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Summary

Bicycles have an important role to play in the transition towards a more sustainable mobility. In order to
achieve the modal shift towards bicycles, more must be done to accommodate cyclists. Although controlled
intersections do increase the (perceived) safety of crossings with motorized vehicles, they are seen as major
obstacles, and cyclists tend to avoid them when possible. The negative effects of controlled intersections
for cyclists may be reduced by new methods of intersection control.

This thesis combines the concepts of the connected environment and structure free control, to design an
intersection controller that uses a genetic algorithm to determine the optimal signal plan, hereafter referred
to as the SFGA controller. The controller is designed for an isolated intersection and considers car drivers
and cyclists. Desires of cyclist with regard to controlled intersections, are identified by means of a literature
review on the determinants of bicycle use, which are then projected on the controlled intersection. A traffic
system model, based on validated models found in literature, is set up and a design for the structure free
controller is proposed. A set of control objectives is proposed, including different metrics related to the
desires of cyclists and car drivers. Objective function weights can be varied to achieve different levels of
cyclist prioritization. A maximum waiting time of 100 seconds is enforced in order to prevent prioritization
of cyclists to result in unreasonable delays for car drivers, because red light running probabilities increase
at larger waiting times.

The performance of the structure free controller is evaluated for 15, 35 and 45% traffic saturation (per-
centage of intersection capacity), by means of a simulation based case study. The designed controller is
benchmarked to vehicle actuated control (VA). VA has a cyclic, fixed control structure in which green times
of movements are flexible and depend on the queue size. SFGA is benchmarked with an equal weight for the
delay of car drivers and cyclists, and no weight included for the number of stops. The effect of incorporating
weights that prioritize the desires of cyclists over those of car drivers is investigated. The SFGA controller
results in average delays 1.8, 2.7 and 3.0 times lower than VAC for each of the evaluated traffic saturation
levels. The number of stops is 1.9, 2.3 and 3.1 times lower. Including weights in the objective function to
explicitly prioritize cyclists, results in even lower average delays and number of stops for cyclists. As is to be
expected, this comes at the cost of additional delays for car drivers, especially for higher traffic saturation.

The better performance of SFGA is attributed to two main differences between the controllers. First of all,
the structure free aspect allows for a larger degree of freedom to choose more effective combinations of
traffic lights to show green at the same time, instead of following the fixed sequence of VA. Additionally,
the controller allows traffic that otherwise would experience the largest total delay to cross first, even if this
means delaying some travellers in close proximity of the traffic light. This contrary to VA, that extends green
time based on detected traffic in the active block. Without inclusion of weights that prioritize the desires
of cyclist over cars, the controller already tends towards prioritization of the cyclists. This is caused by
the controller considering the number of travellers that are influenced by its’ control decisions, combined
with the higher traffic densities, that can be expected on bicycle paths in urban areas. Weights to prioritize
cyclists can be included to include more priority, for example when bicycle traffic volumes are low.

This work implicates that, in order to better serve the cyclists, it is not explicitly required to prioritize cyclists
over cars. In areas with large volumes of cyclists, considering the number of travellers and their proximity to
the traffic light can already result in cyclists being served better. This work could be used as a starting point
or inspiration to design and eventually implement more cyclist oriented intersection controllers.

Improvements for the controller and extensions for the research scope are proposed that are required for the
controller to be suitable for practical implementation in the real world. If a future version of the controller is
to be implemented, it will reduce the negative effects of controlled intersections on cyclists, thereby making
the bicycle a more suitable replacement for the car.
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1
Introduction

Sustainable mobility is one of the major challenges for cities in the 21st century. Between 2005 and 2025,
the number of trips made in urban areas is expected to increase by 50%. Cities around the world have to
decide how to adapt to this increased demand. If the car remains the main mode of transport, this will lead
to either gridlocked road networks or to larger networks and less space for urban life [81]. An alternative is
to aim for a modal shift towards public transport (PT) or bicycles. This can help reduce negative effects of
cars, like noise- and air pollution [74][17].

Bicycles have a number of advantages over cars. First of all, bicycles are responsible for fewer emissions then
cars, since they are powered by human effort, while cars mainly run on fossil fuels. Bicycles also occupy
significantly less physical space, both while in use and parked. This effect decreases when more people
share the same car, however the average number of persons in a car is only 1.3 [5]. Increased bicycle use
can contribute to public health by enhancing physical activity [112][114]. Another advantage of making the
bicycle a more attractive mode of transport, is that a mode shift away from the car contributes to reduction
of congestion on the road network [75]. A limitation of cycling is that it is mainly an alternative for short
to medium distance trips. Therefore, people still need to have access to another mode of transport for
longer trips. E-bikes help solve this issue to some extent because of a larger range [85]. In addition, bicycles
have synergy with PT by presenting a good alternative for first- and last mile legs of multimodal trips, what
can act as a replacement or long distance car trips [56]. Main disadvantages of bicycles are that it can
be considered as a less comfortable mode of transport and that cyclists are at greater risk of injury from
collisions with motor vehicle users [14]. In the Netherlands in 2019, 1.6 fatalities occurred per billion driven
kilometers by car compared to 11 fatalities per billion kilometres cycled [9]. However, these numbers still
can be considered relatively low and studies suggest the additional risk of an accident do not outweigh the
health benefits of cycling [27].

The advantages of the bicycle as a means of transport, are being recognized more and more. Last decades
have seen a large number of policies and construction projects, aimed at increasing bicycle usage all around
the world. Projects include large scale construction and upgrades of bicycle infrastructure and implemen-
tation of bicycle sharing schemes [33]. Bicycle network expansion and upgrades in Bogota have for example
led to an increase in bicycle mode split from 4.2% (635,000 trips) in 2015 to 6% (800,000 trips) in 2018 [20].
Transport for London (TfL) also claims a more than 50% increase in the number of cyclist only five months
after the launch of four new bicycle path routes [65]. The outbreak of the COVID-19 pandemic has led to
an increasing feeling of urge to implement bicycle policies, both for air quality, health and PT avoidance
reasons. Cities like Rome, London, Milan, Berlin, Brussels and Paris all have sped up projects that lower
speed limits for cars, close roads for cars and designate them as pedestrian/bicycle infrastructure, build
new cycling infrastructure or make cars prioritize to cyclists [4].

A country that has become quite famous for its’ high bicycle use is the Netherlands. The attractiveness of
the bicycle in the Netherlands is reflected in the modal split. In 2019, 28% of all trips and 34% to 47% of short
(0.5-5km) trips were made by bicycle. In absolute distance, the contribution of the bicycle is lower with a
mode split of 8% [58]. Some of the key policies contributing to the high levels of cycling include separated
cycling infrastructure parallel to heavily travelled roads, traffic calming in most residential neighbourhoods,
ample bike parking, bicycle streets, short cuts for cyclists cars cannot use, extra green signal phases for
cyclists at intersections with high traffic volume, integration between bicycle and PT, traffic education from
a young age onward and mixed-use city development [84].
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1. Introduction

In order to achieve a mode shift towards bicycles, one must either make cycling more attractive or other
modes of transport less attractive [90]. Making cycling more attractive can be done by better adhering to
the desires of cyclists. The literature review in Section 2.2.1 identified the presence of slopes, rain, darkness,
low temperatures, distance, effort, travel time, infrastructure, safety, bicycle parking, showers, changing
rooms and transportation cost as factors that influence bicycle usage. The needs related to safety, travel time
and required effort come converge at the signalised intersection. Although these crossings provide more
safety, this comes at the cost of additional travel time and effort. The negative influences of a signalized
intersection are acknowledged in Dutch cycling policies. A growing part of the Dutch bicycle infrastructure
is designed as a so called untangled network, meaning the aim is to separate the main car and bicycle traffic
flows as much as possible. Bicycle networks do not run parallel to the main road network, but follow other
routes along less car heavy roads or standalone bicycle paths. Separate level crossings are a part of this
untangled network, which can take on the form of tunnels or cycling bridges or even an intersection on two
different levels for the two different modes. It is not always possible to separate the two flows, meaning a
(controlled) intersection is required.

Negative effects of controlled intersections on cyclists may be reduced by incorporating objectives related to
the desires of cyclists in the objective function of intersection controllers. Recent technological innovations
in the field of the connected environment allow for controllers that do this to be designed. In a connected
environment (CE), travellers can communicate information related to their speed, position and occupancy
to intersection controllers (v2i). The controllers can this data to more accurately determine the traffic states
near an intersection and control for a wider variety of control objectives [53][35].

The literature review on intersection control in the connected environment, which is provided in Section
2.1, illustrates the potential of the CE. Data driven intersection controllers have been developed that use
large sets of historical data to optimize control plans of isolated intersections and connected networks,
resulting in significant delay decreases compared traditional control methods [34]. Other controllers make
use of the real time data influx, making more accurate arrival predictions on either individual traveller or
platoon level, and adapting signal timings of cyclic control structures in real-time [121].

Most, but not all research in the CE focuses on adapting signal timings in cyclic, fixed control structures.
Reductions in delay can be achieved by allowing some degrees of freedom in the controller, allowing the
controller to make decisions on what traffic is allowed to cross the intersection first in the current cycle [13].
This is taken even further by the concept of structure free control (SFC). SFC does not impose a traditional,
cyclic control structure. Instead, no structure whatsoever is imposed, allowing the controller to decide on
any signal plan that it deems most effective within given constraints. Under perfect data quality the struc-
ture free controller outperforms cyclic control structures [80]. Combining the larger degrees of freedom of
structure free control, with the large data volumes from the connected environment, can result in signif-
icant improvements in controller performance. The main disadvantages of CE based controllers and SFC
is that both can require long computation times and result in loss of understanding of the functioning of
the controller. The loss of understanding originates from the black box principle of data driven control.
Increases in computation time originate from the large volumes of data that need to be processed and the
wide decision tree that results from the lack of imposed structure. The effect of the latter is very extensive,
as SFC does not require long prediction horizons for a good performance. The flexibility of SFC allows it to
respond very fast to changes in the system, allowing it to recover from potential mistakes that are made in
the next decision moment[80].

The largest share of research in the connected environment only considers cars as the user of intersections.
If a secondary mode of transport is included, busses or pedestrians are considered. In other words, no in-
tersection controllers in the CE have been found that actively control for cyclists as users of the intersection.
In this case it can be said that the scientific field has fallen behind the practical implementation, as at least
four commercial systems (Schwung, SMART, CrossCycle, SiBike) allowing cyclists to be request green on
approach are already being developed and tested [110].
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1.1. Problem statement and research questions 1. Introduction

1.1. Problem statement and research questions
Bicycles are essential in the transition to more sustainable mobility. In order to achieve a modal shift towards
the bicycle, more attention must be paid to the desires of cyclists. Controlled intersections provide safety
in the form of protected crossings, but also have negative effects for cyclists in the form of extra travel time
and the required effort needed for accelerating back to cruising speed. Controllers that result in reductions
of these negative effects could help make cycling a more attractive mode of transport.

The connected environment and structure free control provide opportunities for a controller to be designed
that is able to reduce these negatives. To the knowledge of the author, no such controllers have been pub-
lished in literature. This thesis will aim to contribute to filling this knowledge gap in the scientific literature.
This will be done by means of the following research objective goal:

To design and evaluate the performance of an intelligent intersection controller, that prioritizes the interests
of cyclists, and that controls an isolated intersection in an environment with connected cars and bicycles,
without causing unreasonable delays for car drivers

The following sub questions (SQs) have been formulated in order to help achieve this research objective:

1. What are the desires of car drivers and cyclists with regard to intersections and what is a reasonable
trade off between these desires for an intersection controller that prioritizes the needs of cyclists?

2. What traffic system models can be used to describe the traffic system and the outcomes of SQ 1?
(a) What traffic models, suitable for describing the behavior of car drivers, cyclists and traffic lights

with respect to isolated intersections, suitable for formulating the outcomes of SQ 1, can be
found in the literature?

(b) What are the (dis)advantages of the above mentioned control methodologies
(c) What model is best suited for the research objective and what is the mathematical formulation

of his traffic model
3. What control methodology can be used for an intersection controller with the objective of prioritiz-

ing the desires of cyclists for an isolated intersection, without causing unreasonably high delays in
conflicting, in an environment with connected vehicles and bicycles?

(a) What different control methodologies are used in intersection control research in the connected
environment using a rolling horizon?

(b) What are the (dis)advantages of the above mentioned control methodologies
4. What does the design of an intelligent intersection controller, that controls the traffic system of SQ 2,

and prioritizes the desires of cyclists as identified in SQ 1 consist of?
(a) Which of the control methodologies described by SQ 3 is used?
(b) What constraints are used?
(c) What mathematical formulation is used?
(d) What is the trade-off between the needs of cyclists and cars/what control objective is used?

5. What evaluation framework should be used to assess the performance of the designed intersection
controller and what is the performance of the controller given this framework?

(a) What performance indicators can be used to compare performance between controllers?
(b) What controller is the designed controller compared to?
(c) What are the differences in the performance indicators chosen in SQ 5a between the designed

and the controller chosen in SQ 5b?

Answering sub questions 1,2 and 3 allows for gaining knowledge on options for the different aspects of con-
troller design. Sub question four then relates to choosing the best options for each aspect and combining
these options into a single controller design. Sub question four then considers the evaluation of the de-
signed controller. If all the questions are answered, the research objective is realized.

By achieving this goal this thesis will provide a first design for a bicycle oriented intersection controller. By
means of future research, this controller may be developed further up to the point of real life implemen-
tation. Two use cases are suggested for real life implementation. Most importantly, the controller can be
used for busy urban centers where bicycle use is high. Equipping a number of successive intersections with
a intersection controller like this can help create really bicycle oriented arterial cycle roads. Secondly, the
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controller can be used on isolated intersections to reduce dis-utility of scarce intersections alongside bicy-
cle routes that cannot be avoided in the ’disentangled’ network. When implemented, the controller may
reduce the negative aspects of controlled intersections, that experienced by cyclists. By doing so, the bicy-
cle becomes a more attractive alternative to the car, helping achieve a modal shift towards more sustainable
mobility.

1.2. Scientific contributions
By fulfilling the research objective and answering all the sub questions stated in Section 1.1, two scientific
contributions will be made.

A literature review was performed on the desires of cyclists with regard to intersections. This review is pro-
vided in Section 2.2 and showed that -to the best knowledge of the author- no extensive overview of all
desires related to intersections has been published. In order to identify the desires, instead an overview of
determinants of bicycle use was made. Such reviews have been published before. A scientific contribution
of this thesis is that these determinants of bicycle use have been projected on controlled intersections to
provide the first extensive overview of all the desires of cyclists with regard to controlled intersections. This
overview may provide a strong foundation or starting point for future research with respect to cyclists and
intersections.

The literature review on intersection controllers in the connected environment (see Section 2.1) has iden-
tified a major research gap. No published controllers consider bicycles as a main mode of transport. The
structure free controller that will be proposed in this thesis will be the first controller in the connected en-
vironment that considers bicycles as a main mode of transport. This research may be an inspiration or
starting point for other researchers interested in the intersection control and bicycles. Future research may
improve this controller or adapt it to be able to function in a wider scope.

In terms of societal relevance, the controller likely will not yet be fit for real world implementation. The
controller may not yet be fully equipped to deal with real life scenarios, behavior and regulations. Addi-
tionally, even though significant advances in connected vehicle technology are made, the technology may
not be widespread enough to justify use of a controller that fully relies on the technology. A future version
of the controller may however be implemented in practice. If this is the case, the controller can reduce the
negative effects of intersections on cyclists, making the bicycle a more attractive mode of transport for more
people. This has the benefit of transport causing fewer emission, requiring less space and resulting in larger
health benefits.

1.3. Report Structure
The remainder of this thesis is structured as follows. Chapter 2 presents literature reviews on intersection
controllers in the Connected Environment, the desires of cyclists with regards to controlled intersections,
Traffic system models and control methods for intersection controllers. In this chapter, sub questions 1, 2
and 3 are answered.

Chapter 3 contains the methodology of this thesis, composing of the design methodology, traffic system
model and controller design. In this chapter, sub question 4 is answered. Chapter 4 provides the evaluation
framework that is used to assess the performance of the controller, answering sub questions 5a and 5b.
Chapter 5 then presents the results of the case study, thereby answering sub question 5b. Chapter 6 then
presents the conclusion and discussion, followed by Chapter 7 in which future work is discussed.
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2
Literature review

The literature review for this thesis is performed in four parts. First, Section 2.1 provides an overview of
the current state of the art, of intersection controllers that function in the connected environment. Then
Section 2.2 identifies the desires of cyclists and car drivers, with regard to intersections and proposes a trade
off for these desires. Section 2.3 investigates suitable traffic system models for this thesis. Finally, Section 2.4
presents different optimization methods, used in intersection control research. Note that all these reviews
aim to present an overview of concepts that can be used in this study. The chosen traffic system models and
the reasoning for this choice is presented in Section 3.2. The chosen control methodology is presented in
Section 3.3.

2.1. Intersection control in the connected environment
This Section provides an overview of research, covering intersection control in the connected environment,
with the goal of identifying a research gap. The majority of the literature in this Section has been found
by forward snowballing, starting form the literature reviews [53] and [35], on the current state of the art of
research in the field of connected intelligent intersection control. Additional sources have been found by a
combination of recommendations and search queries.

A distinction can be made in intersection control research in the connected environment. On the one hand,
data driven intersection controllers have been developed that use large sets of historical data, from induc-
tion loops or other more modern detectors like video cameras, to optimize control plans. Researchers use
different techniques to optimize the performance of isolated intersections or connected networks. Control
methods are often based on machine learning, more specifically reinforcement learning, because of these
methods capability to make good predictions for nonlinear systems [24]. Deep neural network technology
is often used to improve prediction capabilities and scalability in terms of computation time [34][62]. To the
best knowledge of the author, all published data driven controllers only consider car drivers as the users of
the intersection.

The second category of research focuses on using data from connected vehicles to improve intersection
control. Real time data flow from individual vehicles allows for better arrival predictions, that can be used
to adapt green timings in real time. Some controllers not only use v2i communication, but implement in-
frastructure to vehicle communication to give speed advice to road users. The CV based controllers mainly
focus on cyclic control for isolated intersections, under-saturated traffic flows and cars as the main mode
of transport. The general conclusion that can be drawn from the literature, is that the CE allows for major
improvements in intersection control [53][35]. Under perfect system knowledge, even more performance
increases can be achieved by abandoning the cyclic control structure and instead using structure free con-
trol [80]. A structure free controller has more degrees of freedom in the control choices, which allows it to
respond very effectively to the detailed information that is available in the connected environment.

Most CV based literature is focused on the car as the only transport modality. However, if a wider definition
of connected environment is used, namely every controller that assumes full system knowledge, controllers
that consider additional modes of transport can be found. Busses are often considered as a secondary traffic
mode. These controllers are vehicle actuated, have fixed control structures and aim to minimize delays by
means of linear programming. Infrequently arriving busses make use of the same traffic lights as car drivers.
Whenever a bus arrive at the intersection, a heavier weight is used for that specific traffic light [45][46][125].
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Multi-modal controllers, that consider pedestrians as intersection users, can also be found in literature.
These controllers assume full system knowledge, to determine platoon sizes of waiting pedestrians. Model
based control is then used to control for minimized total delay. Different optimization methods are used, for
example mixed integer linear programming (MILP) [127], mixed integer quadratic programming [126][122]
or fuzzy logic [79].

No intersection controllers designs were found that include bicyclists as intersection users. Some research
was found that investigates the effect of cyclists on controlled intersections, for example the interaction be-
tween cyclists and cars near intersections [22] and the effect of mixed bicycle and car traffic on intersection
capacity [88].

2.2. Trade off for desires of car drivers and cyclists with regard to intersections
The introduction illustrated that bicycles can help cities achieve their sustainable mobility goals by achiev-
ing a mode shift towards the bicycle by either making cycling more, or other modes of transport less attractive[90].
Characteristics of bicycle and motorized vehicle use are very different, resulting in different desires with re-
gard to controlled intersections. This literature review aims to identify these desires and propose a way to
balance the needs of both cyclists and cars. To the best knowledge of the author, no derailed overview of the
desires of cyclists with respect to controlled intersections is available. In order to determine these desires, a
literature review is conducted on the determinants for commuting by bicycle. These determinants are then
translated to desires and projected onto controlled intersections.

This review is structure the following way. Section 2.2.1 aims to describe all factors influencing bicycle use.
Section 2.2.2 then explains how some of these factors converge in signalized intersections and how intersec-
tion design could be approached in order to better adhere to these needs. Section 2.2.3 then describes the
needs of car drivers and proposes a trade off between the needs of both modes. Section 2.2.4 then provides
a summary of the conclusions drawn from this literature review.

This section is written from the point of view of a commuter cyclist, since these are deemed to be the most
important type of cyclist to influence in order to help reduce the negative effects of transport. How some
factors influence cycling can differ for different types of cyclists, for example, where a slope is seen as a
negative factor for commuters, the presence of a slope can be a challenge instead of a negative factor for
a sports cyclist. Some determinants of bicycle use are very prevalent, but do not help with identifying the
needs of cyclists. These factors will first be described in the following paragraph for completeness sake but
will not be used for design purposes.

2.2.1. General desires of the commuter cyclist
This section aims to identify the desires of commuter bicyclists. This is done by evaluating the factors that
are identified in literature to influence bicycle use and then translating these factors to the needs and de-
sires of a cyclists. Leading in the identification of the needs has been the literature review [47] on bicycle
frequency and duration determinants. Additional sources and references have been collected.

A lot of research has been done that describes the relation between cycling and a wide range of socio-
economic factors. While a lot is known about the correlation between the two, the direction and the causal-
ity of these relations is less pronounced and large differences exist between countries[47]. Socio-economic
factors can be useful tools for predicting mode choice, but are of little use when trying to identify the needs
of cyclist. Therefore these factors will not be described in depth. Psychological factors also play a major
role in the choice on travelling by bike and add greatly to the explanatory power of models. These factors
are for example attitude, perceived social norms and habits[47]. Changing habits, social norms and attitude
towards cycling can be of great help to achieve a mode shift, but are left outside of the scope of this thesis as
they are not related to accommodating to the needs of cyclist. One can reason however that making cycling
more attractive by accommodating to the needs of cyclist, attitude to cycling can change leading to more
ridership and changing habits and social norms. The other factors will now be discussed.
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2.2.1.1. Natural environment
Factors that relate to the environment can strongly influence a persons decision to cycle. While policies can
only influence the landscape, weather conditions and climate on a very long time scale and not on a day to
day basis, policies and designs can be aimed at reducing the negative impacts of these factors.

The presence of slopes has a negative impact on bicycle use. This can be explained by the additional effort
required for passing over them[90][91]. Cycling frequency and duration is influenced by weather conditions
as well. (The chance of) rain [73][18], darkness [98][36] and low temperatures [78][73] result in lower bicy-
cle usage. These negative influences are more likely to come together during the winter season, which is
illustrated by [16]. This research found that in Sweden the maximum cycled distance halved from 20km in
summer to 10km in winter. It also identified a mode shift for short distances: In summer 25% of journeys
below 3km were made by car, where this percentage rose to almost 40% in the winter. The drop between
summer and winter differs across regions and is lower in countries with milder winters[98].

In order to adhere to the needs of cyclists, the slope of bicycle paths should minimized in the network de-
sign. Additionally, measures should be take to reduce the travel time of trips during bad weather conditions
or to protect cyclists from said conditions.

2.2.1.2. Distance, Effort and Travel time
Trip distance is a factor that is used most of the time in mode choice models that consider bicycles[47]. The
longer the trip distance, the lower share of bicycles. The resistance to travel for cyclists increases dispropor-
tionately with distance due to the physical effort required[116]. In order to adhere to the needs of cyclists,
trip length should be as low as possible. This can be accommodated by more direct routes and a denser
bicycle network layout. Short trip distances can also be achieved by urban planning measures, aiming for
higher population densities and mixture of functions in urban cores.

