81 con_sp.append(1)
82 else:
83 con_sp.append(0)
84 if not below:
85 if b_speed(j) >= cut_off:
86 con_sp.append(1)
87 else:
88 con_sp.append(0)
89 for m in range(len(con_sp) - int(t_len / intvl_dt) + 1):
90 if np.sum(con_sp[m:m+int(t_len / intvl_dt)]) * (intvl_dt / t_len) >

valid:↪

91 if not below:
92 lim_e = max(lim_e, tn - time_arr[m+int(t_len / intvl_dt) -

1])↪

93 return True
94

95

96 def cond_1(lim_t=5):
97 '''returns True if direction was in negative y-direction for last lim_t
98 seconds'''
99 return (y[-1] - yt(tn - lim_t)) < 0
100

101

102 def set_lim():
103 global lim_a, lim_b, lim_c, lim_d, lim_e, lim_f
104 lim_a = 1
105 lim_b = 8
106 lim_c = 4.5
107 lim_d = 11.5
108 lim_e = 8
109 lim_f = 15
110

111

112 set_lim()
113

Appendix A Python code 43

114

115 # Interval properties: [left, right, condition consecutive seconds,
116 # below cut_off = True / above = False]
117 a_b = [lim_a, lim_b, 2, True]
118 c_d = [lim_c, lim_d, 2, False]
119 e_f = [lim_e, lim_f, 0.5, True]
120

121

122 # Exclude objects that move away from the door or have less than the minimal
123 # required time to be in a queue.
124 drop_list = []
125 for i in range(len(df)):
126 y = df.iloc[i]['y']
127 t = df.iloc[i]['timestamp']
128 # First condition: direction away from the door in its last 5 seconds
129 # Second condition: total recording time of an object less than 9.5

seconds↪

130 if ((y[-1] - yt(t[-1] - 5)) > 0) or (t[-1] - t[0] < 9.5):
131 drop_list.append(i)
132

133 df = df.drop(drop_list)
134 df = df.reset_index(drop=True)
135

136 # store the DataFrame as pickle (save the DataFrame as is instead of CSV)
137 df.to_pickle('df_traces_json_queue_finder')
138

139

140 breakout_flag = False
141 queue_list = []
142 cut_off = 0.35
143 intvl_dt = 0.1
144 valid = 0.9
145 st = 5000
146 amount = 20000
147 # for i in range(72339, 72339 + 100):
148 # for i in range(st, st + amount):
149 for i in range(len(df)):
150 obj_id, t, t0, tn, x, y = df.iloc[i][:]
151 # Set interval limits back to normal for this iteration
152 set_lim()
153 # First interval condition check
154 if intvl_cond(a_b):
155 # Second interval condition check
156 if intvl_cond(c_d):
157 # Third interval condition check
158 # Only check third interval from the time the second interval
159 # condition was met (by resetting e_f: lim_e adjusted by the
160 # intvl_cond() function in the second interval)
161 e_f = [lim_e, lim_f, 0.5, True]
162 if intvl_cond(e_f):
163 queue_list.append(i)
164 print(f'Object {obj_id} at index {i} is in a queue')
165

166

167 np.save('queue_list_35_2sec.npy', queue_list)
168 # np.save('queue_list.npy', queue_list)

Appendix A Python code 44

169

170

171

172 condition_limits = []
173 set_lim()
174 for i in [lim_a, lim_b, lim_c, lim_d, lim_e, lim_f]:
175 condition_limits.append(i)
176 # np.save('condition_limits.npy', condition_limits)
177 np.save('condition_limits_test.npy', condition_limits)
178

179 # Print execution time of the code
180 end = time.time()
181 print('Time needed for execution: ', int(end - start), 'seconds.')