Conclusions for trip distance also translate to travel time: people tend to cycle more when the travel time
for bicycles is low. In route choice cyclists tend to choose routes with low travel time while minimizing
interaction with motorized traffic. The trade off between travel time and interaction differs with the level of
experience of a cyclist [99]. While travel time is an important variable for all travel modes, the variable is of
much greater influence for cyclists. [115] identified that the cost associated with travel time is three times
higher for cyclists then for other modes. This can be explained the same way as with distance: a cyclists
needs to provide the power for propulsion by physical effort.

It is sensible that both longer distance and travel time are associated with lower bicycle mode splits, as both
variables are related by velocity. Longer trip distances and longer duration means a cyclist has to provide
physical effort for a longer duration. The effort that has to be provided is not a one on one relation. Some
situations require a bicycle to slow down only to return to the desired speed a while later. This can be for
example a sharp turn, stop sign or a red traffic light. The speeding up requires a lot of additional power. This
is illustrated by [31], in which it is estimated that the average speed of a 70kg person producing 100W will
be reduced by 40% for a road with a stopping sign every 90m. In order to keep the speed on an average of
20 km/h, a power output of 500W would be necessary, which is a power level that is only expected from a
serious racing cyclist. It was also shown that avoiding stops by slowing down can go a long way to reducing
the discomfort. Slowing down to 8 km/h requires 25% less energy to get back to the target speed.

In order to better adhere to the needs of cyclists, a bicycle network should be designed with direct routes,
minimizing trip distance and travel time, preferably also avoiding interaction with motorized traffic. The
network should allow for cyclists to travel at their preferred speed, minimizing situations that require a
cyclist to slow down and accelerate later on, for example by avoiding sharp turns and intersections.

2.2.1.3. Infrastructure and safety
The presence of dedicated bicycle infrastructure is a big determinant in both bicycle mode choice and route
choice. As mentioned earlier, travel time can be a source of resistance to travel, but [52] found that higher
level of infrastructure leads to lower resistance, meaning a typical cyclist is willing to cycle for a longer
duration when the trip is over higher level of infrastructure. The continuity of the infrastructure is also
an important factor, because a segment without facilities can deter some people from cycling that route
altogether[97]. Cyclists prefer routes with traffic calming measures over those without any facilities[118]
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and separate bicycle lanes are preferred to curb lanes[69]. Bicycle paths in turn are preferred over bicycle
lanes[52].

[83] identified that countries with cycling facilities have high bicycle modal splits. This may be explained by
the increased safety. Lower risk of injury is linked to higher bicycle use[90] and safety is often mentioned
as a main reason for choosing not to cycle[47]. Two types of safety are to be considered: objective safety
-related to the number of accidents- and perceived safety -related to how individuals perceive safety. [51]
identified perceived safety and comfort of the cycling network to be barriers for encouraging more cycling
in a city. Presence of dedicated bicycle infrastructure does increase perceived safety [61]. A literature re-
view on exposure measurement in bicycle safety analysis concluded that well-maintained bicycle specific
infrastructure improves objective bicycle safety as well[108].

In order to better adhere to the needs of cyclists bicycle networks should be as safe as reasonably possible,
both in objective and perceived measures. A way to achieve this is by construction of designated bicycle
infrastructure, preferably in the form of bicycle paths. Dedicated bicycle on itself also can help adhere to
the needs of cyclist as it makes cyclists more willing to cycle longer distance.

2.2.1.4. Parking and Changing facilities
The literature overview [47] identified seven journal articles that found that the presence of bicycle parking
infrastructure foremost, and showers and changing facilities to a lesser extend, are very highly valued by
cyclists. No significant effect on bicycle ridership was observed, but this may be explained by the limited
amount of research done in this area. A later review on bicycle parking infrastructure [48] claims the review
supports investment in bicycle parking, but acknowledges that a proper evaluation needs to be conducted.

In order to adhere to the needs of cyclist proper parking and changing infrastructure should be present at
destinations.

2.2.1.5. Transportation cost
As a final need for cyclist, transportation cost will be discussed. This cost that is associated with the money it
costs to make a trip, is a relevant factor for all modes of transport and can even deter people from choosing
to travel all together if the cost is too high. Within mode choice models the costs value relative to that of
other modes is important [90][91]. Cycling is relatively cheap and this is one of the reasons why commuters
choose to cycle [16]. Something that can be done to make bicycle an even more attractive mode is either
increase the cost of travel by other modes (eg. higher parking costs) or lowering the costs of bicycle use.
Another often mentioned policy measure that could help with this is paying commuters to travel to work
using a bicycle, causing a negative transport cost[115].

Translating this to needs and desires of bicycle users, low transportation costs are desired. This can be low
purchasing and maintenance costs for bicycles or even subsidising transport by means of a bicycle.

2.2.1.6. Summary of the general desires of cyclists
This section has identified a number of needs of cyclist by determining factors that influence bicycle use
and translating these factors to practical needs. Summarizing in listed form, these identified needs are:

• Minimal slopes present in the bicycle network.
• Measures to protect cyclists from or reduce travel time during bad weather conditions.
• A network with direct routes, preferably while avoiding interaction with motorized traffic.
• A network that allows cyclists to minimize speed differences.
• Low risk on accidents.
• High perceived safety of the bicycle network.
• Construction of dedicated, separate bicycle infrastructure.
• Presents of proper parking and changing infrastructure at the cycling destination.
• Low transportation costs for travelling by bicycle.

The literature study provided knowledge on what the needs of cyclists are. However, it did not provide
relative importance of these needs. This is mainly because the (relative) value of the determinants is not
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something the literature agrees upon. This is in part because the importance researchers found varies based
based on variables like gender, age, type of cyclist. One could also argue that historic and cultural influences
of the location of the conducted research play a big part in explaining the differences researchers found.
Even though the relative importance is not agreed upon, The direction of the influence is generally agreed
upon.

This heterogeneity in preferences is something that characterizes cyclists and something that makes re-
search on the topic interesting, but also difficult. Better understanding how the needs of cyclists relate to
each other is the key to better focusing efforts on how to serve the needs and how to most effectively make
cycling a more attractive mode of transport.

2.2.2. The (in)convenience of intersections
The previous section provided an overview of the needs of cyclists. The needs related to having a low travel
time, providing as little additional effort as possible and (perceived) safety come together in the controlled
intersection. Controlled intersections can ensure protected crossings, but the additional safety that is pro-
vided comes at the cost of additional travel time and required effort in the form of reduced speed and stops.
Protected intersections also introduce safety issues for cyclists due to cyclists low speeds. The negative as-
pects of controlled intersections make them a major obstacle for cyclists. This section will elaborate on the
reasons why intersections cause inconvenience, explain the needs of cyclists related to a controlled inter-
section and how these needs can be translated into design requirements for an intersection controller that
minimizes inconvenience for cyclists.

The inconvenience of controlled intersections is illustrated by the concept that cyclists generally will choose
routes that avoid traffic signals[19][93] and are willing to make significant detours (average of 1.3km) to
avoid routes with many of them[109]. Measures can be taken to separate the infrastructure networks of cy-
clists and motorized vehicles, but this is not always possible. A controlled intersection can be a necessity for
crossings with high-traffic streets, to ensure a high enough level of both perceived and actual safety[19]. A
need of cyclists is that they do not want other traffic to be allowed to cross their path -assuming no permitted
conflicts- when they are crossing the road.

Encountering a red light protects the cyclists from crossing the street while conflicting directions do so -
given no red light violations occur-, but it also necessitates a speed reduction or even standstill, followed
by the inevitable acceleration back to their desired speed. This results in a loss of time and energy when
compared to crossing the intersection at cruising speed. While this is the case for both cars and bicycles, the
loss of energy is a significant larger problem for the cyclist. An illustration of the impact of speed reductions
is provided in Section 2.2.1.2. A main difference between the effect speed reductions have on the two modes
is that the spike in power necessary for acceleration can be easily provided by the engine for car drivers,
whereas a cyclist needs to provide the power him/herself. Low speeds not only causes inconvenience for
cyclists due to a high required physical effort for accelerating back to their desired speed, they also introduce
safety concerns. At low speeds it is more difficult to balance a bicycle, even more so for e-bikes due to its’
higher weight. A survey that was sent out to Dutch Cyclist that were involved in a bicycle crash and had
to be treated at an Emergency care by [92] identified losing control at low speeds as the most frequent
occurring cyclist-related single-bicycle crash. These crashes represented 16% of the total and 37% of the
non-infrastructure related crashes. Losing control due to low speed mostly occurred while mounting or
dismounting the bike and the likelihood of it happening is strongly increased among older cyclists. No
threshold for what is considered a low speed was given or found in other literature. Concluding, a need of
cyclists for controlled intersections is that they want to have to slow down as little as possible and avoid very
low speeds and stops altogether.

The speed reductions and stops cause additional travel time, something that also goes against the needs
of cyclists. In addition, one can argue that long waiting times are a reason for red light running behavior,
which in turn causes safety concerns. Analysing registered traffic crash data showed that 11% of all bicycle
crashes of which the cause is know was related to red light running[107]. It is safe to assume that far from
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all bicycle crashes get registered but these numbers illustrates the danger associated with red light running.
Red light running may be an indication of cyclist feeling like they do not get served well and that for them
the risk of running red light is outweighed by the benefits of not having to stop and lose time. [107] argued
in a comparable matter that cyclists can be more likely to ignore traffic lights and cross when they deem the
situation safe, because of the design of traffic control systems that result in higher waiting times for cyclists
compared to car drivers, which makes cyclists more likely to cross red lights. His argument requires some
nuance, but is quite fitting. The (much) smaller size of a bicycle, the lack of strict traffic lanes and the two
dimensional movement of cyclists allow for a much higher saturation flow of green light when compared to
cars. In the situation that all directions must be green in a cycle, this means that more cyclists are able to
cross in a shorter duration of time and on average cyclists need to wait more for a car diver then a car driver
needs to wait for a cyclist. The nuance that should be made is that this situation changes when measures
like multiple green times in one cycle are implemented. One can conclude however that an low waiting time
is a need of cyclists for controlled intersections.

Closer investigation of red light running behavior identifies another need of cyclists. [54] identified three
types of red light runners, one of which is the ’impatients’, who stop at a red light and waits, but start riding
again before a green light. Further inspection showed all of these cyclist accelerated only after all crossing
traffic has cleared the intersection. This may indicate that the clearance time that is enforced by the inter-
section controller is unpractical and too long for cyclists. They feel like they can already start moving -the
intersection has been cleared- but the intersection controller waits for the programmed clearance time to
pass by. The identified need of cyclists is that they can start moving as soon as the last vehicle from cross-
ing directions has passed. It should be noted that no research was found that formulated this need as a
conclusion, but it was formulated based on interpretation of [54]s conclusions.

In some situations the control structure of the intersection controller prevents a direction from turning
green, even though no conflicting traffic is crossing the path. This is because cyclic control structures com-
pose of a sequence of conflict groups, also called phases or blocks, all defined as a group of traffic lights
or lanes that are allowed to be green at the same time. Only traffic lights in the active phase are allowed to
be green. If there is only traffic in a subset of the lanes of the current block, it may occur that traffic that is
waiting for a red traffic light does not see any conflicting traffic cross the intersection.

Inclusion of flexibility in the control diagram can reduce this effect. Flexibility entails inclusion of alternative
paths in the control structure. For example, the controller may choose block 2a or 2b after ending block one,
depending on in what lanes there is traffic detected. These phases can be chosen in a manner to allow traffic
lights that are part of block three to be green in block two already if there is no conflicting traffic. Note that a
lot of alternative paths need to be included to account for all the situations in which traffic must wait without
any conflicting traffic. This number of alternatives increases exponentially with more complex intersection
layouts.

Stopping is not confined to only once per intersection crossing. When the number of cyclist is high, it can
occur that queues are not dissolved after a single green cycle. Stopping twice at a single intersection also
can happen when making a left turn. When two crossings are required and traffic lights are not coordinated,
this can cause a large total waiting time and annoyance. A need of cyclists is to prevent double stops.

As a final note, in some circumstances the relative importance of the needs of cyclists may be larger. Refer-
ring back to Section 2.2.1, the utility of cycling is lower during bad weather conditions or when encountering
slopes. In these circumstances a cyclist would benefit more from reducing waiting time and speed reduc-
tions.

Summary of the wishes of cyclists related to a controlled intersection
A number of expectations from cyclists have just been discussed. These wishes are now summarized in
listed form. Note that during bad weather conditions or when encountering slopes cyclists assign more
value to the needs that can be related to total travel time and required effort.

• A cyclist does not want motorized traffic to be allowed to cross their path when they are allowed to do
so.

• A cyclist wants to be forced to slow down as little as possible.
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• A cyclist wants to avoid lows speeds, stops and double stop as little as possible.
• After stopping, a cyclist wishes to wait as short as possible.
• A cyclists wants to start moving as soon as possible after the last vehicle from crossing directions has

passed and not have to wait for the light to turn green with for a couple of seconds without conflicting
traffic passing.

• A cyclist wishes to be allowed to cross the road if no conflicting traffic is passing for a duration in
which the cyclist could have crossed the road.

Modelling constraints that follow from the needs
The desires of the cyclist with regard to a controlled intersection can be translated to modelling constraints.
Note that some requirements have some overlap: for example aiming to keep pace and prevent travelling at
low speeds. However, keeping pace is mainly important to conserve energy and minimize delays, whereas
there is an additional reason for avoiding low speeds: the safety aspect. Because of this the two are men-
tioned as two different requirements. The constraints for the intersection controller that follow from the
needs are listed below. See Section 3.2.5 for a discussion of what constraints are included in the objective
function of the designed controller.

• Prevent conflicting directions to have green at the same time
• Have a sufficiently large clearance time that ensures the next flow only can go after all traffic has

passed, but a lower clearance time when no traffic is present.
• Aim to allow cyclists to keep their pace as much as possible.
• Aim to prevent travelling at low speeds .
• Aim to prevent stops, even more so for double stops.
• Provide cyclist with green often to ensure low waiting times.
• Assign higher values to the the needs of cyclists during bad weather conditions or when encountering

slopes.

2.2.3. How to deal with cars when prioritizing cyclists?
The goal of this thesis is to design an intersection controller that prioritizes cyclists. But in order to do so,
one sill has to make a trade off between the needs of the cyclists and the needs of car drivers. Subsection
2.2.3.1 describes the needs of car drivers and subsection 2.2.3 proposes how all the needs can be balanced.

2.2.3.1. Desires of car drivers
Drivers of motorized vehicles too have a their wishes and expectations of their optimal journey. Route
choice models aim to identify these factors and assign values to them to investigate the extend by which
they impact route utility. Factors identified in route choice models can be assumed to represent the wishes
of car drivers and include the distance, free-flow travel time, time spent in congestion, travel time reliability,
travel cost and number of turns[82][15]. In essence, car drivers want consistency, avoid congestion, and
have the shortest route possible to their destination that costs them the least time and money. Most of
these factors are relevant in an encounter with controlled intersections: travel time increases because of
a lower speed and waiting time, monetary travel cost increases due to increased energy consumption and
congestion is often occurring at or around intersections and can for a significant part be directly linked
to them[63]. Increasing intersection efficiency is often seen as a way to reduce nativities for car drivers at
intersections[35]. Spill back is one of the causes of additional delays, as a car driver can be blocked from
reaching a his -empty- desired approach lane by a queue for another directions. Limiting the maximum
queue length can be a way to prevent this from occurring. The threshold for this limit depends on the
infrastructure layout and could be set equal to the length of the adjacent approach lane minus the length of
a car.

Like for cyclists, the safe crossings that controlled intersections provide are important for car drivers. They
do not want other motorized traffic or cyclists to be allowed to cross their path when they face a green light.
Note that this may be different for permitted crossings but this is outside of the scope of this thesis. Because
of the importance of ensuring protected crossing the intersection design should discourage red light run-
ning behavior. The most important predictors for RLR violations for cars are the position in the traffic flow,
speed and yellow-onset distance to be traffic light [30]. Inadequate signal timing can also increase the prob-
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ability of red light running (RLR)[49]. RLR probabilities are also higher for short green times that do not lead
to a fully dissolved queue [95]. Specifically, if the green time is below 10 seconds, the probability of RLR is
far larger then average: 40% for a green time of 6-7s and 25% for a green time of 8-10 seconds. RLR behavior
also occurs more often with longer waiting times. Waiting times below 100 seconds result in very low RLR,
but increase to up to 10% for waiting times between 100 and 300 seconds [95]. This suggests the waiting
time should be limited to a maximum of 100 seconds. This research was performed in France. Different
cultures can result in different values for this threshold. However, numerous countries have guidelines or
laws for the maximum waiting time of the same order of magnitude as those that [95] found. For example,
German and Dutch guidelines advise waiting times should not exceed 120 seconds[10][6]. The threshold
of 100 seconds is used, because the research relates this threshold value to red light running probabilities,
which in turn relates to the safety constraint described in desires overview in Section 2.2.2. When delays do
not exceed this threshold, a trade off for delays can be made. This trade off is described in Section 2.2.3.2.

Summarizing, car drivers want to have a protected crossing, minimize their delay and have a limit to the
time they have to be at a standstill. They do not want their path to be blocked by a queue for another direc-
tion and they do not desire short green times that do not fully dissolve the queue. Translating these needs
to design constraints for an intersection controller, the controller should minimize the experienced delays,
limit the queue length and limit the maximum waiting time. These requirements cars correspond with the
parameters used to measure intersection performance in intersection control research: evaluation is al-
most always evaluated based on a combination of average delay and queue length. Sporadically the factors
of intersection throughput or an energy consumption related variable are used as well[53]. For simplicity
sake this thesis will only consider the delay and queue length are used to represent the needs of drivers as
objectives.

2.2.3.2. The relative value of time
The objective of this thesis is to design an intersection controller makes a trade off between the needs of
both transport modes, but prioritizes the needs of cyclists. Therefore it is not it us not unthinkable that the
delays and queue lengths of cars will increase compared to a traditional intersection controller. The limit
for queue length has been discussed in Section 2.2.3.1: the queue length should not block approach lanes
that are not yet full. A maximum value for the waiting time was also provided: 100s. Below these limits the
matter of how much priority is given to the wishes of cyclists is part of the weights that are to be assigned
to objectives of the controller. This section will discuss how time -relevant for both total delay and waiting
time- will be weighed between the two modes. This will be based on estimations of relative values of time
(VoT) of the two different types of travellers.

If an intersection controller as designed in this thesis is ever to be implemented in real life, the choice on
whether and to what extend to prioritize cyclists or cars is a choice of local politicians. The objective func-
tion of this controller therefore should allow for some variation of this trade-off in the form of variable
weights. Some limits may be set on the value of waiting time relative These variable weights may be limited
to a certain range however due to literature. This section will aim to provide an indication for reasonable
limits. Should note research is subject to the culture in its country. Therefore this range should be consid-
ered to be an indication of possible values.

[115] identified that the cost associated with waiting time is three times higher for cyclists then for motor-
ized vehicles. [32] investigated perceived vs actual waiting time for Dutch cyclists and found that travellers
overestimate the waiting time by a factor of approximately 5. [119] investigated actual vs perceived waiting
time for car drivers in the USA and found that on average the waiting time is slightly underestimated when
the actual time is below 120 seconds, but for practical purposes the perception is approximated as equal to
the actual time. [77] found that car drivers in India overestimate the waiting time by a factor 1.8. Based on
on these estimations of value of waiting time the upper and lower limit for relative weight are constructed.
The low limit is chosen as the ratio of the low estimate for bicyclist and the high estimate for car drivers:
3/1.8 = 1.7. The higher limit is set based on the high estimation for bicycles and low estimation for drivers
5/1 = 5.
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2.2.4. Conclusion of the desire related literature review
This chapter has identified the needs of cyclists and cars with regard to intersections and translated these
needs to requirements and constraints for an intersection controller. Some needs are identical for both
modes, but some differ or are considered to be of greater importance to cyclists. Therefore the needs of
cyclists are worked out a lot while for car drivers most of their desires are captured in the objective of mini-
mizing delays. The desires identified in this chapter are:

• A cyclist does not want motorized traffic to be allowed to cross their path when they are allowed to do
so.

• A car driver does not want motorized traffic or cyclists to be allowed to cross their path when they are
allowed to do so.

• A cyclist wants to be forced to slow down as little as possible.
• A cyclist wants to avoid lows speeds, stops and double stop as much as possible.
• After stopping, a cyclist wishes to wait as short as possible.
• A cyclists wants to start moving as soon as possible after the last vehicle from crossing directions has

passed and not have to wait for the light to turn green with for a couple of seconds without conflicting
traffic passing.

• A cyclist wishes to be allowed to cross the road if no conflicting traffic is passing for a duration in
which the cyclist could have crossed the road.

• A car driver wishes to minimize delays.
• A car driver wants to limit queue length to prevent blocking.
• A car driver wants to limit their waiting time.
• A car driver does not want short green times that do not fully dissolve the queue.

These desires have been translated into constraints and objectives for the intersection controller. Because
the controller will prioritize cyclist the needs have been translated mainly to objectives. To limit the nega-
tives experienced by car drivers, two constraints have been set (See Section 2.2.3.1). See Section 3.2.5 for an
explanation on what objectives are included in the objective function of the designed controller.

• Objectives
– Prevent conflicting directions to have green at the same time.
– Have a sufficiently large clearance time that ensures the next flow only can go after all traffic has

passed, but a lower clearance time when no traffic is present.
– Aim to allow cyclists to keep their pace as much as possible.
– Aim to prevent cyclists from travelling at low speeds.
– Aim to prevent stops, even more so for double stops for cyclists.
– Provide cyclist with green often to ensure low waiting times.
– Assign higher values to the the needs of cyclists during bad weather conditions or when encoun-

tering slopes.
– Aim to minimize delays for car drivers.

• Constraints
– The queue length for cars may not exceed the length of adjacent sorting lane minus the length

of a car.
– The waiting time for a car driver may not exceed 100s.

A number of the objectives can be related to travel time. Because the objective of this thesis is to prioritize
cyclists, a relative weight will be assigned to the value time for both modes. As no unambiguous value for
this weight can be identified from the literature and it is debatable if a single value should be chosen at all,
a range [1.7,5] is proposed in which these weights can be varied. See Section 2.2.3.2 for how this range is
determined.
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2.3. Traffic models
The intersection control problem must be formulated in traffic engineering terms. In other words, a mathe-
matical formulation is required for the traffic lights and the behavior of cyclists and car drivers. This Section
provides an overview of available traffic models and elaborates on the advantages and disadvantages of
each model. The traffic system model of this research will be based on a model from the literature. For the
traffic model that is used in this research and the reasoning behind this choice, see Section 3.2.

The remainder of this literature review is structured as follows. First, Section 2.3.1 discusses the level of ag-
gregation in the traffic model that is required to formulate the desires of travellers. Section 2.3.2 discusses
published behavioral models for cyclists and Section 2.3.3 presents car following models that include inter-
action with traffic lights. Section 2.3.4 then presents different mathematical formulations for traffic lights.

2.3.1. Level of aggregation
Section 2.2 identified desires for of cyclists and cars with regard to controlled intersections, which are sum-
marized in Section 2.2.4. The mathematical formulations of cyclists, cars and traffic lights must accommo-
date incorporation of these desires as objectives. The identified desires concern phenomena and variables
that are observed at individual level: they relate to the individual speed, number of stops and average delay
for cyclists and the individual delay and queue length for cars.

In order to represent these variables, an individual, microscopic, representation for each traveler/vehicle
is required.It is for example no longer possible to determine if a bicycle has stopped, when the average
speed is used. For motorized vehicles it is not possible to enforce a maximum delay without individual
representations. The common way maximum delay is enforced now is by a maximal cycle time. However,
a structure free controller does not have a cycle time. A maximum red time could be used instead, but this
creates new problems. If a car driver arrives at the stopping line, 15 seconds after the light has turned red,
this car will be allowed to proceed when the maximum red time has passed. However, the car has been
waiting for 15 seconds less than the maximum allowed waiting time.

Another reason why why individual representations are beneficial, is because it better allows for later incor-
poration of heterogeneity for both cyclists and motorized traffic. One of the major characteristics of cyclists
is the large heterogeneity in characteristics and preferences of individuals. This thesis will include limited
heterogeneity in its’ scope, but anticipating on future research, it is beneficial to allow for easy implementa-
tion of heterogeneity by using microscopic representations. Individual representations of cars also allow for
easier modelling of heterogeneous behavior of car drivers and incorporation of for example lorries, busses
and other types of motorized vehicles.

Finally, this thesis focuses on unsaturated traffic flows. Unsaturated traffic flows are characterized by low
volumes of traffic and in low numbers, individual agents have relatively high impact on averages. Aggregate
variables may therefore be very sensitive to individual travellers, resulting in unrealistic system behavior.

The major disadvantage of microscopic representation is that it requires more computational power. How-
ever, as this Section has illustrated, a individual representation is required to accurately represent the ob-
jectives of the controller.

2.3.2. Behavioral model of cyclists
As discussed in Section 2.3.1, a microscopic representation will be used for cyclists. Microscopic models
are multi-agent systems, in which agents can interact with each other and the environment. Microscopic
models can be designed from different modelling paradigms: rule based, force based, velocity based and
utility based. As this thesis is not focused on the design of a new microscopic method, an existing method
will be used. This section will describe models that are available in published literature. See Section 3.2 for
the choice of the traffic model and the mathematical formulation of the used model.

What model should be used mainly comes down to a trade off between two factors: the level of detail/realism
in the cyclist behavior and the simplicity/computational effort of the model. A high computational effi-
ciency is beneficial, as it means lower running times, but higher computation times can be accepted if the
higher level of detail is beneficial. A high level of detail can better represents the actual behavior of cyclist,
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closer mimicking reality. However the question arises: what level is detail is required to achieve the objec-
tive of this thesis? This question is answered in Section 2.3.2.1. Then, microscopic models for cyclist are
discussed. This collection is based on the literature reviews of Chou and Twaddle et al., but expanded with
additional sources. Only models that are either validated or based on widely accepted dynamic formula-
tions are considered, as validation of a model is not possible within time constraints of this research.

2.3.2.1. Cyclist model requirements
One of the most differentiating aspects of cyclists is the two dimensional nature of movement. Cyclist do
not adhere to lanes in the same way that cars do, but have longitudinal and lateral movement at the same
time. Although 2D movement allows for a more realistic representation of behavior, it is not required for the
design of the intersection controller, as long as a model allows for overtaking. For a controller, the distance
to the traffic light and the speed of cyclists are the most important for changing the signals, while the lateral
position is of lesser importance. As long as the model allows for faster cyclists to overtake the slower cyclists,
it can still fulfil the needs for this thesis. It would be beneficial if the model also limits the number of cyclists
that can fit next to each other, thereby modelling faster cyclist that cannot overtake others due to spatial
constraints.

A very important requirement, is that the model must represent stopping behavior, or at least incorporates
realistic acceleration and deceleration, in addition to free flow cycling behavior. A red light demands decel-
eration, which results in entirely different behavior from that free flow conditions. Additionally stops need
to be modelled, as the controller may have the objective of reducing the number of stops, one of the de-
sires of cyclists. Phenomena like infrastructure friction (the nature of cyclists to keep some distance from
the edge of the cycle path) and group behavior (’cycling together’), are beneficial to incorporate to closer
mimics reality, but this is no requirement, because lateral movement is of lesser importance and group be-
havior can be assumed not to occur. A large heterogeneity is present in cycling behavior, much more then
for vehicular traffic, both in in the form of different cyclists characteristics (inter-cyclist) and in how a single
cyclists behavior changes when encountering a similar situation [103]. It is beneficial if the model allows for
incorporation of heterogeneity in the cyclist behavior.

2.3.2.2. Rule based CA models
Cellular automata (CA) models use a rasterized representation of space and discretisized time. Each cyclist
is represented by an agent that occuppies a position in the raster. Every time step, the agent can move one
step through the raster in accordance with a set of predefined rules. Speed differences can be represented by
a probability of an agent moving to the next position. The rule set can be simple and the same for all agents,
but can also vary for different agent groups. More complex, environment dependent rules can be incorpo-
rated to represent thought processes. CA models are computationally efficient and follow simple, easy to
develop algorithms. Downsides are they produce unrealistic movement behaviour and cannot model ’wall
friction’ [29]. CA models are the most commonly used models for representing bicycle traffic flow. They
are however very limited in the lack of a continuous state space representation -2D movement- and cyclists
heterogeneity -because of limited group of agents-[70].

[42] approaches the bicycle movement as a car following model that includes a lane changing model. The
bicycle path is represented by two lanes, where agents generally travel in the right lane. A rule set is used for
travel within a lane, that allows cyclists to accelerate to their desired speed if space is available and reduce
speed is another cyclist is in front of them. Before opting to decelerate, rules for overtaking are followed. If
there is a possibility to do so, the bicycle will move to the left lane, overtake and move back to the right lane
after passing. The rule set in the model was validated by comparing average flow rates and density for the
simulation with real life data. [101] used a similar strategy, however he used three lanes and incorporated
group behavior, in which people cycle next to each other or follow each other while keeping the same speed.
Both models did not include any rules related to stopping for intersections. If this model is to be used,
addition of rules will be required to represent this phenomenon.

A note should be made that several researchers worked on Burgers cellular automaton models, an example
of this is [120]. This type of model is not strictly a CA mode as it allows multiple cyclists to occupy a single
cell. This allows for modelling overtaking and in an intuitive way, but it no longer has the advantages of a
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pure CA model [42]. Additionally, -as is claimed by the author as well- this type of model is a macroscopic,
which means that it is not applicable for this thesis.

2.3.2.3. Position based rules using a kinematics model
Where CA models represent time and space as discrete variables, rules can also be implemented in continu-
ous space. Cyclists are represented by their speed and position with respect to the intersection. The position
and speed for the next time step are determined using mathematical formulas and rule sets for acceleration
behavior [26][25]. These papers refer to the state of the cyclist as the combination of the position and speed.
This terminology will also be used in this subsection.

In [25], bicycle acceleration is a control variable -by means on an on board speed advice-. This control
variable and the state of the cyclist are used to calculate the state of the cyclist in the next time step. [26]
uses a roadside speed advise instead of an on board advise and uses two different kinematic models, that
represent acting in accordance with the speed advice or ignoring it. A rule system is used to determine what
model the cyclist adheres to. This is fully dependent on the position of the cyclist. Different formulas for the
acceleration are also used depending on the state of the traffic light. Note that these models have not been
validated or calibrated using real life observations or a simulation. However, since they follow standard,
established dynamic formulas, this is not considered to be a problem.

These models, that are based on simple kinematic models have the advantage of being really simple and fast
to solve. They do not include any interaction between agents. This can be seen as an advantage and a disad-
vantage at the same time: no interaction is not realistic, but it also means overtaking is easily implemented:
cyclists do not block each others way and are free to overtake each other at any point. Disadvantages of
these models is that operational behavior and cyclist heterogeneity are not included.

More advanced kinematic models could also be used. Kinematic models that are for example described
in [43], which modelled acceleration and deceleration as a nonlinear decreasing model based on fitting of
experimental data in China under mixed traffic conditions. In this model, stopping behavior started 30 me-
ters from the stopping line. [104] performed a study evaluating the the model of [43] and three others. Data
was gathered from four intersections in Germany with separate bicycle infrastructure. It was concluded
that the polynomial model proposed in based on the work of [66] provided the most flexibility and the most
consistently low root mean square error (RMSE) values, although it did not perform best best under all cir-
cumstances. This model parameters were estimated using a large, real life data set including interference
from signal control, but excluding interference from other cyclists. Different user characteristics for three
different categories of cyclists are provided.

If a position based rule models is chosen, the kinematic models estimated in [104] could be combined with
the rule set proposed by [26]. The first kinematic model is better suitable, because the latter has not been
validated on real life data and is based on a car following model, whereas the model in [104] was created
specifically for bicyclists.

2.3.2.4. Social force based models
Social force (SF) based models determine movement in continuous space, by representing the intended
direction and interactions with an agents’ environment as force vectors. A resulting vector is determined
for each time step, that then is used to calculate the acceleration based on newtons second law. Force
vectors can be both repulsing and attracting and the magnitude of the force can depend on proximity to
other agents, infrastructure like curbs, or events like changing traffic lights.

SF models generally result in fairly realistic movement and interaction and can model infrastructure fric-
tion. However, the models are quite complex and require high computational effort [29]. Development of a
model takes a lot of effort and time to calibrate and validate. No social force model, related to a controlled
intersection with separate traffic lights for bicycles and cars, was found in literature. Because development
of new SF model is outside the scope of this research, only an adapted version of social force models [50]
and [64] are considered.

[50] used a social force simulation model to study behavior of cyclist, that cross an unsignalised mixed
traffic intersection. The model was calibrated and validated with a large data set containing collected video
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footage. It determines a desired path for all agents based on their origin and destination. If conflicts are
detected, alternative paths are generated that avoid this conflict. These paths form the basis for the driving
force, alongside the current and desired speed. The agents follow the paths and interact with other agents
(and infrastructure) in their proximity. The social forces are based on elliptically shaped social force fields,
that surrounds all agents. Forces are estimated whenever two ellipses overlap.

This mixed traffic aspect of this model would make it unsuitable for a separated infrastructure situation, as
present in this thesis. However, because coefficients for interaction between modes were estimated sepa-
rately, this model could still be used if only the interactions with other cyclists. However, the paper does not
explicitly include stopping and queuing behavior. The collision avoidance with pedestrians may be used,
as cyclists have to give right of way to pedestrians and therefore have to make a full stop. However, deceler-
ating for a traffic light likely differs from decelerating to avoid moving pedestrians. Therefore this model is
not suitable for this research.

[64] used a social force model to derive a fundamental diagram for cyclists. This model considers movement
over an isolated cycle path. Cyclists are influenced by a driving force, a collision avoidance force, a friction
force and a physical force. The driving force represents the desired speed, the collision avoidance forces
represent interactions with cyclists over a distance in order to avoid conflicts and the friction force repre-
sents interaction with the edges of the infrastructure. Physical forces that represent interactions between
cyclists are estimated when the circumellipses of two cyclists touch/overlap. Parameter values in the model
were calibrated and validated by means of a simulation. However, this model does not include stopping
behavior in any way.

Social force models can result in realistic movement behavior, but this comes at the cost of a high compu-
tational effort. The social force models that are found in published literature, do not include traffic lights or
guarantee realistic stopping or queuing behavior. This behavior therefore would need to be added, which
requires calibration and validation.

2.3.2.5. Velocity based models
The next modelling paradigm is the velocity based model. In velocity based models, space is continuous
and 2D, while time is discretized. Agents aim to keep their desired speed and direction, but will avoid colli-
sions. Cyclists can choose from a set of predefined combinations of speed and angles between the current
velocity and candidate velocity. Considering other agents in a cyclists surrounding, optimal speed and devi-
ation angles are chosen. This is done by penalising deviation from the current path, deviation of the current
velocity and risk of collision. Velocity based models generally result in fairly realistic movement and inter-
action, but require high computational effort and have difficulty modelling infrastructure friction and less
tangible features like lane preferences [29].

No movement models for cyclists based on this paradigm were found. If these models do actually exist,
the applicability for this thesis may be good, as velocity based models are expected to deal fairly well with
overtaking behavior in 2D space, because cyclists will evade the preceding cyclist. However, the models
should include lane preferences, as cycling to the right side of the road is fairly common in cycling behavior.

2.3.2.6. Utility based models
Utility based models are somewhat comparable to velocity based models. They provide agents with a finite
number of options -combinations of speed and directions- to choose from. Options are assumed to have a
utility and the option with the highest utility will be chosen. Developed models aim to find the most realistic
utility function and attributes and weights to mimic realistic cycling behavior. Factors are for example the
occupation of the solution, proximity to destination, deviation from current path and velocity.

Bicycle models following this paradigm are limited. [102] created an cyclist utility based model, however he
investigated gap acceptance in mixed traffic and not really a movement model. [37] used an utility based
model to investigate behavior of cyclists when approaching a red light in order to model queue formations.
He defined a two level framework, the first level representing path choice and the second level representing
pedalling and steering behavior. Discrete choice models were created for each level and estimated using
trajectory data gathered in the Netherlands and then validated using simulation. Path choice models entail
choices on whether to take over, accept a gap, yielding, stopping for traffic lights and finding positions in a

21



2.3. Traffic models 2. Literature review

queue. The second level represents the steering and pedalling to determine direction and speed to comply
with these choices made. The simulation resulted in patterns that could be recognised in the empirical
data. However, -as the authors themselves note- there much improvement to be made by including other
attributes. It is also mentioned that application of this model to situations other than modelling queuing
behavior would need new model estimation. Even though queuing behavior is a very nice feature to have
in this thesis, it is not the only thing required.

2.3.3. Behavior models of car drivers
As mentioned in Section 2.3.1, the movement model for the car should be able to represent the queue length
and the waiting time of the first car in the queue. Additionally, the mathematical formulation must describe
the interaction with the traffic light and other cars. The assumption of there being no interaction between
travellers cannot be made for cars, as cars cannot overtake each other if there is only one traffic lane. Car
following models are the standard within traffic research. Within these constraints, the most simple model
should be chosen.

Two papers were found, that apply car following models with interaction with traffic lights. [123] proposed
a car following model that included deceleration when approaching a red light that turns green, but not a
green light that turns red. The model was proposed in a comparative study, in which it was verified and cal-
ibrated and then compared to another verified and calibrated model. No mention of validation was made,
but the author claims "The simulated outputs of the extended and the comparative models are basically in
accordance with the measured data".

[117] describes an optimal velocity car following model, that includes braking for a traffic light and accel-
erating at a green light again after a full stop. The study also provides minimum and maximum distances
to the stopping line, between which the model accurately describes the braking process. No mention was
made regarding the validity of the model, but the model was compared to a original model and provided
better accuracy, but the author only mentions the comparative model as the ’original’. However, as this arti-
cle is published in a well renowned journal, the author deems this model usable, given that these concerns
are discussed.

2.3.4. Traffic light model
Two main categories of traffic light representation can be identified in intersection control literature. The
first group uses the active conflict group to represent the state of all the traffic lights of the intersection.
The other group represents each traffic light individually and indicates the colour that is shows by means
of a variable. These categories will be briefly discussed and then a choice is made on which one is most
appropriate for application in this thesis.

2.3.4.1. Conflict group based representation
Phases, blocks or conflict groups are different names for the same thing: subsets of non-conflicting traffic
lights that are allowed to be green at the same time. This representation is very common in intersection
control research and are used in most intersection control research [127][80][121]. Sometimes the repre-
sentation also includes additional variables indicating the green duration of the traffic light in the active
phases [25][26].

In a phase based representation, the state of all the traffic lights of the intersection is given by the currently
active group, i.e. the subset of traffic lights that currently is allowed to show a green light. In cyclic con-
trollers, the controller activates blocks in accordance with an imposed cyclic sequence, which may include
alternative paths. For this thesis, which aims to design a structure free controller, the control structure
would look similar to the one provided in Figure 2.1. Note that this representation can contain even more
blocks as the block consisting of directions 4, 6 and 1 can can be subdivided even further into the combina-
tions 4-6, 4-1, 1-6, 4,6 and 1.

The main advantage of the phase based representation, is that is an intuitive and compact way of visual-
izing and understanding the state of the intersection. The current state of all the traffic lights can easily
be captured by a single variable and conflict constraints are very easy to implement. Solutions also can be
generated by means of sequential decisions of the controller.
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Figure 2.1: Simplified phase based control diagram for structure free control by [80]

The main disadvantage of phase based representations, is that decision trees that need to be generated to
determine what phases can be allowed in the next time step. For cyclic controllers, this is fairly straightfor-
ward, but for structure free controllers not so. The decision tree must be generated in real time, and grows
rapidly with increased prediction horizon [80]. Constraints with regard to minimum green time, yellow time
and clearance time mean that not every phase can be allowed to follow after the current active phase. The
size of the decision tree increases even faster, when the controller is allowed to make decisions on changing
the state of individual traffic lights very frequently, for example every half second. The decision tree also
becomes more complex if green time the active phase are allowed to end or start at different points in time.
When all these degrees of freedom are implemented in a structure free controller, the conflict group based
representation is no longer compact and intuitive, no longer hold, as it in essence results in representation
of individual traffic lights.

2.3.4.2. Individual traffic lights
Researchers that represented traffic lights individually, all did so using a binary representation for the state
of each traffic light at every time instant [40][113][100]. They represented red and green lights only. Yellow
lights were not mentioned at all and may -as interpreted by this thesis author- be included within the red
light, as the official rule regarding yellow light is ’stop’. The state of the entire intersection is captured in a
matrix containing all states of all traffic lights at all time instances.

This representation allows for efficient matrix based calculations. It does not require decision trees that
account for the numerous constraints to be generated, instead constraints on the matrix entries relative to
each other can be formulated. The main disadvantage of this representation, it is very space inefficient,
both in terms of visualization and computational memory. State matrices can become very large, but will
grow linearly instead of exponentially with longer prediction horizons or shorter decision intervals. Another
disadvantage is that solution generating algorithms should take into account constraints related to conflicts,
clearance time, minimum green time, and yellow time, to prevent the majority of generated solutions being
infeasible signal plans.

2.4. Optimization methods used in intersection control research
The third literature review is on optimization methods that can be used as the foundation of the structure
free controller design. Section 2.4.1 discusses the requirements for the controller. Section 2.4.2 then dis-
cusses possible concepts from literature. For the choice of the control methodology that is used in this
research and the reasoning behind this choice, see Section 3.3

2.4.1. Control method requirements
The controller must be suitable to control the traffic system model used in this thesis. The conceptual
choice for the model is provided in Section 2.3 and a detailed description can be found in Chapter 3.2. Two
characteristics of this traffic model are limiting factors for the selection of a control method. First of all, the
mathematical formulation of the traffic system model has no closed form formulation. The consequences
of this constraint are discussed in Section 2.4.2. Secondly, the traffic system model is a system that has
memory, in other words, the state of the system is dependent on more than the state description in the
previous time step.
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In practical applications of intersection controllers, computation time can be a limiting factor, as the con-
troller must function in real-time. No constraint is used with regard to the computation time however, as
increases in computation power, parallelization and optimization of the underlying code can result in sig-
nificant improvements in the actual controller compared to the design in this controller. Additionally, some
aspects of the computation algorithm may be done preemptively in an offline environment[106]. Finally,
the controller is not required to result in optimal system performance. Sub optimal performance may also
be acceptable, if this results in delays lower than state of the art controllers [53]. Achieving the optimum
can require a long computation time, whereas performance that approaches the optimum requires much
shorter computation times.

The control problem will be formulated as a rolling horizon (RH) optimization problem. This is because
both structure free design and individual traffic participant representation result in large solution spaces
and long computation times, which increase rapidly as the prediction horizon increases. Therefore pre-
dictions into the far future become very impractical and may have little benefit. The rolling horizon for-
mulation is visualised in Figure 2.2 and will be explained in more detail now. Within other disciplines this
concept is known as receding horizon, moving window and dynamic optimization.

The RH concept means that for each current time step predictions will be made up to the prediction hori-
zon and that everything that happens behind that point is not considered. New predictions are made for
every control interval or every tcontr ol seconds, the value of which is to be later determined during the im-
plementation phase. It is constraint to be equal or smaller than the prediction horizon. During the first
control interval the controller has tcontr ol seconds to determine a signal plan, after which the second con-
trol interval will start. The first tcontr ol seconds of the plan plan determined in the previous interval are set
to be fixed, providing again time for the controller to determine a new signal plan, of which the first tcontr ol

seconds will again be fixed for the third control interval and so on.

Figure 2.2: Rolling Horizon concept

As the controller is limited in the time it has to come to a conclusion, it is to be expected that an optimal
plan is not often achieved. Therefore the controller aims for the most optimal solution it can provide within
tcontr ol seconds. This may lead to the controller making mistakes, but a controller with a large degree of
freedom -as is the case for structure free controllers- is able to compensate its’ mistakes because of that
freedom. A large degrees degrees of freedom also lead to the controller requiring a shorter prediction hori-
zon compared to a more constraint controller[80]. Structure free controllers are able to perform well with
a relatively short prediction horizon. This is beneficial, because of the high computation time associated
with predictions further into the future. As with tcontr ol , the exact value will be determined during imple-
mentation based on what works best. However, [80] provided indications for the performance of a structure
free controller that can be used to get a rough estimate of what the horizon could be. He found a slight but
almost non-existing increase of performance for RH of 15 and 30 sec.
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2.4.2. Concepts overview
Roughly speaking, three different categories of controllers could be used within the scope of the thesis.
These categories are model based control (MBC), Data driven control (DDC) and rule based control (RBC).
These categories will now briefly be discussed.

Rule Based Control
RBC systems are provided with a set of rules that the controller follow. A decision process is imposed, where
the choices the controller can make are influenced by measurements of the traffic system. Vehicle Actuated
Controllers (VAC), the state of the art system used in the Netherlands, may be the best known rule based
controller. This controller allows multiple predefined sets (Phases or blocks) of traffic lights to show green
sub sequentially. A green light is provided if there is any traffic is detected in any of the lanes in the current
block. After a fixed duration or if there no traffic detected in any of the lanes of the current phase, the next
phase will be activated. Some flexibility may be included in the control structure to allow for multiple paths
to be chosen based on what traffic is measured. Other rule based controllers found in literature are based
on oldest arrival first algorithms[87], highest density first[13]. Control decision may also be made in a non
absolute manner by inclusion of fuzzy logic[76][68][79].

Rule based systems can be very intuitive to create, but predicting of the effects of a rule set can be very
difficult. Rule based systems are a very inflexible method of controlling. The performance of the controller
is directly dependent on how the specific rules. And as these rules are chosen to work in mostly generic
situations it is possible that these rules sometimes lead to poor results in less often occurring situations.
Rule setting can also be quite time consuming as possible rules should be evaluated for a wide variety of
scenarios to evaluate if they result in acceptable performance.

Model Based Control
Model based controllers use make predictions of possible control actions based on a model and measure-
ments of the current traffic state. Online optimization is used to select the solution that performs best
in terms of the (multi variable) objective function. The underlying models can be on individual traveller
level[71] but are more common on on an aggregate level[67][127].

The open formulation and memory contained in the system do cause limitations on what types of con-
trollers could be used. Because of the open form, mathematical optimization methods as mixed integer
linear programming (MILP)[127][125] or mixed integer quadratic programming (MIQP) [126] [122] cannot
be used. Because of this, simulation based control is the only model based control method that can be
applied in this thesis. In simulation based control the effects of solutions are evaluated by means of a simu-
lation and the best performing solution is chosen. This is often combined with heuristic search methods to
speed up the search process through the solution space.

The main benefit of model based control is that the underlying model can make it relatively easy and intu-
itive to interpret and understand the trade offs the controller makes and what the effect of control decisions
are. This contrary to DDC, in which the behavior of the controller is hidden in a so-called black box. Addi-
tionally, in this thesis there is the benefit that a traffic system model is already available (See Chapter 3.2) as
the model is also required for evaluating the controller in the simulation based case study. Using identical
models in the controller and the simulation environment allows for easy implementation of perfect predic-
tion and data quality and for controlled implementation of errors, allowing to study the effects of errors on
the controller performance in future work. See Section B for a more detailed explanation.

Disadvantages of model based control is that models often fail to capture the complex behavior of humans
and assumptions made in models greatly simplify reality and heterogeneity in traveller behavior[94]. Be-
cause of the open form formulation of the traffic model, simulation based control is required. This type of
control can result in a very large computation time. As was discussed in the requirements for the controller,
large computation times are acceptable for the controller, but it can make the research process quite time
consuming and troublesome. Heuristic methods are often used in simulation based control to speed up the
search through the solution space and reduce the long computation time[21].