Appendix B
Smart-sensor output file example

Example of a smart-sensor output file in .JSON format

1 {
2 ”Sensor_ID#”: {
3 ”save_file_name”: {
4 ”traces”: {
5 ”894”: {
6 ”timestamp”: [
7 1695333029.154,
8 1695333029.234
9],
10 ”x”: [
11 -1361.0301557528662,
12 -1362.8495528511462
13],
14 ”y”: [
15 4215.283178260297,
16 4277.6178779225975
17],
18 ”id”: 894
19 },
20 ”895”: {
21 ”timestamp”: [
22 1695333029.154,
23 1695333029.234,
24 1695333029.314,
25 1695333029.394
26],
27 ”x”: [
28 -196.04632465787003,
29 -167.68817848709256,
30 -167.9797652631643,
31 -139.6042351907825
32],
33 ”y”: [
34 4305.051594243129,
35 4336.201764572378,
36 4430.185860171737,
37 4492.959136860266
38],
39 ”id”: 895
40 }
41 }
42 }
43 }
44 }

45

Reference list
Buchmüller, S., & Weidmann, U. (2006). Parameters of pedestrians, pedestrian traffic and walking

facilities (tech. rep.). Swiss Federal Institute of Technology Zurich.
Daamen, W. (2004). Modelling Passenger Flows in Public Transport Facilities (Doctoral dissertation).

TU Delft.
Daamen, W. (2023). Figure of Smart-sensor detection area provided by Winnie Daamen, TU Delft.
Duives, D. C., Daamen, W., & Hoogendoorn, S. P. (2015). Quantification of the level of crowdedness

for pedestrian movements. Physica A, 427(June), 162–180.
Fruin, J. J. (1971). Pedestrian Planning and Design. Metropolitan Association of Urban Designers;

Environmental Planners.
Kneidl, A. (2016). How Do People Queue? A Study of Different Queuing Models. Traffic and Granular

Flow ’15.
Mullick, P., Appert-Rolland, C., Warren,W., & Pettre, J. (2022). Methods of density estimation for pedes-

trians moving in small groups without a spatial boundary.
Okazaki, S., & Matsushita, S. (1993). A Study of Simulation Model for Pedestrian Movement with Evac-

uation and Queuing. International Conference on Engineering for Crowd Safety, 271–280.
pandas. (2023). pandas documentation. https://pandas.pydata.org/docs/index.html#
Python Software Foundation. (2023a). json - JSON encoder and decoder. https://docs.python.org/3/

library/json.html
Python Software Foundation. (2023b). Mapping Types - dict. https://docs.python.org/3/library/stdtypes.

html#typesmapping
Steffen, B., & Seyfried, A. (2009). Methods for measuring pedestrian density, flow, speed and direction

with minimal scatter. Physica A, (389), 1902–1910.
UnixTime.org. (2023). Epoch & Unix Timestamp. https://unixtime.org
van den Heuvel, J. (2022). Mind your passenger! The passenger capacity of platforms at railway sta-

tions in the Netherlands (Doctoral dissertation). TRAIL Research School.
Vuik, C., Vermolen, F. J., van Gijzen, M. B., & Vuik, M. J. (2016). Numerical Methods for Ordinary

Differential equations. Delft Academic Press / VSSD.

46

https://pandas.pydata.org/docs/index.html#
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/stdtypes.html#typesmapping
https://docs.python.org/3/library/stdtypes.html#typesmapping
https://unixtime.org

	Preface
	Summary
	Introduction
	Literature study
	Queue definitions
	Variables to describe queues
	Queue density computation
	Pedestrian parameters
	Interpolation of data-points

	Data provided by the smart-sensor
	Output files with object trace data
	Limitations of the smart-sensor
	Epoch Unix Timestamp
	Processing the smart-sensor data-set
	Visualisation
	Removing false reflection data

	Methodology
	Definition of a queue based on a speed profile
	Steps needed to identify queues
	Speed computation
	Speed visualisation
	Speed threshold and required queue conditions
	Selecting viable objects

	Verifying results

	Results
	Queue identification
	Verification of the results

	Discussion
	Queues and capacity
	Smoothing or smart-sensor hardware to compensate for speed fluctuations
	Detection area size
	Influence of weather conditions
	Unexpected pedestrian behaviour
	Smart-sensor errors
	Minimal time limits

	Conclusion
	Literature study
	Smart-sensor information
	Queue definition
	Steps to identify queues
	Verification
	Results
	Final conclusion

	Recommendations
	Smart-sensor placement and detection area adjustment
	Fine-tuning of the method
	Testing the method on different circumstances
	Applying the method to other revolving doors

	Appendix A Python code
	Appendix B Smart-sensor output file example
	Reference list