Researchers make use of both ’traditional’ heuristic methods, most often the branch and bound method[40][80][41],
or Genetic Algorithms (GA)[89][121][35]. Heuristic methods provide guidelines on how to vary input pa-
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rameters with the result of a more efficient search process through the solution space compared to random
searches. If variation of a parameter results in a better performance, the method will investigate neigh-
boring solutions of this solution. Genetic algorithms are often used for problems with less straightforward
formulations of solutions, in which there are more constraints on what can and is allowed to be varied.

Data Driven Control
Contrary to MBC, Data driven control does not involve a model that describes a relationship between the
system inputs, the traffic state and solution, and outputs, the effect of any solution on the traffic state. In-
stead of using a model, often a neural network or reward function is trained offline with large quantities
of data to learn relationships between it’s control actions and expected outputs. A large variety of these
machine learning based controllers exist. Data driven control has recently received a lot of attention in in-
tersection control research[53][35]. Controllers can be based on reinforcement learning[62], simultaneous
perturbation stochastic approximation[96], Markov decision processes[26] and many more. A large number
of variants of said controllers exist, implementing more complex underlying methods with the purpose of
increasing the performance.

Data driven controllers have the benefit that they have very strong non-linear approximation, which allows
them to describe the complex behavior of humans better than model based controllers[94]. This is a very
important advantage and the main reason why there is so much research being conducted on DDCs. The
main disadvantages however are that the controllers can be very difficult to implement for complex sys-
tems, such as the traffic system in this thesis. Additionally, a lot of training time is required and there is no
guarantee that the controller converges to stable behavior until after the training has commenced. Addi-
tionally, the reasoning behind why a data driven controller decides to make decision is more difficult to find
out due to the black box principle. A final disadvantage is that these controllers are subject to the so called
Long tail phenomenon, meaning that they can struggle with very infrequently occurring scenarios, because
there is little training data for these scenarios.

2.5. Summary of the literature review
The literature review on intersection controllers in the CE (Section 2.1) found that the research field of in-
tersection control in the CE is booming and has attracted a lot of attention in recent years. In the words
of Jing et al., "The field is still in its’ infancy". The main research gap that was found it that no intersection
controllers, that consider cyclists as main users of the intersection, are published. This research will aim to
fill this gap.

The review on the desires of cyclists with regard to controlled intersections (Section 2.2) concluded that
no work is published that explicitly covers this topic. A lot of research investigates determinants for bi-
cycle use and route choice, but little attention is paid to the desires of cyclists at controlled intersections.
This research therefore has summarized determinants of bicycle use and projected these determinants on
controlled intersections. This has resulted in an overview of desires of cyclists with regard to controlled
intersections, which is provided in Section 2.2.2.

A number of traffic models were found in the literature. The part of the review that covers these models,
presented in Section 2.3, concluded that much more work is to be done to fully understand and describe
cyclist behavior and movement. Models are either limited in included behavior, or limited in the applicabil-
ity of the model. A promising trend is that recently, more work has been put into validation of models with
real life data. The overview of control methods used in the connected environment (Section 2.4), concluded
that the available control and optimization methods are quite extensive.

All together, the conclusion of the literature review is, that in traffic research and more specifically intersec-
tion control research, the cyclists can be somewhat seen as the forgotten child. However, recently cyclists
have gotten a lot more attention. Given the interesting aspects of cycling, the abundance of research to
do and the benefits of cycling for society, it is only to hope that this trend will continue. This research will
contribute to filling one of the many research gaps, in the form of proposing a design for an intersection
controller in the CE, that considers cyclists as a main intersection user.

26



3
Methodology

In this chapter, the methodology of this thesis will be discussed. First, Section 3.1 will discuss the design
framework. Section 3.2 then provides the formulation of the traffic system model. Section 3.3 then provides
the detailed design of the structure free controller.

3.1. Framework
The framework of this thesis composes of two parts. First, Section 3.1.1 provides the design methodology
that is followed. Then Section 3.1.2 presents limitations on the scope of the design space.

3.1.1. Design methodology
The design methodology used in this thesis is the design methodology as described in [59]. The first step
of this methodology -regarding problem definition- is described in the introduction. The steps included in
this methodology are: Problem recognition and description, problem analysis in traffic engineering terms,
problem analysis in control engineering terms, control approach selection and finally operationalization.
The framework is visualized in Figure 3.1 below.

Figure 3.1: Design methodology

Problem recognition and description entails the description of what is undesired in the current situation
and what the desired situation should look like. The problem definition has already been provided in the
introduction (Section 1.1).

The second step identifies the causes of the undesired situation and what should be done different to
achieve the desired situation. Translated to this thesis, this means identifying the needs of cars and cyclists
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and determining how to limit the delays for each mode. This corresponds with answering sub question 1,
which will be done by means of a literature study. This literature study is provided in Section 2.2.

The third step in the methodology entails formulating the control goal, constraints and the system as a
whole in mathematical formulation, This design step is covered in sub question 2. The literature study
presented in Section 2.3 describes the different options and corresponding (dis)advantages of different for-
mulations for the traffic system. The choice and (mathematical) formulation of the control goal, constraints
and traffic system is provided in Section 3.2.

Step 4 of the methodology is the choice of control method. This choice, represented in sub question 3, is
made using the gathered knowledge of the literature study presented in Section 2.4. The choice is presented
in Section 3.3 on the controller design.

Step 5 from [59] entails the actual creation of the controller and the tuning of parameters that are required.
This is represented by sub question 4 and entails combining all the answers of the previous sub questions
to create the controller. The design is described in Chapter 3.3.

The fifth step from the methodology in [59] entails implementation and evaluation of the design. It is the
aim of this study to perform this evaluation by means of a simulated case study. The experimental setup for
the evaluation is discussed in Section 4.1 and the outcome of the evaluation will be provided in Chapter 5

Summarising, the methodologies used in this thesis are a literature study and a simulation based case study.
The literature study is performed to investigate options and help make design choices for the controller. The
simulation based case study is performed to evaluate the design.

3.1.2. Scope of the design space
This section will elaborate on the high level assumptions on the environment in which the designed con-
troller must function. As this thesis is -to the knowledge of the author- the first attempt at designing a
structure free intersection controller, prioritizing bicyclists in the connected environment, the scope will
be quite limited. After a solid foundation has been designed, future work can improve the design and add
additional features to make the controller better suited for operation in the actual world. The framework
that is provided, composes of the environment in which the controller is able to function and a number of
assumptions that allow for a simplified representation of reality. Future work (see Section 6.1) will provide
a road map with additions for the framework for improved versions of the controller and the experimental
setup (Section 4.1) will discuss the set up for the case study in which the controller will be evaluated.

The thesis will focus on an isolated intersection instead of a road network. This is mainly for simplicity
and to keep the simulation environment limited. Cars and bicycles are the only traffic modes that are con-
sidered. A higher number of modes increases complexity significantly, which is to be avoided due to the
limited time for this thesis. An argument can be made to include pedestrians, because pedestrians are a
significant factor in urban environments, especially in those that have low numbers of motorized vehicles.
For simplicity, all conflicts are protected and no negative clearance times are allowed.

Regarding flow saturation, only unsaturated flows will be considered for the design and evaluation of the
controller. The objective of this thesis is to reduce the waiting time and number of stops for bicycles.
One can reason that in unsaturated flows, more unnecessary stops occur and more improvement can be
achieved by a larger variety in signal block combinations. Therefore it is reasoned that the largest impact
can be made in these situations.

As was explained in the first paragraphs of the Introduction, the connected environment allows vehicles
to share information with the intersection controller. The controller can also communicate advise speed
to travellers. A choice has to be made on what information flows are included in the scope of this thesis.
It is chosen that both cars and cyclists communicate their position, speed and destination to the intersec-
tion controller. Additionally personal characteristics related to driving and cycling behaviour are assumed
to be known by the controller, allowing the controller to make detailed arrival predictions. Speed advice
is excluded from the scope. The reasons for this are threefold: it requires a large number of (unsubstanti-
ated) assumptions to be made, current technical capabilities limit the practical implementation for speed
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advise to bicycles and including speed advise for cars adds little value to the objective of this thesis. These
arguments will now be elaborated upon.

First of all, it is complex to determine whether or not an active mode user is willing and capable of adhering
to the advise speed. Assumptions would have to be made on when cyclists receive advise, if they follow
the advise and how this advise influences their behavior. These questions get more complex when more
differentiation between types of cyclists are made. An elderly person, for example, will not be able to speed
up the same way as an younger person is able to and a cyclist on a city bike is not able to reach the same
speeds as a commuter on an e-bike. Including speed advice will make the scope of this thesis much more
about the speed advise part, and prevent conclusions to be drawn based on the effect of the structure free
control and cyclist oriented control.

Secondly, the question of how speed advise would be given arises. The current state of the art communi-
cation technology for on-board speed advise is the mobile phone. Given that this technology is used, it is
not desirable from a safety point of view that travellers pay close attention to their phones while cycling.
Of course it is possible to develop other forms of speed feedback, like a dashboard on a future bike or light
indicators alongside the bicycle paths, but these technologies are not yet developed/implemented.

Implementation of a speed advise for cars would be more simple and profound. The mechanical abilities
within urban road rule regulations are more homogeneous then cars and is possible to show the advise
speed using the display on the dashboard. However, the question arises what benefits it would bring to the
objective of the thesis to provide speed advise to cars. Assuming this speed advise does not get above the
roads speed limit, in most cases it will result in advise to lower speed, preventing full stops. Although this
is can reduce energy consumption for cars, this would not contribute to the objective of the thesis of better
serving the needs of cyclists.

The initial thesis scope will assume the connectivity penetration rate for both traffic modalities to be 100%,
resulting in a data flow from all travellers in the environment to the intersection controller. It should be
noted that this is a significant assumption, since this is unlikely to be the case whenever this technology
gets implemented in the real world and connectivity penetration rate is a big factor influencing the per-
formance of intersection controllers in the connected environment[53]. The simulation environment and
controller must be designed in a way that allows for later inclusion of lowered penetration rates. In addition
to the assumption on connectivity rate, it is also assumed that the data provided to the intersection is 100%
accurate.

The list of all the assumptions in the framework is provided as follows:

• A single isolated intersection is considered.
• Included transport modes: cyclists and cars (motorized vehicles).
• The controller will not be imposed a cyclic control structure
• All conflicts are protected and no negative clearance times are allowed.
• The controller is designed to function best in unsaturated traffic flow conditions.
• The controller will have computation times that allow for real life implementation.
• Cyclists and cars provide their location, speed, destination and personal characteristics to the inter-

section controller.
• No speed advice is given to either bicyclists or cars.
• The connectivity penetration rate of both modalities is assumed to be 100%.
• The controller is assumed to receive data with perfect quality.
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3.2. Traffic system model
This section provides the mathematical formulation and underlying assumptions of the behavioral models
of cyclists and car drivers, as well as the description of the traffic light and the associated constraints. Be-
cause a full model validation is not possible within the time span of this thesis, the traffic system model will
be based on validated models that are published in literature. For an overview of options for these models,
see the literature review of Section 2.3.

First, Section 3.2.1 introduces notation conventions and system wide mathematical sets. This is followed
by the Mathematical formulation for traffic lights in Section 3.2.2. Sections 3.2.3 and 3.2.4 discuss the cho-
sen underlying model for representing cyclists and car drivers respectively. These sections also include the
detailed mathematical formulation that has been set up. The control objectives are then proposed in Sec-
tion 3.2.5. Section 3.2.6 then summarizes the model limitations and assumptions for the presented traffic
system model. No values are provided for the parameters in the traffic system model. The values that are
used in the case study are provided in Appendix C. Model verification and validation, of which the latter is
outside of the scope of this thesis, is discussed in the case study chapter in Section 4.1.5.

3.2.1. System wide sets and notation conventions
The traffic lanes i , j ∈ I are modelled as separate subsystems, with no interaction between agents in differ-
ent lanes. The only interaction between the different lanes is by means of coordinated traffic lights plans.
Individual agents on each movement are represented as cc yc

i ∈C c yc
i ∀I when the i represents the traffic light

of a cycle path, or ccar
i ∈Ci∀I when the traffic lane is used by motorized vehicles. All sets C c yc

i and C car
i are

part of the larger set C containing all agents in the system.

The system will be simulated over a time horizon. This horizon is represented as set of time indices k ∈ K
in the range [k0,kmax ] where kmax = Tmax /∆T , with Tmax representing the length of the prediction horizon
and ∆T the constant time step.

The following notation shall be used. Lower case letters (eg. s) represent individual values or variables.
Capital letters (eg. S) represent vectors or sets. Notation of a matrix and matrix entry is entries are S[i ,k]
and si ,k respectively. Referring to column or row vectors within is done the following way: Si [k] refers to the
vector in S with fixed value i containing all all values of k.

3.2.2. Mathematical representation of the traffic lights
The literature review in Section 2.3.4 described the advantages and disadvantages of two possible repre-
sentations of traffic lights: binary individual traffic signals and signal groups. The individual traffic light
representation is best suited for the traffic system model of this research. When no cyclic control structure
is imposed and the controller is allowed a large degrees of freedom, there is little benefit in using signal
groups. Decision trees would need to be generated in real time, that grow rapidly with increasing predic-
tion horizons. Additionally, yellow time and clearance time constraints in the model must be enforced on
individual traffic light level. Given the sets of directions i , j ∈ I and the set of time indices k ∈ K , the set of
individual traffic signal states for each time step is defined as si ,k ∈ S. The binary values of a traffic signal
state is defined as follows:

si ,k

{
0, if red or yellow

1, if green
∀i ∈ I ,k ∈ K (3.1)

A binary representation is beneficial as it allows for fast calculations. However, three colors should be repre-
sented: red, yellow/amber and green. Therefore the amber light must be incorporated in one of the two or
divided between the two. How this is done will effect the way conflicts can be constraint, as well as how the
clearance time could be incorporated. This is because, provided no negative clearance times are allowed,
traffic lights of two conflicting directions are not allowed to be green if the other is either green, yellow or in
its’ clearance time.

It is chosen to incorporate yellow as the first yellow time seconds of the red time duration. First of all, this is
done because the official message an amber light carries is Stop if you are able to, making it sensible to group
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it with the red light. See sections 3.2.4 and 3.2.3 for how car drivers and cyclists respectively are assumed to
react to a yellow light. Incorporating yellow as part of the green phase can also be defended, because the
amber light is sometimes seen as part of the ’effective’ green, allowing the amber to be used for crossing. A
second argument of combining amber with red is that the system should be able to distinguish the amber
from the color it is grouped with. This is more easily done when it is part of the red state by means of a
variable that keeps track of the red duration. If this variables’ value is below the yellow threshold, the light is
yellow, otherwise it is red. This can again be stored in a binary variable, which is 1 when the light is amber.
This is described in the section describing conflict constraints.

The individual states in set S are used as the control variables of this controller. To allow for the use of linear
algebra operations, the individual states are organised in a matrix, which can be seen in in Equation 3.2.
Signal states are defined for each signal and for each time step.

S =



s1,0 s2,0 . . . simax ,0

s1,1 s2,1
...

...
...

s1,kmax . . . . . . simax ,kmax

 (3.2)

Minimum and maximum green time
Constraints for minimum and maximum green time require keeping track of how many time steps the traffic
lights has been green. Minimum and maximum green times are defined as gmi n,i ∈Gmi n and gmax,i ∈Gmax .
Equation 3.3 describes the green duration variable Gd [k], which calculated each time step and compared
to minimum and maximum green times to see if these constraints are violated. The green duration is de-
termined by adding the outcome of element wise multiplication of Gd of the previous time step with signal
plan of the current time step Sk−1[i ], to the current signal plan Sk [i ] times the time step (Equation 3.3).
This is done fairly similar for the the red duration as well in Equation 3.4. The red duration can be used to
distinguish red and yellow lights (Equation3.5).

Gd [k] =Gd [k −1]⊙Sk−1[i ]+Sk [i ]∗∆T (3.3)

Rd [k] = Rd [k −1]⊙|Sk−1[i ]−1|+ |Sk [i ]−1|∗∆T (3.4)

Yst ate [i ,k] =
{

0, i f RD [i ,k] < Yt i me [i ]

1, if else
∀i ∈ I , (3.5)

Minimum green time constraints can be enforced the following way. If the green duration is zero or larger
then the minimum green time the future states are kept at zero, meaning these future states are still allowed
to be controlled. If the green duration is below zero and the minimum green time however, the values in the
traffic light state vectors will be fixed to zero up to the minimum green time. Enforcing the maximum green
time happens in a similar way.

S[i ,k +1] = 1, if GD [i ,k] <Gmi n[i ] (3.6)

Protected conflicts, yellow time and clearance time
One of the most important constraints of an intersection controller is that conflicting directions must be
protected from simultaneously showing a green or yellow light. Additionally, in some occasions a delay is
required between two subsequent green times of conflicting traffic lights, called the clearance time. In order
to enforce these constraints, a delay Tdel ay [i , j ] matrix is defined. This matrix contains the required delays
between the end of green of traffic light i and the allowed start of green for light j . This delay equals zero
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if two directions do not conflict. If the two traffic lanes are defined as protected crossings, i.e. conflict in
the framework of this thesis, the value of tdel ay equals the sum of the yellow time and clearance time (see
Equations 3.7 and 3.8). The yellow time and clearance time conflicts are enforced by means of the constraint
shown in Equation 3.9

Tdel ay =



tdel ay(1,1) tdel ay(1,1) . . . tdel ay(1, jmax )

tdel ay(2,1)
...

...
...

tdel ay(imax ,1) . . . . . . tdel ay(imax , jmax )

 (3.7)

tdel ay(i , j ) =
{

0, if i and j do not conflict

tyel low [i , j ]+ tclear ance [i , j ] else
(3.8)

Where,
tyel low [i , j ] = required yellow time between end of green time of i and start of green time of j
tclear ance [i , j ] = required clearance time between end of green time of i and start of green time of j

S[ j ,k2] = 0, if

{
S[ j ,k1] = 0

k2 −k1 < Tdel ay [i , j ]
∀i , j ∈ I ,∀k1 ∈ K ,∀k2 > k1 (3.9)

3.2.3. Mathematical model for cyclists behavior
Multiple microscopic bicycle behavior models were described in the literature review in Section 2.3. The
choice for a movement model for cyclists is furthermost limited by the few options that are available. Veloc-
ity based models were not found and social force based models do not guarantee decelerating and stopping
behavior. The utility based model includes model stopping behavior but does not include acceleration or
cycling operation at constant speeds.

Rule based models occur in two different manners: CA models and models with simple kinematics based
on the position of the cyclist and the color of the traffic light. The CA models have the disadvantage that
they do not include rules related to stopping for red lights. Because no other traffic models are suitable for
representing individual cyclists and their interaction with traffic lights, a the rule based model with simple
kinematics will be used. The rule based system used in [26], that describes when and how cyclists interact
with traffic lights are combined with the validated kinematic model of [104].

System description
This section describes the longitudinal movement model a cyclists moving towards the intersection con-
troller and crossing the road. Some cyclists have the destination straight on, some have to make a left turn
thereby being part of both cycle lane systems (Figure 3.2). For clarity, three different categories of cyclists
are distinguished: the straight on travelling cyclists, from now on referred to as a type 1 cyclist, the turn-
ing cyclist (type2.1) and the turned cyclist(type 2.2). The turning cyclists and the turned cyclist refer to
cyclists making a double crossing. The turning cyclist is located in the first system, before making the left
turn whereas the turned cyclist has made a left turn and now is located in the second lane, upstream of the
traffic light. Type 1 and type 2.2 agents behave in accordance with the same behavioral rules, but type 2.1
cyclists follow a different set of decision making rules.

Straight on travelling cyclists enter the system at the entry point, travelling at their preferred speed vc yc
pr e f ,

and leave the system at the exit point. A turning cyclist enters the system enters the system at the entry
point travelling at vc yc

pr e f and leaves the system at the crossing point with turning speed vtur n . It then enters
the second system with vtur n at the after turn entry point and leaves the system at the exit point.

Figure 3.3 visualises the movement of the cyclist in a single lane. A cyclists position x(t ) is represented with
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Figure 3.2: Exit and entry points of straight travelling and double crossing cyclists. Trajectory of a cyclist making a double crossing
is indicated.

respect to the entry point. Depending on their location, cyclists are located in one of six different areas.
These areas are the entry area, approach area, light approach area, turn approach area, crossing area and
exit area. These areas are defined by the entry point, the light approach point, turn approach point, traffic
light point, crossing point and exit point. Note that the light approach and turn approach area for turning
cyclists (type 2.1) overlap. The (light) approach areas represent areas in which the behavior of a cyclist is
influenced by the state of the traffic light. Note that the location of this areas is influenced by personal
characteristics, but not by the state of the traffic light. In the turn approach area a cyclists decisions are
influenced by the fact that they have to make a turn at the crossing point. By definition, type 2.1 cyclists
are located in either the light approach area or the turn approach area, whereas type 1 and type 2.2 cyclists
always occupy the approach area.

Figure 3.3: System description of bicycle lane. Note that cyclists that make a left turn pass through two systems (See Figure 3.2).

Cyclists choose their behavior based on what area he/she is in. The location of the after turn point, the traffic
light point, crossing point and exit point are fixed and based on the infrastructure layout. The location of the
light approach point and the turn approach point are dependent on personal characteristics. The following
personal variables are associated with a cyclist:

• Lc yc
tur n = 0,1. A binary variable that represents if a cyclists wants to travel straight or make a left turn.

• vc yc
pr e f . The personal preferred speed of an individual cyclist.

• vc yc
t ar g et . The target speed to which a cyclist wants to accelerate.

• ac
max . A cyclists’ the maximum comfortable acceleration rate.

• d c
max . A cyclists’ the maximum comfortable deceleration rate.
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Kinematic Model
The basic movement of cyclist is modeled according to the simple kinematic model shown in Equations
3.10,3.11 and 3.12. Every time step the position, speed and acceleration are determined. The position is
found by taking the previous position and adding the previous speed times the time step. The speed is found
the same way: take the previous speed and add the previous acceleration multiplied with the time step. The
value of the acceleration depends value is more complex and depends on the current speed, position and
state of the traffic light. The remainder of this mathematical model description will explain how the values
for the acceleration is calculated. First, the situation for cyclists travelling straight through will be explained
followed by the rules for left turning cyclists.

x[k] = x[k −1]+ v[k −1]∗∆T (3.10)

v[k] = v[k −1]+a[k −1]∗∆T (3.11)

a[k] = f (x[k −1], v[k −1], si [k −1]) (3.12)

Figure 3.4: Variable dependencies

Straight travelling and turned cyclists
The behavior of straight travelling and turned cyclist is relatively straightforward. Unless a red light is faced,
these cyclists will always aim to be travelling at their preferred speed. First the process of accelerating to the
preferred speed is discussed, then the influence of the red light will be explained.

The acceleration of a cyclist is calculated with Equation 3.13. This model and the model parameters are
adopted from the work of [104], which is validated on real life data. The Equation features model parameters
C , amax , B , a and c. These model parameters are different for each individual cyclist and represent personal
characteristics. The formulation also includes the speed ratio: a variable that relates the current speed, the
initial speed when the cyclist started accelerating, and the final target speed. This results in more realistic
behavior, because in practice a cyclist makes decisions on how much to accelerate or decelerate based their
given and desired speed. The speed ratio, which is based on the work of [11], is described in Equation 3.14.
For type 1 and 2.1 cyclists, the target speed vt ar g et always equals the preferred speed vc yc

pr e f . For turning
cyclists it can also take on the value of vtur n . This is explained further down.

a[k] = a(θs) =C c yc ∗ac yc
max ∗ (sin(πθs[k])+B c yc ∗ sin(2πθs[k]))+ (

1

θ2
s + cc yc

+ac yc ) (3.13)

Where,
a[k] = a(θs) = Acceleration/deceleration at speed ratio θs ,
θs = speed ratio,
ac yc

max = Maximum (Comfortable) acceleration/deceleration,
C c yc ,B c yc ,cc yc , ac yc = Model parameters based on personal characteristics,
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θs[k] = vc [k]− vi

vt ar g et − vi
(3.14)

Where,
θs[k] = speed ratio,
vc [k] = current speed,
vi = Initial speed when acceleration started,
vt ar g et = Target speed after acceleration ∈ {vc

pr e f , vtur n}

In case the cyclist is located in the (light) approach area and faces a red light, he/she makes a stop or go
decision. First the underlying deceleration model is explained, then the stop or go decision is elaborated
upon. Deceleration is assumed to commence as a constant deceleration model with value d c yc

model . This
model is also adopted from the cyclist kinematic model, validated on real life data as described by [104].
The rate at which a cyclist decelerates is based on personal characteristics.

As previously stated, cyclists are assumed to only react to a traffic light when located in the approach area.
The location of the approach point is defined as the Point at which a cyclist will need to start braking with
d c yc

model to ensure coming to a complete standstill at the stopping line and is described in Equation 3.15. The
formulation also includes a variable vstop . This variable describes the threshold from which cyclists are
assumed to be fully stopped. Speeds v[k] below this threshold will be rounded down to zero.

xl i g ht appr oach = xc yclel i g ht −
v2

stop − v2
pr e f

2∗dconst ant
(3.15)

When a cyclist is within the approach area and the traffic light shows red, the deceleration rate that will
allow the cyclist to come at a complete standstill at the traffic light, dr eql i g ht , is calculated . This is shown in
Equation 3.16. Note that if a cyclist enters the approach area while a red light is showing this rate will equal
d c yc

model , but if the light turns red while a cyclist is further downstream the light approach point this rate will

be larger then d c yc
model .

The calculated required deceleration rate is then compared to the personal maximum deceleration rate. If
it is larger (i.e. less negative), this the cyclist will decelerate with the dr eql i g ht . In case it is smaller -more
negative-, this would indicate the cyclist needs to decelerate faster than he or she is comfortable with. Cy-
clists in this scenario are assumed to threat the red light as if it was green and thereby choosing to accelerate
to vc yc

pr e f in accordance with the regular acceleration Equation 3.13. This is shown in Equation 3.21. The
assumption to base the stop and go decision on the required deceleration and maximum deceleration, is
common in intersection control research for cars and therefore deemed acceptable for this intersection
control thesis.

d c yc
r eql i g ht =−

v2
stop − v2[k]

2(xl i g ht −x[k])
(3.16)

a[k] =
{

a(θs), vc yc
t ar g et = vc yc

pr e f if S[k] = 0,d c yc
r eql i g ht > d c yc

max

d c yc
r eql i g ht , if S[k] = 0 & d c yc

r eql i g ht < d c yc
max

(3.17)

Summarizing the decision process on the acceleration for straight travelling cyclists is as follows:

a[k] =
{

d c yc
r eql i g ht , if S[k] = 0 & x[k] ∈ A2.1 & xl i g ht appr oach ≤ x[k] ≤ xtr a f f i cl i g ht

a(θs), vc yc
t ar g et = vc yc

pr e f else
(3.18)
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Cyclists that make a left turn
The kinematic model for cyclists that make a left turn is more complex. These cyclists enter the first cycling
path at the entry point and leave it at the crossing point travelling with turning speed vtur n . They enter the
second traffic lane at the after turn point with the turning speed and traverse the lane to the exit point. This
is visualized in Figure 3.2. For practical purposes, in this section a clear distinction is made on how turning
cyclists are referred to, depending on what system they are located. In the first system they are defined as
Turning Cyclists. In the second system cyclists are defined as Turned Cyclists.

Similar to straight travelling and turned cyclists, the turning cyclist will in the basis aim to be travelling at
its’ preferred speed, following the basic acceleration Equation 3.13. Divergence from this behavior is caused
by two different factors: they have to accelerate or decelerate due to the traffic light and because they want
to arrive at the crossing point with the turning speed, which is lower than the preferred speed. First the
influence of arriving at the crossing point at the turning speed is explained, followed by the effect of a red
traffic light.

Cyclists only start considering the turn they have when they are located in the turn approach area (A6),
defined as the area between the maximum turn approach point and the crossing point (see Figure 3.3). The
maximum turn approach point is defined as the location from where a cyclist, travelling at his preferred
speed, must start braking - using the comfortable deceleration rate dmodel - to reach the crossing point with
the turning speed (See Equation 3.19). This point can be located upstream or downstream of the traffic light,
depending on personal characteristics.

xmaxtur nappr oach = xcr ossi ng −
v2

tur n − v2
pr e f

2∗dconst ant
(3.19)

Note that being located in the turn approach area does not by definition mean a cyclist will be braking. A
cyclist that is travelling below its’ preferred speed may have to start braking later or even be accelerating, for
example because he/she was waiting for a red light. A distinction is made between cyclist that are travelling
below and above the turn speed. Cyclists in A6, travelling below the turn speed will accelerate towards target
speed vtur n following the basic acceleration Equation 3.13.

Cyclists in A6 travelling above the turn speed are assumed to keep travelling at this speed up to the point that
they need to start braking with dmodel - to reach the crossing point with the turning speed. This is assumed
because it does not make sense for cyclists to first accelerate back to their preferred speed, keeping in mind
they would have to start braking harder than is comfortable for them. Cyclists of whom the maximum turn
approach point is located downstream of the traffic light will fist keep accelerating towards their preferred
speed until they enter A6. This situation is visualized in Figure 3.3 as area A5.5. These cyclists have low
preferred speeds so they have to start braking relatively short before the crossing area and accelerating does
make more sense for them.

xbr aketur nmax = xcr ossi ng −
v2

tur n − v2
pr e f

2∗dconst ant
(3.20)

Turning cyclists react to the traffic light the same way that the other types of cyclists do. When located in
the light approach area, when facing a red light, they evaluate the deceleration rate that is required to come
to a complete standstill at the stopping line (Equation 3.16). If this deceleration rate is smaller than their
maximum they will start braking with the required deceleration rate. Is it larger than their maximum they
will cross the yellow or red light and behave as they would facing a green light. After reaching the crossing
point and leaving the current system, cyclists enter the other bicycle path and behave as is described in
earlier paragraphs.

a[k] =


a(θs) with vt ar g et = vpr e f , if v[k] ≤ vpr e f & x < xbr aketur nmax

a(θs) with vt ar g et = vtur n , if v[k] ≤ vtur n & xbr aketur n−cur r ent < x[k] ≤ xcr ossi ng

dr eq , if v[k] > vtur n & xbr aketur n−cur r ent < x[k] ≤ xcr ossi ng

(3.21)
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Queuing of cyclists
The model does not consider interaction between cyclists. Therefore, when a signal shows a red light, the
system description will lead to multiple cyclists stopping at exactly the same location just before the traffic
light. This behavior can be seen as realistic as long as the number of cyclists at standstill does not exceed
three or four. Three cyclists can easily stand next to each other and start accelerating at the same time, but
the controller predictions get increasingly more unrealistic when more people are waiting for a red traffic
light. This is for two reasons: stops at other locations and queue discharge rates.

Firstly, the controller aims at predicting stops. The movement model requires cyclist to stop directly in front
of the traffic light, but in reality cyclists would have to stop a bit more upstream as another bike is obstruct-
ing their way. The controller providing green to prevent a stop just ahead of the signal now is redundant, as
the cyclist in reality would have had to stop earlier.

Secondly, it does result in unreasonably fast queue discharge rates. In case of three waiting cyclists, the
cyclists now all depart at the same time whereas in reality the third cyclist would have to wait until the
proceeding cyclists move. [124] even found different queue discharge rates depending on the location of the
waiting position relative to the stopping line, something that also is not included in the model as described
in this section.

However, as this controller is designed to function in unsaturated flow conditions, one may ask the ques-
tion if queues of more than two cyclists will be common and therefore if the queuing behavior should be
incorporated in some other way. The definition [80] used for unsaturated traffic flows is "Almost no queues
present". Additionally, a back of the envelope calculation shows a traffic demand of 300/h for a single bi-
cycle path leads to an average headway of 12s. This traffic demand is already quite high for a single lane
and means that on average a queue exceeding three bicycles will only occur with a red time larger than 36
seconds. Of course these are averages, so fluctuations in demand generation could lead to this situation
more often.

For now it is decided that queuing behavior will not incorporated, as on average a situation causing unreal-
istic queuing behavior is not expected to occur frequently. Even with a number of cyclists higher than four
waiting at the same time, average delays for waiting cyclists are expected to be influenced only slightly for
the first additional waiting cyclists. Delays for cyclists that arrive at high speeds at the end of the queue and
overtake all the waiting cyclists are less realistic, as in real life these cyclists would have to decelerate or even
reach a full stop.

Putting a hard limit on the number of cyclists allowed to be in a queue at the same moment is a trade off
between accuracy and usability. Allowing only two cyclists in the queue can limit the demand levels used for
performance evaluation. The suggested limit is six to eight. Based on the assumption of a saturation head-
way of approximately 1.5s [124] this will add an error in delay of approximately 0.75s to the cyclists waiting
in the queue, which is deemed acceptable. Future work could fully dissolve this problem by modelling the
queue a vertical queue with a location moving upstream. The discharge rates for this queue could be based
on the work from [124].

3.2.4. Mathematical model for car driver behavior
The movement model of the cars are based on the movement model of [117], who developed a car following
model incorporating interaction with the red and green state of traffic lights for a single lane without over-
taking. This model is chosen as it was the only car following model that was found in the literature overview
presented in Section 2.3 that includes behavioral assumptions with regard to interaction with traffic lights.

The position of cars is determined the same way as for bicycles: by adding product of the current speed and
the time step to the previous position (see Equation 3.10). For simplicity and to stay within the applicability
range of the validated model, sorting lanes of the intersection are assumed to start at the system boundary
and car drivers are assumed to enter the system on the correct lane designated for their destination. All
vehicles ccar ∈ C car have their own speed V v [k] and enter the system at the speed limit vmax . Cars deter-
mine their new speed based on the current speed and acceleration. Acceleration is calculated based on a
cars’ current and optimal speed Vopt , which differs depending on a red or green traffic light. This occurs in

37



3.2. Traffic system model 3. Methodology

accordance with the following Equations.

vm[k] = vm[k −1]+av [k −1]∗∆T

av [k] = 0.85(V (∆xm(k))− vm[k])
(3.22)

Where,
V (∆xm(k)) = A vehicles’ optimal velocity

The optimal velocity for a vehicle following another vehicle is defined in Equation 3.23. Vehicle length is
part of this Equation, but this is assumed to be a fixed value of 2.5m in accordance with the assumption
made in [117]. When a traffic light is red, optimal velocity is defined as a function of the distance between
the car and the stop line ln (Equation 3.24). These functions assume an uniform vehicle length of 2.5m.
[117]s model is made for straight traveling traffic. In order to apply the model to turning vehicles as well,
a modification is made. The maximum allowed speed for cars making a turn is set to 30km/h. This value
is the average of the pace boundaries of scenarios used by [128], who modelled two dimensional vehicular
movement at intersections.

V (∆xcar [k −1]) = vmax

2
∗ (tanh(0.13(∆xm[k −1]−12.5)−1.57)+ tanh(2.22)) (3.23)

Where,
xcar [k −1] = Previous position of the vehicle
∆xm[k −1] = Headway between current vehicle and its’ predecessor
vmax = Speed limit ∈ {30,50}[km/h]

V (∆xcar [k −1]) = vmax

2
∗ (tanh(0.13(xl i g ht −x[k −1]−7.5)−1.57)+ tanh(2.22) (3.24)

Where,
∆xm[k −1] = Headway between current vehicle and its’ predecessor
xl i g ht = Location of traffic light

[117] also defined upper (Lm
up ) and lower bounds (Lm

low ) for the distance to the stop line from where the
deceleration profiles are reliable in simulating the vehicles braking process. His model assumes all cars
follow Equation 3.23. If the traffic light shows a red light, the first car between Lm

up and Lm
low starts braking in

accordance with Equation 3.24. Cars that are downstream of Lm
l ow will keep on driving. These assumptions

will be taken over in the movement model for this thesis. Lm
up and Lm

low are calculated in accordance with
Equation 3.25. The formula for Lm

up is taken directly from [117], the lower bound is a quadratic interpolation

of numerical results originating from Table 2 of the same paper. This interpolation has an R2 value of 0.9994.

Lcar
up =

arctanh( 2vo
vmax

− tanh2.22)+1.57

0.13
+7.5

Lcar
low =−0.014∗ v2

o +1.022∗ vo −0.017

(3.25)

Where,
vo = Initial speed when braking starts
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3.2.5. Definition of control objectives
For simplicity, only a subset of the desires of cyclists identified in the literature review in Section 2.2.2 are
included in the objective function. These two variables are the delay of cyclists and the number of stops
cyclists have to make. These variables are chosen, as they represent the two main negative effects of inter-
sections on cyclists very well, namely the additional travel time and the additional required effort.

Delay for cyclists and cars
In an ideal scenario, a cyclist will approach a traffic signal showing a green light. He/she will not be forced to
diverge from the desired speed. This is the ideal situation to which the total time spent (TTS) in the system
will be compared in order to find the delay. This formula holds for both bicycles and vehicles.

Dc yc = T T Sc yc − vpr e f ∗xexi t

Dcar = T T Scar − vmax ∗xexi t
(3.26)

Number of stops
For cyclists one of the objectives that is controlled for is the number of stops they have to make. A simple
counter, combined with a fixed threshold vstop will be used to keep track of this value.

N c
stops =

{
N c

stops +1, i f vc [k −1] < vstop É vc [k]

N c
stops , if else

∀c ∈C , (3.27)

3.2.6. Model limitations and assumptions
The objective of this thesis is not to create a detailed movement model, but to design an intersection con-
troller, of which a movement model is part. As described in Section 3.2, full creation of an movement model
would be a thesis on itself. For this reason the movement models that are used are based upon validated
literature as much as possible and careful attention was paid to the selection of movement models and
the models are expanded upon with assumptions the author of this thesis deems acceptable to be made.
Full validity cannot be ensured however. This subsection will elaborate on what additional assumptions
are made parts of the used, validated models. Some of these assumptions are already described in earlier
paragraphs. First an overview of these points is provided in the form of bullet points, followed by textual
explanations of these assumptions.

One of the main conclusions was that movement models for cyclists and interaction of cars with traffic
lights are limited. Therefore, the controller will be designed in a way that movement models can be easily
interchanged with other, better models when these become available.

• Related to traffic light representation:
– Yellow time is used as a stopping command, instead of as effective green.
– No negative clearance time allowed.

• Related to the cyclist kinematic model:
– Simplified red light running behavior.
– No interaction between cyclists.
– Only three types of cyclists to represent heterogeneity.

• Related to the car following model:
– Anticipation based on the headway with a single predecessor.
– No personal characteristics and identical driving behavior.
– Lower speed in turns is enforced with a lower maximum speed.

Traffic lights
The assumption that yellow light is part of the stopping command could be debated, as some researchers
like to work with the effective green concept, using as much of the yellow phase to move agents through the
intersection and increase efficiency. It is argued that both these assumptions can be defended and none
of the approaches are wrong. Reasoning on why this method is chosen is found in Section 3.2.2. However,
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when comparing performance with other controllers, this difference should be taken into account.

Another assumption is that conflicting traffic flows are not allowed to have a green and yellow light at the
same time. In some countries it is common to allow this, and recently this has also has been implemented in
some cities in the Netherlands. This may be allowed when the entrance time is larger than the exit time, re-
sulting in negative clearance times (See Appendix C.1 for a full explanation). Inclusion of negative clearance
times can reduce loss time and help increase intersection throughput. This may be especially beneficial for
a structure free controller, as this controller can be expected to switch more often between the states of traf-
fic signals. However, for simplicity no negative clearance times are used. Inclusion of negative clearance
times would introduce another reason for differences in performance, increasing the difficulty of extracting
causes of performance differences.

Bicycle movement model
No movement models were found in the literature that fully covered the movement behavior this thesis
needs to describe. Therefore a model was developed, based on the movement model presented in [104].
This research proposes a model, validated with real life data, on how cyclists accelerate and decelerate when
confronted with traffic lights without interaction with other cyclists. It lacks description on when these
cyclists start braking and whether they obey or speed trough yellow and red lights. This thesis therefore
must make assumptions on these matters. It is assumed that all cyclists obey the traffic light and behave
in accordance with the kinematic model that allows them to come to a complete stop at the stopping line.
This is not realistic as real life red light running behavior is far more complex [54]. The conclusions from
this thesis should therefore not be directly translated to expected results when a controller like this would
be implemented in real life, but used instead as an indication of what advantages could be achieved using
structure free control.

Another major assumption in the model is the fact that bicyclists do not interact with each other. Assuming
cyclist do not interact with each other is a step away from reality, as many studies have been done that aim
to get insights in exactly how this interaction takes place and what influences cycling behavior. However,
as the controller is scoped to function during unsaturated traffic flows, the number of times cyclists would
get close enough for this interaction to have effect are expected to be low. The realism in the prediction will
decrease however with increasing traffic flows. The lack of interaction allows cyclists travelling at different
speeds to overtake each other, which is an important phenomenon to include and the current model allows
for fast computation times, which is beneficial as real time control would be preferable. When better, more
complete movement models for cyclists, that include interaction with traffic lights, other cyclists and real-
istic accelerating and decelerating behavior, are available, these models should be implemented instead of
the current model.

The assumption of no interaction has a bigger effect on the queuing behavior and saturation rates, because
queues are eminently a situation in which cyclists influence each other [124]. This is something that can be
accepted, as long as the number of cyclists waiting for the red traffic light does not get much higher than two,
as no interaction in the queue is a valid assumption for two cyclists waiting next to each other. Accuracy of
the predictions decreases with increasing number of waiting agents. A large queue can also lead to a cyclist
having a stopping point further upstream of the traffic light, something which currently is not taken into
account. Measures that can be taken to include queuing behavior are described in the How to deal with
Queuing subsection in 3.2.3. Currently this is not yet included as these situations are not expected to occur
frequently, given the unsaturated traffic flows.

Validating the movement model that results from combining the model of [104] with new assumption re-
garding queuing and interaction would be an extensive task and may be a thesis in itself. This is the main
reason for not including assumptions on these matters. As was mentioned in the beginning of this section,
the focus of this thesis is not to create a valid movement model, but to create a structure free controller.
Other research has been done that assumes the (simplified) movement of cyclists to be known and continue
to work based on that assumption[25][26]. The author therefore goes forward with the explicit assumption
that the movement model described in Section 3.2.3, accurately describes the cyclists movement. Note that
the controller design is able to function with any movement model that describes travellers on individual
level.
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A final major assumption made in this thesis is the generalization in types of cyclists. As mentioned often
throughout this report, one of the most important aspects of cyclists is the wide variety of personal charac-
teristics exists and desires. This variety is reduced to implementation of three types of cyclists with a distinct
combination of characteristics: fast, average and slow cyclists. See Section C.1.1 for the specific values for
characteristics.

A less impact full assumption is the implicit assumption that cyclists on two crossing cycle paths do not in-
teract with each other. A queue for a red light or arriving cyclists can block cyclists that have just crossed the
car road and now have to cross the cycle path. This phenomenon is not included in the current movement
model.

Car movement model
The model used to represent the movement model of cars is taken from [117]. This model is chosen be-
cause it was the only model that was found, describing both car following behavior and interaction with
traffic lights. It too provides bounds between which distances from the traffic light the stopping behavior is
accurate. The model is also calibrated.

The model is based on a car following model. Car following models can include a wide range of driving
behavior and characteristics, ranging from further forward anticipation on multiple vehicles instead of one
predecessor to a large variety of personal driving characteristics. The car following model used in this thesis
is relatively simple: anticipation is only done based on the headway with a single predecessor and no per-
sonal characteristics are included. Vehicle length is assumed to be 2.5m and equal for all vehicles. This is
a simplified version of reality, but one that is acceptable to make, provided this model was the only model
found to incorporate validated interaction with traffic lights.

The model assumes vehicles move on a single lane without overtaking. The traffic signals function for traffic
lanes only. An additional assumption has been made to incorporate turning behavior by enforcing a lower
speed limit downstream of the traffic light. A realistic lower speed limit is taken based on the validated
model of turning cars by [128]. This assumption could lead to unvalidated decelerating behavior when a
car approaches and passes a green light at vmax = 50km/h and then has to decelerate to 30km/h. This part
of the model is not validated, but is not expected to lead to a situation where conclusions cannot be drawn
due to this assumption.

Because the model only assumes a single lane without overtaking, the assumption is made that the sorting
lanes are infinitely long up to the system boundary, and cars enter the system at the lane corresponding
with their destination. Although this is not realistic, as sorting lanes for turning traffic often are shorter, this
assumption is made to prevent inclusion of assumptions on lane changing models that would need to be
re-validated.
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3.3. Controller design
Section 2.4 provides an overview of possible control methodologies, and their advantages and disadvan-
tages. The knowledge that is gathered with this literature review ,is used to choose the best suited control
method for the traffic system model described in Section 3.2. Simulation based control is deemed the best
suitable control method for the scope of this thesis, for the following reasons.

Rule based control is not used, because the inflexibility of this method is seen as too big of a disadvan-
tage. The performance of the controller is very dependent on the environment in which the rules are used.
The rules that are effective for a given intersection layout, may turn out to be very ineffective when other
traffic lanes are added, or when traffic demand changes. Model based control (MBC) and data-driven con-
trol(DDC) are more flexible. Even though the performance of the controllers can be influenced by the envi-
ronment, MBC and DDC include optimization components, which allows for the ability to better adapt to
changing circumstances.

Model based control is preferred over DDC for two reasons. First of all, DDC introduces errors in predictions,
that are difficult to control for. If the performance of the controller is evaluated for variables like data quality
and connected vehicle penetration rate, it is important to have control over the extend of prediction errors.
This is possible with MBC, but not with DDC. Note that for real world applications and testing, DDC is
deemed the better choice. This is because of its’ capability to predict complex human behavior significantly
better than MBC [94]. However, the design and testing of initial prototypes of the structure free controller,
benefit greatly from better explanatory value and the ability to control for errors. The second reason why
MBC is preferred over BDD, is that the potentially long training time is seen as too big of a disadvantage,
given the limited time scope of this thesis. Especially because a short training time may result in poor
predictions and therefore poor performance of the controller.

Because long computation times are one of the main disadvantages of simulation based control, a heuristic
method will be used. Heuristic methods provide guidelines on how to vary input parameters, with the result
of a more efficient search process through the solution space compared to random searches. If variation of
a parameter results in a better performance, the method will investigate neighboring solutions of this solu-
tion. Implementation of regular, simple heuristic methods for this intersection control problem is difficult,
because of the nature of the control problem. The possible solutions, signal plans in the form of a matrix
of ones and zeros, do not allow for step wise variation of the input parameters, because of the large inter-
dependency of the individual matrix entries. This dependency is the result of the wide set of constraints
on signal plans, like the minimum green time, protected conflicts, clearance time and others. Therefore,
changing any of traffic light state input variables (s[i ,k]) is likely to result in an infeasible solution. Instead,
solutions should be generated by means of algorithms or decision trees that consider these constraints.

These algorithms must be able to generate feasible random solutions, but must also be able to adapt or
combine solutions that perform well. Genetic algorithms (GA) generate sets solutions, evaluate the perfor-
mance of the solutions, and combine or adapt the best performing solutions for the next iterative step and
are therefore very suitable as a heuristic method for this research. Newly created algorithms are required,
as no such algorithms have been found in literature. The GA may include a rule based solution in the first
generation, to provide the algorithm with a guaranteed, reasonably well performing solution that speeds
up the process even further. The designed, structure free genetic algorithm controller will from here on be
referred to as SFGA.

The remainder of this section is structured as follows. Section 3.3.2 provides a high level description of the
functioning of the controller. Then Sections 3.3.3 and 3.3.4 describe the solution generation and evaluation
process respectively.

3.3.1. Interaction between the controller and the traffic system model
The controller must determine the best signal plan for a simulated scenario with duration Tmax . In this
main simulation, travellers react to the signal plan that is decided upon by the controller. At the start of
the main simulation, this signal plan is still undefined, but every tcontr ol (tc ) seconds the controller decides
upon the plan for the next tc seconds. In other words, the control problem is formulated as a rolling horizon
(RH) problem. This is visualized in figure 3.5 and will be explained in more detail now. The procedure is
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provided in pseudo code in Algorithm 1.

At the start of the main simulation, the first tc seconds of the signal plan of the entire simulation are defined
as the traffic lights being all red. Every tc seconds, the controller chooses the signal plan for the next tc

seconds by means of simulation based optimization over the prediction horizon TRH . The first tc seconds of
the prediction horizon are already fixed, as this part of the signal plan has already been decided upon in the
previous control moment. This fixed part of the signal plan represents the time available for computation,
were the controller to be implemented in real life.

Using the fixed part of the signal plan as starting point, new, feasible, signal plans are created. Simulations
are used to evaluate the signal plans. The state of the main simulation, at the start of the RH window, is used
as the starting point. The RH simulations are performed entirely independent of the main simulation, and
evaluate the effect of generated signal plans over the duration of TRH . Prediction errors can be included
if this is deemed necessary (see Appendix B, however this is not done in this research. After deciding on a
signal plan, which follows the process described in Section 3.3.2, the first tc seconds of the next prediction
horizon are fixed and included in the signal plan of the main simulation. This entire process is repeated
until the main simulation has ended.

Figure 3.5: Rolling Horizon and control interval

Scenarios for the main simulator are generated by means of a scenario seed. This seed determines at what
moment in time travellers enter the system, the personal characteristics of these travellers, and in which
traffic lane they spawn. The RH simulations follow the same scenario as the main simulation.

Algorithm 1 Interaction traffic system model and GA controller

Initialize:
Signal plan for main simulation. First tcontr ol seconds all red, remainder filled with NaNs
Scenario for main simulation

for all k ∈ {k0,k1,k2, ...,Tmax /∆T } do:
new travellers enter the system
update main simulator using traffic system model
if k corresponds with multiple of tcontr ol

GA control procedure: ▷ Full GA procedure in Section 3.3.2 and Algorithm 2
Generate solutions
Initiate RH simulations, starting with the traffic situation of current time step
update main signal plan with first tcontr ol seconds of the best performing RH signal plan
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3.3.2. Model Based Control using a GA
The controller functions as follows. At the start of each control moment, a fixed number Npop (Population
size) of random solutions (Signal plans S, composing of traffic signal states s[i ,k] ∈ S, see Equation 3.2) are
generated. The effect of this generation of solutions is determined, by simulation using the traffic system
model described in Section 3.2. After evaluation, a predefined number of the best performing solutions
(Nkeep ) are stored and used to generate new solutions. Variations of the best performing solutions are made
by means of altering (Mutating) one, or combining two solutions (Crossover). Every time a random selection
is made to decide which of the kept solution(s) are used.

The newly formed set of solutions, is complemented with randomly generated solutions up to the popula-
tion size. The second generation is evaluated, and this process is repeated Ng en times. Due to randomness,
it may be possible that the controller does not generate a reasonable good solution within the given number
of generations. In order to guarantee a minimal performance, one of the solutions in the first generation is
generated using a rule based system. The whole process is visualized in Figure 3.6 and provided in pseudo
code in Algorithm 2.

Algorithm 2 GA controller algorithm

Initialize:
Fixed part of the signal plan
Starting point for RH simulations from main simulation

for all Ng ener ati on ∈ {1,2,3, ...,k0,k1,k2, ..., Ng ener ati ons} do:
if Ng ener ati on = 1 do

Generate one rule based solution and Npop −1 random solutions
else do

Generate Npop solutions by means of mutations, crossovers and random solutions in accordance
with the M/C/R rate. ▷ M/C/R rate for case study provided in Section 4.1.4

Simulate all solutions for duration TRH

Determine Objective value for each of the solutions
Select the best Nkeep solutions as input for the next generation

update signal plan of main simulation with the first tcontr ol seconds of the newly determined signal plan

3.3.3. Solution generation
The solution generation process uses a signal plan, with the length of the minimum green time, a starting
point to create feasible solutions of TRH seconds. Genetic algorithms generally entail a combination of
random solution generation, mutations and crossovers. Algorithms for these solutions will be discussed in
this section. Before that, Section 3.3.3.1 explains some ways of adapting solutions that should be included
in the mutations and crossovers.

The random solution generation algorithm is the most generic algorithm of the four. Therefore this one is
explained first in Section 3.3.3.2. Sections 4,3.3.3.4 and 3.3.3.5 then explain the workings of the two mu-
tation and the crossover algorithm. Section 3.3.3.6 finally elaborates on the rule based solutions. For the
mathematical formulation of the traffic light related mathematical formulation and constraints see Section
3.2.2. For the GA parameter values and solution generation probabilities, used in the case study, see Section
4.1.4.

3.3.3.1. Solution algorithm requirements
In practice, a number of decisions can be made to make variations of signal plans. Genetic algorithms make
use mutation and crossover algorithms to make variations of existing solutions, without breaking any of the
constraints. This section will discuss what decisions can be made to make variations in signal plans in traffic
engineering terms, which is then followed by whether this can be best captured in a mutation or a crossover
algorithm.
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Figure 3.6: Genetic Algorithm

The sequence of traffic lights that show a green light, should be investigated to see what sequences result
in a good performance. This sequence will be referred to as a rough signal plan for the remainder of this
chapter. Finding a rough signal plan is important, as it allows for a priority sequence to be determined.
The combination of traffic lights with the most travellers benefiting from a green light can be served first,
followed by the traffic lights second most benefit and so on. Combinations of well performing rough signal
plans could be mixed to achieve faster convergence to the optimal sequence.

In addition to the sequence of traffic lights, the exact timing of the change between subsequent green pe-
riods has to be determined. It may be beneficial to allow a traffic light to be green for a couple of seconds
longer, if this allows a traveller to cross that otherwise would face a red light and would have to wait until a
new green period starts. A green time may be ended earlier, if there are no travellers making use of this green
time and the green time prevents other traffic lights to show green. Changing the timing of switches between
subsequent green times of conflicting traffic signals can be achieved by earlier starts of green, green time
extensions and green truncation. This must be done in a way that the changes in green time of one traffic
light, do result in conflicts with other traffic lights or the minimum green time constraint. Ideally a green
time would be shortened enough, that another movement can fit between two subsequent green periods.
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All these phenomena can in theory be achieved by mutation algorithms, crossovers and random solutions.
However, not all not all phenomena can be guaranteed with each type of algorithm. Prolonging and short-
ening green time only occurs by crossovers, when the two parent solutions have similar rough signal plans,
but differ in green time duration. As this is not always the case with two parent solutions, changes in exact
timing of changes between subsequent green periods will be enforced in a mutation algorithm.

Provided it does not conflict with any constraints, green times can be prolonged and shortened or reduced
at the start and at the end of a green time. Both should be incorporated in the mutation algorithms. Shorten-
ing the green time at the end of one green period, may allow for an earlier start of the green time of another
traffic light. In the same way, extending green may require a delayed start of the green for another move-
ment. Therefore, only two mutation algorithms are required to capture earlier start of green, later start of
green, earlier end of green and green time extension. Every time a mutation is performed, a random choice
is made between the two.

Creating different rough signal plans will be done by means of crossovers. If a solution scores well because
it allows a lot of agents to pass a green light in traffic direction A, and another scores well because it does
the same with direction B, a crossover will combine directions A and B as long as they do not conflict or
target have both green periods follow each other. Note that again, this can occur with random generation
and mutation as well, but crossovers are expected to achieve this behavior by default instead of by chance.

3.3.3.2. Random solution generation algorithm
The random solution generation algorithm is the most generic of the four different solution generators. It’s
workings are explained in this section. A visual representation can be found in Figure 3.7. The text in this
section will refer to steps in this figure. Algorithm 3 shows the pseudo-code and mathematical formulation.

As input, the algorithm uses the fixed signal plan, which are already filled with either zeros or ones. The
remainder of the matrix entries are empty, or not yet defined (Step 0). The algorithm uses knowledge of the
system and logic, to fix matrix entries of which it can be known that a zero or one is necessary in order for
the solution to be feasible (1.1-1.4 in Figure 3.7). This concept, similar to the functioning of the so-called
Japanese Puzzle or Nonogram, will be explained in more detail in the next paragraph. When this is done,
one of the remaining empty spots is randomly chosen and gets assigned the value one(1.5). This process is
then repeated until the matrix is fully filled.

The knowledge of the system, represents fixing matrix entries of which you can determine their value, given
that the solution must be feasible and adhere to the constraints. First ones are placed based on the mini-
mum green time constraint (1.1). If a traffic light shows red and then turns green, a feasible solution requires
the next Gmi n seconds to be green as well, allowing these entries to be fixed. Note that this can always be
done as long as a traffic light has shown red less then Gmi n seconds before the green. For example, if a light
was red two seconds before it shows green, it must also be green for the next Gmi n −2 seconds (2.1).

Next, zeros are placed on empty locations based on the conflict (1.2) and clearance time (1.3) constraints.
If a traffic light is green, a feasible solution requires all conflicting directions to be red at the same time
step. Similar for clearance time, if direction A shows green, direction B must remain red up to at least the
clearance time.

After a couple of iterations, it can occur that the signal plan for a traffic light has an empty gap between two
red times (3.1-3.3). If this gap is smaller than the minimum green time, it is not possible for the light to show
green in this period and therefore must be red (3.4).

3.3.3.3. Green time extension mutation
This section will explain the algorithm that performs the Green time extension mutation. A visual repre-
sentation can be found in Figure 3.8. The text in this section will refer to steps in this figure. Algorithm 4
shows the pseudo-code and mathematical formulation. Only finding the mutation location and changing
a zero from a one is straightforward. However in many cases this will lead to infeasible solutions, as the ex-
tended green time ’eats away’ from a clearance time or yellow time. Therefore a slightly more sophisticated
algorithm is required.
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Figure 3.7: Genetic Algorithm

The extension algorithm searches for matrix entries that represent the start of a red time i.e. a zero below
a one in the parent. A condition for this is that the red time start lies after the first fixed Gmi n seconds, as
a mutation cannot occur here (0. in Figure 3.8). A random start of red time (kn , fn) is chosen. Then all
the rows up to kn are copied from the parent to the child, every row below that is kept empty. A one is
placed in the mutation location. From this point on, the algorithm will row by row fill the remainder of the
child solution. This is done by first using system knowledge to place ones and zeros in all locations of it is
required for a feasible solution. See the section on random solution for a more detailed description of how
these mechanics work. After this, the remaining empty entries earliest row of the child solution are copied
from the parent solution. These two steps are repeated until the matrix is fully filled. Alternating between
system knowledge and copying from the parent ensures no constraints are broken but at the same time
keeping as much genetic information as possible.

As a final note, the reader should be aware that this algorithm does only extend green time with steps of 0.5
seconds. For extension of a longer duration, this mutation needs to performed multiple times in successive
generations.

Figure 3.8: Green time extension mutation. Step 0 shows a parent solution. Other steps illustrate the generation of the child
solution
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Algorithm 3 Random solution generator

Initialize sets:
Empty spots E: e(k, f ) ∈ E
Set of ones: o(k, f ) ∈O
Set of zeros: z(k, f ) ∈ Z
Discrete time steps up to Gmi n : D ∈ {0,1,2..Gmi n}

while E ̸= ; do:
for all o(k, f ) ∈O do: ▷ Place ones based on Gmi n

for all d ∈ D do:
S(x, f ) = 1 for x ∈ {k,k +1...k +Gmi n −d})
S(X , f ) = 1 for x ∈ {(k +Gmi n −d), (k +Gmi n −d −1), ..,k

update E ,O
for all o(k, f ) ∈O do:

s(k2, f2) = 0 if p( f , f2) = 1 ▷ Place zeros based on conflicts
s(k, f2) = 0 if k2 −k1 <C l ( f , f2) ▷ Place zeros based on clearance time

update E , Z
for all f ∈ F : ▷ Place zeros based on Gmi n

for all
(
o(k1, f1),o(k2, f1)

)
∈

(
n

k

)
:

s(k1 : k2, f ) = 0 if S(k1 : k2, f ) ∈ E and k2 −k1 <Gmi n

update E
N = random index from E ▷ Generate a random empty location and place a one
en(k, f ) ← 1
update E ,O, Z

Algorithm 4 Green time extension mutation

Initialize:
sp (k, f ) = {0,1} ∈ Spar ent

sc (k, f ) = e(k, f ) ∈ Schi l d

R = {
(k, f ) if s(k −1, f )∗ s(k, f ) = 0∧ s(k, f ) = 0∧k > 6s

}
: ▷ Set of start of red time

n(kn , fn) ▷ Randomly chosen start of red time to postpone
Schi l d (0 : (kn −1), f ) ← Spar ent (0 : (kn −1), f )
Schi l d (kn , fn) ← 1

for all kcopy ∈ {kn +1,kn +2, ...kmax } do:
update Schi l d with system knowledge, E
Schi l d (kcopy , f ) ← Spar ent (kcopy , f )∀(kcopy , f ) ∈ E

3.3.3.4. Earlier end of green mutation
This section will explain the algorithm that performs the Green time extension mutation. A visual represen-
tation can be found in Figure 3.9. The text in this section will refer to steps in this figure. Algorithm 5 shows
the pseudo-code and mathematical formulation. Only finding the mutation location and changing a one to
a zero is straightforward, however this ignores the fact that the reduced green time may allow another traffic
light to start its’ green time earlier. The proposed algorithm allows for this.

The green time reduction algorithm identifies all the matrix entries that correspond with the end of a green
time. Two constraints are that this entry must be be after the first fixed Gmi n seconds of parent solution,
and the green period must be more than Gmi n seconds long, as green time reduction would otherwise lead
to a conflict with the minimum green time constraint (0. in Figure 3.9). A random pick is made from this
selection, and is changed from red to green (1.). Then, all the matrix entries that conflict or fall within the
required clearance time window, are cleared (3.). System knowledge is used to fill in the matrix locations that
are required to be red (3) and from that moment on, the algorithm iterates between generating a random
one (4.1) and updating the matrix with system knowledge (4.2) until the entire matrix is filled.
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This algorithm does only reduce green time with steps of 0.5 seconds. For more reduction, this mutation
needs to performed multiple times in successive generations. Because the algorithm allows other traffic
lights to start showing green earlier, this type of mutation will not allow an entirely new direction to be
introduced between two green times.

Figure 3.9: Green time reduction mutation. Step 0 shows a parent solution. Other steps illustrate the generation of the child
solution

Algorithm 5 Early end of green mutation

Initialize:
sc (k, f ) = {0,1} ← Spar ent

Gend = {
(k, f )

}
if(

s(k, f ) = 1∧k = kmax
)∨ (

s(k, f )∗ sn(k +1, f ) = 0∧ s(k, f ) = 0
)

k > 6[s] and
s(k −6[s], f ) = 1 ▷ Set of end of green time

n(kn , fn) ▷ Randomly chosen start of red time to postpone
Schi l d (kn , fn) ← 0
Schi l d (k, f ) = e(k, f ) if p( fn , f ) = 1 ▷ Clear entries based on conflicts
Schi l d (k, f ) = e(k, f ) if k2 −kn <C l ( fn , f ) ▷ Clear entries based on clearance time

while E ̸= ; do:
m(km , fm) ▷ Place random one
Schi l d (km , fm) ← 1
update Schi l d with system knowledge, E

3.3.3.5. Crossover algorithm
This section will explain the algorithm that performs the Green time extension mutation. A visual repre-
sentation can be found in Figure 3.10. The text in the following paragraphs will refer to steps in this figure.
Algorithm 6 shows the pseudo-code and mathematical formulation. The algorithm aims to formulate an
child solution from two parents, while keeping as much genetic information from both the parents as pos-
sible.

The first Gmi n seconds of one of the parents is taken as the fixed part of the child solution. Note that it does
not matter which of the two parents is chosen, as the first Gmi n seconds are identical by definition. The
matrix is updated with system knowledge (Indicated with 0. in Figure 3.10). A random pick is made from
the matrix entries that are empty in the child solutions and have a one in a parent solution. A one is placed
on that location in the child (1.1.). Then, the child is again updated with system knowledge, ensuring no
constraints will be broken later on. Alternating between the two parents, this process repeats until there
is no longer any overlap between the locations of ones in either parent, and empty spots in the child. At
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this point, it is no longer possible to use genetic information of any of the parents to fill the matrix of the
child solution. If at this point the child solution still has empty spots, random generation is used to fill the
remainder of the matrix.

The main purpose of crossover algorithms is to determine the sequence of traffic lights that should show
a green light, in other words a rough signal plan. This is done by combining two well performing parent
solutions. By randomly taking a one from each of the parents, a combination of the plans is constructed.
The intermediate updating of the child solution with system knowledge ensures none of the constraints get
broken. It can occur that both parent solutions have quite similar different rough signal plans. This makes
the algorithm ineffective at generating a new signal plan. In this case, the crossover algorithm will result
in a solution that alters the exact timing of switches between the green time of two subsequent conflicting
traffic lights. It may speed up this process compared to mutation algorithms, as mutation algorithms ex-
tend or reduce green time step wise, while the crossover algorithm results in a randomly picked moment,
somewhere between the timings of the two parent solutions.

Figure 3.10: Crossover algorithm

Algorithm 6 Crossover algorithm

Initialize:
Spar ent1 , Spar ent2

sc (k, f ) = {0,1} ← Spar ent1 (k, f ) for k < 6s ▷ Fix first six seconds of the solution
update Schi l d with system knowledge, E ▷ Also update empty subset of Schi l d

Ni ter ati ons = 0
while E ̸= ; do:

SOpti ons1 = {(Spar ent1 ∩E }, SOpti ons2 = {Spar ent2 ∩E }
if SOpti ons1 ̸= ; and SOpti ons2 ̸= ; do:

if Ni ter ati ons is even ∨ SOpti ons2 =; do:
n(kn , fn) ∈ SOpti ons1

elif Ni ter ati ons is uneven ∨ SOpti ons1 =; do:
n(kn , fn) ∈ SOpti ons2

else do:
n(kn , fn) ∈ E ▷ Select a random empty location

Schi l d (kn , fn) ← 1
update Schi l d with system knowledge, E
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3.3.3.6. Rule based solution generation
A rule based solution is used to generate one solution in the first generation. This is common practice with
genetic algorithms, and aims to speed up the convergence process, as rule based solutions generally tend to
provide a reasonable performing solutions as a starting point for mutations and crossovers [55]. No genetic
algorithms in intersection control research have been found to apply this method however.

The rule based system used for solution generation is based on the objective of this thesis: prioritizing the
desires of cyclists. Therefore the solution generation follows the principle of providing cyclists with a green
light, unless one of two conditions are met. Rough predictions are made on the arrival of cyclists, with error
margins up to one and a half seconds compared to a perfect prediction. When a gap in arrivals, larger than
the minimum green time for cars is identified, the respective cyclist traffic light will turn to red and allow
cars to cross. Green time is truncated after the minimum green time has passed, but may be extended by
the green time extension or crossover algorithms in successive generations. Cars are also allowed to cross,
when a car driver otherwise will be waiting for more than the maximum allowed waiting time.

The solutions generated by the rule based system did not tend to outperform the solutions that were ran-
domly generated. Therefore it was decided to exclude this solution generation process later on during the
research.

3.3.4. Evaluation and selection
After the generation phase, all solutions of the current generation are simulated over a time horizon of
TRH seconds, to determine the effect of signal plans on the traffic system. The evaluation and selection
procedures used in the controller, are fairly trivial for a genetic algorithm [55].

For each simulation a run, the delay, waiting time and number of stops of all travelers are determined and a
performance cost Rc is calculated, representing a weighed cost for the control objectives delay and number
of stops (See Section 3.2.5). Note that a lower cost corresponds with a better performance. The equation
for calculating Rc is provided below. The objective function also includes a penalty for travellers exceeding
the maximum waiting time. The weight of this penalty is orders of magnitude larger than the other weights,
causing signal plans that result in violation of this constraint to not be selected for the next generation.
Delay and number of stops are calculated with history in mind: delay experienced before the start of the
rolling horizon window is included.

Rc =
c yc∑ (

Wc ycdel ay ∗Dc yc +Wstop ∗N c yc
stop

)+ car∑
Wcar del ay ∗Dcar +Wmaxw ai ti ng ti me ∗Nmaxw ai ti ng ti me

(3.28)
Where,

Rc = Run performance cost
Dc yc = Delay of a single cyclist ([s])
Wc ycdel ay = Weight for cyclist delay ([s−1])
N c yc

stop = Number of stops made by a cyclist
Wstop = Weight for a stop of a cyclist
Dcar = Delay of a single car driver ([s])
Wcar del ay = Weight for car driver delay ([s−1])
Dc yc = Delay of a single cyclists
Wmaxw ai ti ng ti me =Weight for travellers exceeding the maximum waiting time (>>Wc ycdel ay ,Wstop ,Wcar del ay )
Nmaxw ai ti ng ti me = Number of travelers that exceeded the maximum waiting time

The best Nkeep performing solutions are be carried on to the next generation and used as input for the
solution generation algorithms. Note that it may occur that duplicate solutions exist, and this selection pro-
cedure should not carry over multiple identical solutions. Run performance cannot be used as an indicator
for uniqueness, because two different solutions can have the same score. For example, if if two solutions
allow traffic in one movement cross, by the first solution does so with double the green time, the solutions
can have an identical run performance.
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To distinguish the overlap between two solutions, the overlap factor O f =∈ [0,1] is introduced, where a
0 indicates no overlap at all and a 1 indicates a fully identical solution. The overlap factor between two
solution matrices S1 and S2 is described in Equation 3.29. Element wise multiplication of the two matrices
returns the value one only when both solutions have a one in that location. Doing the same after subtracting
1 from both matrices, returns a one when both solutions have a zero in the same location. Summation of
both products and division by the size of the matrix returns a value between 0 and 1 that provides a score of
similarity.

O f (S1,S2) =
∑

S1 ⊙S2 +∑
(S1 −1)⊙ (S2 −1)

fmax ∗kmax
(3.29)

The algorithm first determines how many unique scores result from evaluating the current generation. Then
it goes though these scores one by one, storing solutions until the best Nkeep solutions have been stored.
This means that solutions that performed well in previous generations, are stored until there are more than
Nkeep better performing solutions. For each score, it is determined how many solutions have that score. If
there is only one, this solution is stored and the next score is investigated. If there are multiple, the overlap
score is used to identify how many unique solutions exist. All the unique solutions get stored and, unless
now more than Nkeep solutions are stored, the next score is evaluated. When multiple, different solutions
have the same score it can result in more than Nkeep solutions being stored. Therefore, a check is imple-
mented that removes all but the first Nkeep solutions.
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4
Evaluation Framework

This chapter will discuss evaluation framework, used to evaluate the performance of the structure free con-
troller. The evaluation is performed in two steps. In the first stage, the structure free controller is compared
to a benchmark controller. In the second stage, the performance of the structure free controller is evaluated
for different prioritization levels. These two stages of comparison allows for distinction of the differences in
performance caused by controller design and by prioritization of cyclists.

Section 4.1 discusses the experimental setup. Then Section 4.1.6 discusses the evaluation metrics and the
expected results for the first stage comparison. Section 4.2 then does the same for the second stage of
comparison.

4.1. Experimental setup
Performance evaluation of the SFGA controller will commence in two stages. In the first stage, the perfor-
mance of the controller is benchmarked against vehicle actuated control (VA). The structure free controller
will weigh the desires of car drivers and cyclists equally. This configuration will from here on referred to, as
the Basic Structure Free GA Controller or SFGA. The first stage of comparison establishes a baseline for the
performance, that can be attributed to controller design. In each simulation run, the parameter setting for
both controllers are fixed to value discussed in Sections 4.1.3 (VA) and 4.1.4 (SFGA).

In the second stage of comparison, different combinations of cyclist prioritizing weights are evaluated in
order to draw conclusions on how prioritization of cyclists influences the performance of the structure free
controller. Configurations of the structure free controller that prioritizes cyclists, will be referred to as the
Prioritizing Structure Free GA Controller or SFGA. Parameter settings of the SFGA are provided in Section
4.1.4.

4.1.1. Simulation environment
As was discussed in Chapter 3, the controller is evaluated by means of a simulation based case study. In
order to have as much freedom as possible in adaptation of the simulation environment and interaction
between controller and simulation environment, no available software packages such as Vissim are used.
Instead, a custom micro simulation environment is created in Python. Another benefit is that this also
allows for multiple simulations to be run simultaneously on the DelftBlue Supercomputer [28], which does
not allow for Vissim to be installed.

Scenarios are defined by means of a seed number. In each scenario, traffic is generated based on simulation
duration, traffic demand and mode split. The number of to be generated travellers is determined, from the
the simulation duration and the traffic demand. Every traveller is assigned a time stamp at which they enter
the system, following an uniform distribution, and a traffic modality, following probabilities in accordance
with the modal split. Finally, all cyclists are distributed uniform over all cycle paths of the infrastructure
layout and all car drivers are distributed uniform over all the car lanes. After generation, all travellers follow
the traffic system model presented in Section 3.2.

The intersection layout used in the simulation environment is provided in Figure 4.1). For simplicity sake,
the intersection layout has been chosen to be as simple as possible, while meeting criteria that prevent the
controller to be forced into cyclic control behavior. The included movements must require at least three
different conflict groups. Additionally, the movements must allow for the three different conflict groups to
be constructed in different compositions.
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Figure 4.1: Intersection layout of the case study

4.1.2. Simulation run parameters
This section will discuss parameter setting for the experimental setup. These parameters are summarized
in Table 4.1. For an overview of all the traffic system model parameters that are used in this case study, see
Appendix C.

Table 4.1: Experimental setup overview

Variable First stage Second stage
Simulation time 180s 180s
Modal split (Cyclists) 0.5 0.5
Turn rate (Cyclists) 0.3 0.3
Saturation rates {15%, 30%, 45%} {15%, 30%, 45%}
Scenarios evaluated
(per variable combination)

14 7

Weight car delay 1 1
Weights cyclist delay 1 {1, 1.7, 3.3, 5}
Weight cyclist stops 0 {0, 15}
Structure-free genetic control setup Section 3.3. Tuning in Section 4.1.4.
Benchmark controller VA (Section 4.1.3) -
Prediction quality Perfect Perfect

Simulations in both the first and seconds stage comparison cover a scenario with a duration of 180 seconds.
This value is chosen mainly with regard to limiting computation time. Unless said otherwise, the modal
split in simulations is Cyclist/Car = 0.5. In other words, half of the travellers travel by car and the other half
by bicycle. This value is based on the average modal split for trips between one and seven kilometres in a
Dutch urban cores [57]. This value is chosen as it fits the use cases of the controller, described in Section 1.1.
Note that there is a large variety in the mode split at intersections, both in terms of different geographical
locations, as well as in differences in time of day.

Cyclist heterogeneity is included by means of three different types of cyclists with different personal char-
acteristics (See Appendix C). Thirty percent of the cyclists travelling on the cycle path that allows a left turn
do make a turn. This value is arbitrarily chosen, as no theoretical support for this value was chosen in the
literature and this intersection is not based on any real life infrastructure, preventing the use of historical
data to determine the turn rate.

The performance of both controllers will be compared with regard to three traffic demand levels, repre-
sented as the saturation rate: the percentage of the intersection capacity. The intersection capacity is ap-
proximately 7000 travellers per hour, divided roughly equal between cars and cyclists. The resulting satura-
tion rates, used for evaluation are 15%, 30% and 45%. Because both traffic demand, due to a mode split of
0.5, and intersection capacity are divided equally between the modes, the saturation rates for both separate
modes are equal to the saturation rate of the entire intersection. The three saturation rate levels are chosen
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because of applicability limitations caused assumptions with regard to interaction between cyclists in the
traffic system model (Chapter 3.2). At traffic saturation levels larger than 45%, the assumption on no inter-
action between cyclists starts introducing unrealistic results. The interested reader can find more in this in
Appendix C.2.

In the first stage comparison, the only parameter that is varied is the traffic saturation level. As explained
in the previous paragraphs the levels 15%, 30% and 45%, corresponding to traffic demands of 1050, 2100
and 3150/h, will be used. All other simulation parameters are be fixed, therefore all differences in results
can be attributed to differences in controller, demand levels or stochasticity of the simulations. In order
to account for this stochastic behavior, 14 scenarios (seeds) are run for each combination of controller and
saturation rate. As many scenarios as possible were run, constraint by the available computation time on the
DelftBlue supercomputer. The combination of these setting allow for comparison in performance metrics
between the two different types of controllers for different traffic demands. The performance metrics used
for performance evaluation are described in Sections 4.1.6 and 4.2.

To account for stochasticity, caused by randomness in solution generation algorithms, arrival patterns and
personal characteristics of cyclists, 14 scenarios are run for each combination of experimental setup vari-
ables.

The second stage of comparison consists of a evaluation of the performance of the structure free controller
with and without objective function weights for cyclists priority. This allows for evaluation of the impact
special priority for cyclist has on total performance of the controller, but also on how these weights effect
each mode individually. As was done in the first stage of comparison, the three demand levels of saturation
rates 15%, 30% and 45% are used for evaluation. The baseline values of for mode split (0.50) and cyclist turn
rate (0.30) are used for all scenarios. The weight for a full stop and the ratio of delays between cyclists and
cars are varied.

The literature review in Section 2.2, on desires of cyclists and car drivers, proposed values for weights on
cyclist delay and for full stops. The review presented a low, average and high (1.7,3.3,5) estimation for the
relative VoT of cyclists compared to car drivers. These estimations are used as the relative weights of the
cyclist delay compared to that of car drivers in the objective function of the SFGA. The different weights
used for full stops are zero and the equivalent of 15 seconds of car driver delay. As no theoretical support
for any value for this parameter was found in literature, this value is somewhat arbitrarily chosen. Exper-
imenting with different parameter values showed 15 to be a value that influences controller performance,
without forcing the controller into always prioritizing cyclists over cars. Future work should try to find a
better foundation for this value and investigate controller sensitivity to this parameter. Because a car driver
delay equivalent is used, the contribution of this weight to the performance cost of a possible signal plan is
independent of the delay weights for cyclists.

In total this results in 24 combinations of variables: three demand levels, four weight ratios and two values
for the weight of full stops. Each of this combination is run for identical traffic scenarios. To account for
stochasticity, 14 different scenarios are simulated.

4.1.3. Performance comparison benchmark
Even though the majority of the papers reviewed in this thesis (See Chapter 2) compared the performance
of controllers to fixed time control, this thesis will benchmark the performance of the designed controller
against a vehicle actuated controller. This is done for three main reasons. First of all, the state of the art of
intersection control in the Netherlands is vehicle actuated control. Because the intersection layout, con-
sisting of separate traffic lanes and lights for bicycles, is also inspired on the Dutch standard, which is quite
uncommon in other countries, the performance of the controller is benchmarked against the Dutch stan-
dard. Second of all, because of limitations on maximum computing time of computational clusters [28], a
short simulation duration of 180 seconds has been used. This relatively small period would fit only one full
cycle (common maximum cycle time in the Netherlands is 120 seconds [6]). This would make the results
very sensitive to what phase is the first phase to be green, distorting the results. Note that VA is also sensitive
to this, however this is to a lesser extend as VA often has cycle times lower than the maximum cycle time.
Finally, as was discussed in the design methodology (Section ??), the controller is designed to function best
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in unsaturated traffic flows. Fixed time controllers perform most optimal at full saturation and the lower
traffic demands used in this thesis might result in an distorted image on the performance of the structure
free controller.

This remainder of this section will elaborate on the chosen control structure and parameters of the vehicle
actuated controller used for comparison. The term VA covers a wide range of implementations. Choices in
how the controller functions, for example when travellers are detected, the control structure and the choice
of the maximum green time, can significantly effect the performance.

The vehicle actuated controller follows a fixed sequence of combinations of traffic light, so called phases or
blocks, that are active after each other. The control structure is visualized in Figure 4.2. This control struc-
ture has the lowest minimum cycle time for the infrastructure layout of Figure 4.1 and has been generated
by VRIGen software.

Figure 4.2: Control structure of VA, used for baseline comparison

Only traffic lights that are part of the current active phase are allowed to show green. If a traffic light has
been green for less than the minimum green time, or if the controller detects traffic in this lane, green time is
extended up to the maximum allowed green time. When the current phase has been active for the maximum
allowed green time, or if no traffic is detected in any of the active traffic lanes, the next phase is activated.
Conflicts related to yellow time and clearance time are enforced, similar to SFGA.

Because this research considers the CE, traffic is not detected by means of induction loops, but instead
instead VA is assumed to detect any traffic located in the dilemma area. This area is the area in which
travellers are assumed to make a stop and go decision. The dimensions of the dilemma area are calculated
based on Gee. The start of the dilemma zone is located a distance equal to the yellow time multiplied by the
maximum speed upstream of the stopping line and ends at the stopping line. Similar to the SFGA controller,
VA is aware of the personal characteristics of travellers and hence the distance from where the travellers are
detected differs per traveller type. This is shown in Table 4.2.

Table 4.2: Detection distance of VA

Traveller Slow cyclist Average cyclist Fast cyclist Car driver
Detection distance upstream of traffic light [m] 18.2 28.9 42.02 65.7

The full procedure followed by the VA is provided in Algorithm 7. The full code can be provided on request
and has been stored on TU Servers. Values on the minimum green time, maximum green time, yellow time,
clearance time and maximum speed of different types of travellers are provided in Appendix C.1

This vehicle actuated control represents a very basic version within the spectrum of what is considered
VA. More sophisticated versions of VA allow include flexibility. This means that the Control structure has
alternative paths the controller can choose, depending on the measured traffic. This can allow for some
traffic lights in the next phase to start earlier, For example, there may be an alternative path from block 2
to block three. This block 2.5 could contain the traffic lights 04 and 05 from block two and 06 from block
three. This alternative can allow the green time of block four to start earlier, given there is no traffic detected
in the conflicting lane 10 from block two. It is chosen not to include flexibility like this because of two
reasons. First of all, even though inclusion of flexibility will increase the performance of the benchmark,
this performance is very dependent on what alternatives are included. This makes it very difficult for other
researchers to compare controllers they designed to the controller that is proposed in this thesis. For this
reason, comparing the structure free controller to a basic version of VA is deemed a good baseline. The
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Algorithm 7 VA control algorithm

Initialize system state:
Active block Ba

Active block duration Bd

for all k ∈ {k0,k1,k2, ...,Tmax /∆T } do:
new travellers enter the system
update main simulator using traffic system model
if k corresponds with multiple of 0.5: ▷ Any controller can change signal plans every 0.5 seconds

if Bd = 0 ▷ Bd = 0 corresponds with all red phase
Activate random block with travellers in dilemma zone. Update Ba and Bd

If there is no block with travellers in dilemma zone, Bd = 0
if 0 ≤ Bd ≤Gmax −Gmi n

Traffic lights with green duration <Gmi n prolong green
Traffic lights in active block without traffic in dilemma zone become red
Traffic lights in active block with traffic in dilemma zone become green
If there is no movements that are green, activate the next block

if Gmax −Gmi n ≤ Bd ≤Gmax

Traffic lights with green duration <Gmi n prolong green
Traffic lights in active block without traffic in dilemma zone become red
If all traffic lights are red, activate next block

second reason, of lesser importance, is that including any flexibility in the system makes the controller
significantly harder to program and include in the simulator.

For the same reason that flexibility is not included in the VA, it was also chosen not to include any perfor-
mance enhancing options, aimed at reducing delays for cyclists, in the controller. Examples are provide
green twice as often in case of rain or snow, leading to shorter waiting times when weather conditions are
unfavorable[8]. Some intersections also include an ’all green’ phase for cyclists, allowing a large number of
cyclists to cross at the same time and allowing left turns to be made in a single instance[2][3]. Other systems
focus on providing cyclists with more information, such as countdown to green timers or show the fastest
way to make a double crossing or to reach a major destination like the train station[1].

4.1.4. Tuning parameters of the GA
A genetic algorithm needs tuning before it can be used in practice. Tuning in this context means deter-
mining the size of the population, how many generations to evaluate and the ratio between mutations,
crossovers and randomly generated new solutions within a population. The most common procedure is
to try different values and choose the combination that provides the best performance [44]. Literature can
provide insights in initial values or ranges for values to start testing.

The literature review [44] on choosing mutation and crossover ratios (CM ratios) identified that GA usually
perform best when combining a small population (25,50,100) with a large number of generations or the
other way around. Crossovers tend to be more efficient in large populations and mutations in small popu-
lations. The most standard practice is to use a fixed ratio of 0.03M,0.9C. For more optimal performance an
adaptive ratio can be implemented, but for complexity sake no such ratio will be implemented. The above
mentioned review is not scoped on intersection control research but on the GA in general. An example of
a GA used in intersection control research can be found in [121]. The algorithm is used to optimize block
duration of a fixed phase sequence and the parameters for population, generation and CM rate are 40,500
and C0.8,M0.05.

The complexity of this optimization problem in [121] is orders of magnitude lower than this thesis, as it does
only have four variables that must be chosen. These four variables represent the timing of the four phases
in the block diagram of the controller and the four parameters are only dependent on each other via one
constraint: a maximum cycle time. The traffic state of the solutions in this thesis is described by the signal
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plan matrix (S), consisting of state of all individual traffic lights at every time step of the variable. These
states are very interdependent, due to the constraints on minimum green time, conflicts, clearance time and
yellow time. For this reason the specific algorithm settings tuning from this work cannot be directly applied
in this thesis and GA parameters are determined, following the most common approach of experimenting
with different values and then selecting the one that results in the best performance [44].

GA tuning was done by staring with 40 generations and a population size of 10, trying different CM rates,
evaluating the resulting performance and convergence over successive generations. Then the number of
generations and population size were varied with the best performing CM rates. This process was repeated
a number of times until there were no longer large changes in parameters. Note that no strict definition of
good performance and converge was used and different researchers may conclude on different tuning pa-
rameters. This is in part, because in addition to performance and convergence, the run time of simulations
played a significant role in the decision process. Limits on computation time of the computing clusters
resulted in limited choice opportunities and combinations for the GA parameters.

Mutation and crossover algorithms seemed to be equally important for achieving increases in performance,
but no strict optimal value for crossover and mutation probability was found. The best initial guesses were
made by random solutions. The probabilities that were deemed the best for crossovers, mutations and
random solutions are 0.4, 0.4 and 0.2 respectively. These probabilities are used with a population size of
25 and ten successive generations. Interestingly, with performance converged to the best found solution
really fast, often in the first couple of generations. In simulation runs with significantly larger population
sizes and a higher number of generations, marginal improvements were made over time. However, to limit
computation time, these parameters are capped at 10 and 25.

A prediction horizon of 20 seconds is used. This value is the result of a trade off between computation time
and performance. With longer horizons, computation time increases exponentially due to the large solution
space. Generally speaking, structure free controllers do not benefit from very large prediction horizons, a
window between 15 and 30 seconds was found to be very effective by [80].

Table 4.3: GA parameters

Variable Value
Prediction horizon 20 [s]

Population size 25
Number of generations 10
Crossover probability 0.4
Mutation probability 0.4

Random solution probability 0.2
Stored best performing solutions 8

4.1.5. Model verification and validation
The traffic system model and the controller are verified after implementation in Python. Validation of the
traffic model has not been performed because of time limitations. Instead, the traffic system model is based
on validated models published in literature (See Section 3.2). Adaptations on these models are assumed to
be valid.

The traffic model is verified by means of a level one verification. A level one verification ensures basic
functionality of the simulation model by comparison between the conceptual model and the simulation
model. Because the simulation environment is created to be used within this study area and not as a general
assessment tool, a level one verification suffices [23]. A set of 52 detailed scenarios, consisting of different
types of travellers, traveller locations and speeds and states of traffic lights (see appendix D) was made.
These scenarios cover all different types of behavior that is expected from travellers. The simulated outcome
of each scenario is compared to the expected behavior in terms of visual comparison of the trajectories,
inspection of the key performance indicators (KPIs) and close inspection of the speed of agents at points
of interest around changing behavior. Scenarios were run with some start up time and cool down time,
allowing agents to enter and exit the system.
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The verification process for cyclists mainly resulted in debugging of the implemented code, but it also re-
sulted in a few model changes. Most model changes are minor changes, implemented to deal with overshoot
problems caused by discretization. These adaptations will not be explicitly covered. The verification pro-
cess also led to the identification of a number of shortcomings of the kinematic model of car drivers. These
changes are included in Appendix D.

Verification of the controller and its’ interaction with the traffic system model, have been performed by im-
posing manually created signal plans the controller and RH simulations (See Section 3.3.1 for an explanation
on the concept of RH simulations). These signal plans were very simple, usually confined to allowing traffic
on only three movements to cross. The choice of these movements varied to signal plans that were deemed
very effective, with large traffic volumes in these traffic lanes, and very ineffective, with little to none traffic.
This made it easy to manually identify how the controller performed and how signal plans should evaluate
in order to perform better.

The effect on the RH simulations was evaluated by means of trajectory plots, similar to the traffic model
verification. Successive generations of solutions and the corresponding RH simulations were inspected to
determine whether delay decreases over successive generation and whether or not the successive solutions
change, both in terms of what movements receive green and when this happens.

4.1.6. Performance evaluation metrics and expected results first stage
For the first stage of comparison, the comparison between VA and the structure free controller without spe-
cial priority for cyclists, a trajectory plot of a single run will be provided as proof of concept for the structure
free controller. The performance of the controllers will then be compared by means of the average delay,
average delay per mode and the percentage of cyclists that needs to make a full stop when crossing the inter-
section. The mathematical formulation for delay can be found in Equation 3.26 and the formulation for the
number of stops can be found in Equation 3.27. Results are expected to differ because of two main reasons.
These will be explained in the Average delay section. Other metrics, related to different control decisions
that are mad, will be presented afterwards to support the understanding on difference in performance. All
metrics will now briefly be mentioned in listed form. Following paragraphs will explain the metrics and the
expected results. Note that none of the expectations discussed in this report are tested with statistics.

• Performance metrics:
– Average delay and delay spread.
– Average cyclist delay and cyclist delay spread.
– Average car driver delay and car driver delay spread.
– Percentage of traffic light approaches resulting in a full stop for cyclists.

• Metrics related to explaining differences in performance:
– Average number of travellers in the dilemma area over time.
– Probability density of delays experienced by travellers.
– Percentage of green time ends with different number of travellers in the dilemma zone.
– Effective green use (Average crossing headway).
– Average total green time.

Expectation for average delay
Average delay is one of the most used performance metrics for intersection controllers and allows for a
baseline on what intersection performs best[121]. The expectation is that the basic structure free controller
will outperform VA at all the traffic saturation rates. The difference between the average delay of both con-
trollers is expected to be small at at very low traffic levels, enlarge with higher traffic demand and shrink
back back to a small difference when approaching full traffic saturation. As was explained in the previous
section, evaluation is performed at saturation rates of 15, 30 and 45%. It it likely that these values do not
capture the full range of expectations, therefore future work may investigate the full extend of the traffic
saturation rates with improved traffic models.

The SFGA is expected to result in a lower average delay than VA because of two main reasons, that together
are expected to result in a lower number of travellers that are waiting for a traffic light and a larger share
of travellers that is able to cross the intersection with a relatively short delay. The genetic algorithm of
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the SFGA predicts simulates the effect of control decisions and converges to the best moment to switch to
another combination of green traffic lights. Because of this, the SFGA is expected to sometimes end green
time, even when there are travellers relatively close to the traffic light. It may do so if this allows a larger
number of travellers in another traffic lane to cross the intersection. This results in a more efficient use of
green time as a larger number of travellers can make use of the green time. Similarly, it will result in lower
total delays, as the delay is experienced by fewer travelers. VA does not make such a trade-off. Secondly,
the structure free aspect of SFGA allows the controller to use more effective combinations of traffic lights
compared to VA. The VA system only allows green in the currently active phase, while another combination
may be better suited for the current traffic state, as another combination may allow more travellers to cross
the intersection. Depending on the traffic conditions, this can lead to more total green time or similar
amounts of green time where the green time of the SFGA is used more effective. The two main reasons will
now be explained in further detail by means of two scenarios. These two reasons will now be explained
more in depth.

The SFGA is expected to make better choices on when to end green time than VA, which is expected to lead
to a lower average delay. This is best explained by means of a scenario. The traffic on the intersection is
visualized in Figure 4.3a. In this scenario, regardless of the controller, traffic lights 06, 22 and 28 have been
showing green for longer than the minimum green time already. Both controllers extend the green times
in order to allow all cyclists and the car drivers in lane 06 to cross. This would be fairly effective, as five
travellers that are close to the stopping line can cross. This comes at the cost of some delay for the six other
travellers. After the five travellers have crossed the stopping line, it is more effective to end green time for
lane 06. This allows the five car drivers in lane 02 and 04 to cross, at the cost of delaying the third car driver
in lane 06. Assuming the third car is in the dilemma area, VA will not end green time, as the car driver in
06 still ’actuates’ the controller. This will allow this car driver to cross, but as a result may cause more total
delay as a large number of travellers have to wait some additional time. By the time this car almost crosses
the stopping line, the second cyclist in lane 28 may have been detected by the VA as well, causing another
green time extension, keeping the current phase active. A small trickle of individual travellers entering the
dilemma zone and extending green time can continue until the maximum green time is reached and the
phase is ended. The structure free controller on the contrary will predict it is more beneficial to end the
green time and do so, resulting in a lower average delay.

Note that some VA systems adapt to a lower maximum green time at moments of low traffic demand, reduc-
ing the negative effect of travellers ’trickling’ in. However, this lower maximum green time may have some
negative effects as well. The controller may end green time because the maximum limit has been reached,
even if a larger platoon of travellers arrives just after the maximum green time has passed. A maximum
green time is not implemented in the structure free controller, instead a maximum waiting time for indi-
vidual travellers is enforced. The differences in when both controllers decide to end green time can result
in similar decisions, but in this instance the SFGA likely will choose to extend the green time and allow this
larger platoon to cross. Instead of following a set of predefined rules, as VA does, the structure free con-
troller evaluates the effect control decisions have on the total delay (See Section 3.3.4). This may result in
green time extension or in ending green time. Even in situations where there are larger platoons arriving in
other traffic lanes, a choice may be made not to end green time, as the additional loss time introduced by
the red and yellow time can impact the overall. And in some occasions, an inefficient green time end may
be forced because a traveller is waiting for almost the maximum allowed waiting time. The notion that it
makes a trade off and chooses the predicted most optimal solution, instead of following a fixed set of rules
as VA does, is expected to result in lower average delays.

The second reason for why SFGA is expected to outperform VA relates to more effective combinations of
traffic lights that show green at the same time. This reason will be explained using the scenario shown in
Figure 4.3b. The start of this scenario is the result of ending green after the first five travellers of scenario
one have crossed the stopping line. VA would activate the next phase and allow travellers on lanes 01, 02
and 04 to cross the intersection. Because there is no traffic in lane 01, this traffic light will remain red. In
this scenario, the cyclist in lane 28 would have to wait, even though there is no conflicting traffic. SFGA can
choose any combination of non conflicting traffic lights to show green and will allow traffic in lane 02, 04
and 28 to cross. The traffic light of lane 28 will be green for the minimum green time, allowing the cyclist to
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(a) Reason 1: Ending green time earlier
(b) Reason 2: More efficient combinations of traffic lights to show

green

Figure 4.3: Scenarios used to explain expectations

cross the intersection. In this scenario, the structure free controller provides more total green time than VA.
Most of this green time is unused however, but it is still more effective than what VA would do. As the cyclist
is allowed to cross due to a better combination, the average delay will be lower.

Note that some VA systems include flexibility, allowing for an alternative control sequence in case there
is no traffic measured in some of the traffic lanes. In this case the VA system could also provide green to
traffic light 28, as there is no traffic in lane 01. This alternative could fairly easily be implemented as the
intersection layout and therefore the control structure used in this thesis is fairly simple, but as intersection
layout becomes more complex, exponentially more alternatives are required to account for all scenarios,
making the controller more complex.

Even if all possible alternatives would be included in the control structure of VA, the larger degrees of free-
dom are still expected to result in better performance for the SFGA. This is because using more effective
combinations of green is not limited to scenarios where there is no traffic in any of the lanes of the currently
active VA phase. This is explained with the same scenario that was just described (figure 4.3b), but instead of
no cars and one cyclist in lane 01 and 28, there are two cars and six cyclists in the respective dilemma zones.
If flexibility was allowed for the VA, the controller would show green on traffic light 01. The structure free
controller would prioritize the cycle path over lane 01, as there are more travellers there and allowing them
to cross is more efficient. Contrary to the situation without traffic in lane 01, in this case the SFGA would
not result in more but ineffectively used green time, but to a similar green time that is used more effective.

Summarizing, the differences between the VA and the SFGA can be condensed to 1) different choices on
when to end green time and 2) differences in the used combination of traffic lights that show green in com-
parable traffic scenarios. These differences are expected to allow SFGA to have a lower number of travellers
waiting for a red traffic light and allow it to prioritize traffic lanes with the largest platoons, resulting in a
lower delay for a larger share of travellers, shifting the median delay closer to zero. Depending on the traffic
scenario, these factors are expected to allow SFGA to increase the effective green use or provide additional,
mostly unused, green time when compared to VAC.

Delay spread
The variation of delay is expected to be very large, as big differences between delay for cyclists and car
drivers are expected. This big difference originates from choices made on modal split and infrastructure
layout. The infrastructure layout consists of six car lanes an two cycle paths(figure 4.1. The fact that there
are more traffic lanes for cars, combined with a modal split of 0.5, which means traffic demand is split
equally between cyclists and car drivers, results in higher traffic densities on the cycle paths than on the car
lanes. As the structure free control is expected to prioritize the larger platoons over smaller platoons, and
traffic densities of cyclists are higher, the average delay of cyclists is expected to be lower.
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For VA the bias towards prioritizing cyclists is likely less profound. On the one hand, if the traffic light of
cyclists is green, higher traffic densities can result in a higher likelihood of starting green or causing green
time extensions because of the trickling arrivals effect, providing more relative green time for cyclists and
resulting in lower delays. Note that this effect is different for state of the art VA, where low gap-out times
may prevent trickling. The VA system of this research functions in the CE however, and detects any cyclist in
that is in his or her dilemma area (See Table 4.2). This makes the system more susceptible for the trickling
effect. The trickling effect can also cause green time extensions for car drivers, resulting in longer waiting
times for a large number of cyclists. These cyclists have to wait until the active phase contains the traffic
light for which they are waiting. Since evaluation will commence at low traffic levels, the trade offs for VA
likely still result in lower delays for cyclists, but this is to a lesser extend than for the SFGA. Delay spread
for VA is still expected to be very large, but this is not expected due to a difference between car drivers and
cyclists, but is more attributed to the underlying control methodology of VA, in which travellers have to wait
for their turn.

Average delay per traffic mode and number of full stops cyclists
As the objective of this thesis is to design a controller that prioritizes the desires of cyclists, performance
metrics that relate to this objective will be provided as performance evaluating criteria as well. These met-
rics are the average delay of cyclists the percentage of cyclists that has to make a full stop. In order to allow
insights on how a higher or lower delay for cyclist effects car drivers, the average delay for car drivers will be
provided as well. A higher average delay of car divers may be acceptable if this results in much lower delays
or number of stops for cyclists.

For both controllers the average delay of cyclists is expected to be lower than that of the average delay of
car drivers. This is because combination of infrastructure layout and modal split results in a bias towards
prioritizing cyclists over cars. The bias originates from the fact that there are six lanes for car traffic and only
two for cyclists (see Figure 4.1). Combined with the fifty fifty mode split, half of all traffic being dispersed
over only two bicycle lanes and the other half over six car lanes. Traffic density on car lanes therefore will
be three times lower than that of bicycle paths, which likely results in cyclists arriving at the intersection
earlier and in larger numbers car drivers do, resulting in more green time for those bicycles because of the
prioritization of the many (SFGA) or a larger likelihood of causing green time extensions (VA).

At very low traffic saturation, not much difference between the average cyclist delays is expected between
the two controllers. This is because, as explained in last paragraph, both controllers bias towards prioritizing
cyclists and in low traffic situations priority often results in a first come first serve situation, which both
controllers are expected to control in the same way. For higher levels VA is expected to have a higher average
delay for cyclists, mainly longer average green times for car lanes, due to VA not being allowed to truncate
green time for cars when there is traffic in the dilemma area, even when that prevents a (relatively) large
number of cyclists to cross. It may be the case that this scenario does not occur often in any of the saturation
rates used for evaluation. With increased saturation rates, the difference between the two controllers is
expected to increase. The average delays are expected to increase for both controllers, but the extend of this
increase is likely larger for VA. This is expected because traffic densities in the cycle paths are relatively high,
and this is result in the SFGA prioritizing cyclists more often, whereas the effects of this density on VA are
lower.

At any of the saturation rates used for evaluation, average car driver delay is expected to be larger for VA
than for the SFGA. This is for the same reasons the general performance of the VA is expected to be worse
than that of structure free. For higher saturation rates this may change to VA resulting in lower delays for car
drivers because of the different implementation for maximum waiting time. The maximum waiting time
of 100s is implemented in VA as a maximum red time of 100s. This means that a car driver arriving after 30
seconds of red time will only have to wait 70 seconds before he/she can cross the intersection. The structure
free controller adheres to a strict waiting time limit: someone arriving after 30 seconds of red time will still
a maximum waiting time of 100s. Note that the VA could also be designed in a way that it considers waiting
time instead of a maximum red time, but this is not the case for the VA system used in this research.

The average number of stops for cyclists is expected to be relatively low for both controllers because of the
bias towards prioritizing cyclists. Very similar results are expected for the lowest saturation rate for the same
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reasons as similar results for bicycle delay are expected: in low traffic situations priority often results in a
first come first serve situation, which both controllers are expected to control in the same way. For higher
levels the number of stops is expected to increase more for VA, as cyclists will have to wait for the green time
of cars to end until no more traffic is in the dilemma zone, whereas structure free control is expected to end
green times earlier due to a lower predicted total delay.

Standard deviations for car driver delay and delay and full stops of cyclists are expected to be relatively
large due to the relatively low number of scenarios that will be evaluated. The influence of randomness is
quite large for in what traffic lane and what moment cars enter the system, and this is of large influence
on the signal plans controllers decide upon and thus the resulting performance metrics. Note there also is
randomness in the generation of cyclists, but cyclist demand is spread over only two lanes, therefore the
effect randomness has on the entire system is lower.

Robustness to mode split and cyclist turn rate for mode specific delay and cyclist stops is expected to be
low and high respectively. This is because mode split is, and turn rate is not expected to influence the bias
towards cyclists significantly. Different modal splits change the number of cyclists in the system by a large
amount, thereby changing the effect of the bias significantly. The turn rate has a much smaller effect on the
total number of cyclists in the system and therefore the bias.

Metrics related to understanding the differences in performance
As was explained earlier, lower delays are expected when the intersection is controlled by the SFGA because
this controller is expected to result in fewer people waiting for the traffic light and a larger share of travellers
that is able to cross the intersection with a relatively short delay. To test if this is indeed the effect of the
structure free controller, two metrics are introduced. The first metric is the average number of travellers in
the dilemma area over time, and the second it the occurrences of ranges of individual delays.

The notion that the structure free controller tends to prioritize larger numbers of travellers to cross will
likely result in more people crossing the intersection earlier in time compared to VA. VA will allow these
travellers to cross as well, but at a later moment, resulting in a higher delay for these agents. Why and how
the structure free controller prioritizes larger number of travellers is explained in the Expectation for average
delay section, by means of scenario two (Figure 4.3b). The dilemma area is used to have an area upstream
of the traffic light that is of similar effect on both cars and cyclists. Additionally, the largest share of the delay
can be expected to originate from people in the dilemma area. The scenarios in the simulation are identical
for both controllers, therefore the arrivals of travellers are identical. The only factors contributing to the
number of travellers upstream of the intersection is the number of agents the controllers manage to have
cross the intersection.

Because the structure free controller is expected to allow a larger share of people to cross the intersection
earlier in time, the distribution of the delays of individual travellers will be different from that of VA. This
difference is mainly expected to be a shift towards a lower median delay. This expectation will be tested
by means of a histogram. In this histogram, the average occurrence of delays will be shown for both con-
trollers. The expectation is that the bins of the histogram closer to zero will be higher than VA. The shape
will approach zero relatively fast, but the tail may have a larger height than VA as well, as the prioritization
of the many likely results in somewhat larger delays for the few. The head of the histogram of VA is expected
to be more uniform and lower in height than VA, as more travellers will likely have to wait for a somewhat
longer duration, resulting in delays likely somewhat more distributed over lower values.

The differences in delay spread and number of people in the dilemma area are caused by differences in
choices, or control strategies made by VA and the SFGA. The SFGA is expected to end green time prematurely
more often in order to achieve more effective green use, and use allow different combinations of traffic lights
to show green at the same time. In some situations, this is expected to result in higher effective green use
compared to VA and in some occasions it is expected to provide additional green time, but this green time
will not be used very effective. The latter of which is expected to occur more often at lower traffic demands.
In order to test these hypotheses, two metrics will be included in the results: one related to effective green,
the other to total green time. Finally, two metrics will be shown that can help test whether or not the SFGA
does make use of the larger variety of combinations and the ability to cut off green time when there is traffic
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in proximity of the traffic light.

Effective green use will be indicated by means of the average headway of two travellers when crossing the
intersection. If the average headway is low, travellers will follow each other very closely and therefore little
green time will be lost. If the average headway is longer, more green time will be lost. Because of the different
nature of bicycles and cars, a distinction will be made between the headways of the two modes. For very
low saturation rates, the average headways are expected to be quite similar for both controllers, as with low
traffic volumes, individual travellers crossing a traffic light are likely to occur more. The headways may even
be higher for structure free, at this controller may provide more total green time, resulting in even more
individual crossings. VA will have travellers wait before the phase containing the traffic light is activated,
providing more time for additional travellers to arrive, which results in more effective use of green, even
though the delay is higher. At higher saturation rates platoons are more likely to form. In these situations
the SFGA is expected to prioritize the larger platoons, resulting in higher effective green use. VA will provide
green to whatever traffic light is allows to at the current moment, even if there is low traffic density. The
average headways VA will therefore likely be smaller.

Total green time will provided for each of the separate modalities as well, as the controllers may have a
bias towards any of the modes. This can be caused by higher densities in the bicycle paths than in traffic
lanes. Note that it is not uncommon to see larger densities on bicycle paths, due to the smaller size of
bicycles. However, the modal split of 0.50 and a larger number (six) of car lanes than bicycle paths (two)
in the infrastructure layout (See Figure 4.1) will enlarge these differences. Separating the total green time
of the two modes may provide insights in the extend of this bias. With regard to the expectations on total
green time, in low saturation rates, when there is no traffic in one of the traffic lanes of the active VA block,
this traffic light will be red. The structure free controller may allow traffic in another lane to cross instead,
providing additional green time. The total green time provided by the SFGA is expected to be higher than
that of VA for low saturation rates. At higher saturation rates, the situation where a red light is shown by
VA will occur less, resulting in similar green times. However, the SFGA is expected to switch more between
what lanes may cross, causing additional loss time caused by yellow time and clearance time. The average
may therefore be even slightly lower for SFGA at higher saturation rates.

It may be debated whether or not the SFGA does make use of its’ characteristics, allowing it to switch lights
more often and between a wider variety of combinations. In order to verify this, two additional result plots
will be provided. The first one has to do with the switching behavior and will show a histogram of the num-
ber of people in the dilemma area at the moment each of the controllers ends green time. Both controllers
likely will end green time most often when there are no more travellers in the dilemma zone. VA will only end
green time earlier when the maximum green time is reached and the SFGA will only end green time early if
this is results in a lower total delay than letting the travellers in the dilemma zone pass. Because of the low,
unsaturated, traffic flows VA is not expected to end green time prematurely very often. SFGA is expected
to do this however, mainly to counteract the trickling in effect extending green times for VA. Therefore the
heights of the histogram bins with more people in the dilemma zone are expected to be higher than those
of VA. It is less likely to end green time the more people are in the dilemma area, as the cost of ending green
time would increase. Therefore the height of the bins is expected to decrease with increased travellers in the
dilemma zone. The second characteristic of structure free control is that it is allowed to use a wider variety
of signal combinations. In order to verify this, a histogram will be provided with the average occurrence of
combinations of traffic lights that are green at the same time. In addition to a wider range of combinations,
the total height of all the bins together for the SFGA is likely larger, as it is expected to switch more often
between combinations as well.

4.2. Performance evaluation metrics and expected results second stage
As was described earlier, the second stage performance comparison will compare the performance of the
structure free controller when using different weights with respect to the delay of cyclists and the number of
full stops cyclists have to make. Performance will be evaluated using the same metrics as stage one: average
delay, average delay per mode and the number of full stops for cyclists. These metrics are now provided in
listed form for convenience of the reader returning briefly at this section from reading the results section.
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Performance metrics:

• Average delay and delay spread.
• Average cyclist delay and cyclist delay spread.
• Average car driver delay and car driver delay spread.
• Percentage of traffic light approaches resulting in a full stop for cyclists.

Increasing the weight of cyclist delay relative to car delay is expected to reduce the average delay for cyclists
and, in order to do so, cause higher delays for cars drivers. The lower delays for cyclists will most likely
be achieved by starting green time earlier and extending green time more often, allowing more cyclists to
pass in the same green period. It is not likely that each additional second of average delay for car driver
results in a one section reduction for cyclists, as the controller evaluates the effect of control choices like
extending green time or what traffic light to switch to green, based on an assigned score. The score of the
effect of choices is influenced by the weights, and higher weights will most likely increase the probability of
this choice being made in favor of the cyclists.

With a low weight, the there will be less instances where the choice turns from car towards bike. The higher
the weight, the more often the car will be disadvantaged. Therefore it is expected that for higher waits, the
controller will result in exponentially higher delays for car drivers. The extend of what additional delays are
acceptable will not be a conclusion of this thesis, but the results may provide indications on what weights
can be used to shift delays in equal amounts, and from what delay on the controller will become way less
effective as a whole -i.e. from what weight onward the average delay increases become very large. The higher
weights for delay will likely also result in a reduction of the number of stops for cyclists, as the cyclists get
prioritized over the cars more often.

In a similar manner, inclusion of the weight for stops of cyclists is also expected to result in a lower delay
for bicycles and a higher delay for car drivers. The controller will more often make the decision on extend-
ing green or starting green earlier, allowing a cyclist to cross without having to stop, also resulting in lower
delays. The extend of how much the weight for full stops will influence the difference between traffic modal-
ities is likely smaller than that of weights for delay, because the delay punishment keeps increasing after a
stop, whereas after a full stop is made, there is no longer a reason to allow cyclists to cross earlier: the stop
has already been made.

The effects of the delay weights are expected to result in disproportionately more delay for cars, with in-
creasing traffic saturation levels. This is due to the higher traffic densities in cycle paths. Note that part of
this difference in densities originates from the smaller area occupied by bicycles, but can in some extend
also be attributed to the choice of infrastructure layout in this case study. The higher densities in cycle paths
and hence larger number of travellers in cycle paths, are already, excluding prioritizing weights, expected to
provide longer and more frequent green times to cyclists. However, at low saturation rates stochastic effects
in the time and the lane at which agents enter the sytem, can allow for some larger than average headways
that can allow cars to cross. At higher saturation rates, the chances of such a gap occurring reduce, which
can result in cars being delayed longer up to the point that such a gap does occur or the maximum waiting
time is bound to be broken.

The effect of the weight for full stops is expected to decrease for higher saturation rates. As there are more
cars in the system, the negative reward of a stop becomes less likely to be larger in size than that of the
additional delays otherwise caused for all of the car drivers. Of course, the higher demand levels also result
in more cyclists in the cycle path, for which stops can be avoided. However, delays accumulate over time
and the stops occur spread out over time. There is still some effect expected at higher saturation rate, as in
some occasions larger platoons of cyclists will arrive at the intersection and the controller may choose to
prioritize platoon, as it will prevent a multitude of stops.
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4.3. Summary of the evaluation framework
Section 4.1 provides the experimental setup in more detail. Sections 4.1.3 and 4.1.4 discuss the benchmark
controller and the tuned variables of the structure free controller respectively. Then Sections 4.1.6 and 4.2,
in which the performance metrics and expected results of the two stages of comparison are discussed. For
reader convenience, the a short summary of the evaluation framework is provided here in listed form.

• The structure free controller is benchmarked against VA.
• Performance metrics are:

– Average delay and delay spread.
– Average cyclist delay and cyclist delay spread.
– Average car driver delay and car driver delay spread.
– Percentage of traffic light approaches resulting in a full stop for cyclists.

• Performance evaluation will compose of two stages.
– First stage: comparison of the controller with equal weights for the desires of car drivers and

cyclists against VA.
– Second stage: comparison of the effect cyclists prioritization weights in the objective function

of the structure free controller.
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5
Case study: Results

5.1. Performance of the SFGA Control compared to VA Control
This section will provide the results of the benchmark comparison between SFGA and VA control. The
objective function of SFGA consists of delay only, weighing the delay of cyclists and car drivers equally. The
performance is discussed in terms of average delay first (Section 5.1.1), followed by delay of both modalities
and full stops of cyclists in Section 5.1.2. A summary of the performance metrics is provided in Table 5.1.
Section 5.1.3 discusses metrics that explain the differences in performance between the two controllers.

Unless said otherwise, the following simulation parameters are used: mode split cyclist
car = 0.5, cyclist turn rate

= 0.3, minimum green time = 6[s], maximum waiting time 100[s], maximum green time (VA only) = 48[s].
Traffic saturation rates of 15%, 30% and 45% for both traffic modalities are used for evaluation. To account
for the stochastic behavior of the system, 14 different simulation runs have been performed, using identical
scenarios for each of the controllers. See Chapter 4.1 for a full description of the experimental setup.

5.1.1. General performance
To ensure the reader that the presented results are reasonable and make sense in the context of intersection
control, trajectories of a single simulation run are provided in Figure 5.1. This figure shows scenario seed 40
with a traffic saturation level of 15%. The state of the traffic signal is shown as a colored, horizontal line at
the location of the stop line. Cars going straight on have a constant speed when approaching a green traffic
light, but turning cars briefly decelerate, because cars have to travel at a lower speed when making a turn
(See Section 3.2.4). In some occasions, cars enter the system in close proximity of each other. For example
in Direction 04. If this happens, the cars will influence each other and the following car may have to reduce
speed. The trajectories of some of the cyclist in direction 22 end earlier than others. These cyclists make a
turn and appear in direction 28, just upstream of the traffic light. Finally, in some occasions travellers make
use of yellow and red lights. See for example bicycle path 28 around 160s. This happens when the required
deceleration of a cyclist exceeds his or her maximum acceptable deceleration rate (See Section 3.2.3).

The average and the 75th percentile of a travellers delay are provided in Figure 5.2. For each evaluated
saturation rate, the average delay and the delay spread of the SFGA controller is lower than that of VA. The
difference between the two controllers is a factor 1.8 at 15% saturation, but increases to 2.7 and 3.0 for 30
and 45% respectively.

In relative terms, the average delay of VA increases more rapidly with higher traffic saturation than SFGA.
The delay of VA increases from 8.7 seconds (15%) to 28.1 seconds (45%), whereas the delay of SFGA increases
from 4.7s at 15% saturation 9.3s at 45%. For both controllers, a higher number travellers that want to cross
the intersection results in larger average and total delays. However, the structure free controller is better
able to accommodate these additional travellers within its’ signal plans, resulting in lower additional delays
per additional traveller, compared to VA.

Figure 5.2 shows the error band of SFGA is less wide than that of VA, indicting the controller does result
in a more consistent delay for travellers, with fewer and lower high delays. This makes sense, as the SFGA
controls for individual delays and therefore is inclined to allow travellers to cross, when their delay grows
larger. This contrary to VA, where travellers have to wait until it is their turn to cross. Delay spread becomes
larger at higher traffic saturation levels, as situations with no conflicting traffic occur less often with higher
traffic demand, and therefore travellers have to wait longer duration.
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Figure 5.1: Trajectories as result of structure free controller with 15% traffic saturation (demand = 1050/h).

Figure 5.2: Delay of a traveller crossing the intersection

5.1.2. Performance with respect to separate transport modalities
The previous section shows that the SFGA outperforms VA in terms of average delay. This section presents
the performance of the SFGA and VA with respect to the delay of the separate modalities (Figure 5.3) and
the probability of a cyclist making a full stop on a traffic light approach (Figure 5.4).

When a distinction is made between the average delay for both traffic modes, the conclusion that SFGA
control outperforms VA can still be drawn. For both modalities, the SFGA realizes a lower average delay
than VA for all evaluated saturation rates. The difference with regard to cyclists is most profound. At 15%
traffic saturation, the controllers perform relatively similar, with 4.1s and 6.7s average delay for the SFGA
and VA respectively. At the two higher traffic levels, the average delay for cyclists for VA increases to 12.0s
and 22.3s, but for SFGA increase to 4.6s at 30%, and decrease to 4.0s at 45% saturation. A similar effect can
be seen in the error bands of cyclist delay in Figure 5.3a.

The consistent average cyclist delay, can be contributed to the functioning of the SFGA. The controller con-
siders the effect of its’ control decisions on the delay of all travellers, therefore it is to be expected that traffic
lights with a large number of travellers impacted by a potential red light, get prioritized. Provided large traf-
fic volumes of cyclists, the traffic densities on the bicycle lanes can expected to be higher in bicycle paths
than in car lanes. This results in SFGA prioritizing cyclists over cars. Car drivers are allowed to cross, when
the first car in the queue approaches the maximum waiting time, car queues have built up far enough to
compete with a large number of cyclists, or when there are few cyclists in proximity of the traffic light. The
latter two are less likely at higher traffic levels, therefore it is reasonable to see that the cyclist delay actually
decreases with larger traffic demand. At even higher traffic levels, car drivers will approach the maximum
waiting time more often, forcing green time ends for cyclists, which will result in higher delays for cyclists.
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(a) Delay of cyclists (b) Delay of car drivers

Figure 5.3: Impact of controllers on delay for separate modalities

Note that some part of the differences in traffic densities between car lanes and bicycle paths, can be at-
tributed to the choice of modal split and intersection layout. The intersection layout (see Figure 4.1) com-
poses of six lanes for car traffic and only two for cyclists. Combined with the fifty fifty mode split, half of
all traffic is dispersed over two bicycle lanes, and the other half over six car lanes. This does not mean that
the conclusions on the controller performance cannot be generalized. The traffic density differences are
enlarged due to choices in experimental setup, but can be expected in other scenarios as well. With a simi-
lar number of car drivers and cyclists making use of an intersection, which can be expected in urban areas,
physical size differences between car and bicycles result in higher traffic densities in bicycle lanes than in
car lanes.

In this case study, VA control also result in lower delays for cyclists than for car drivers: average delays are
6.7s, 13.0s and 22.3s for cyclists and 10.4s, 24.8s and 34.2s for car drivers at each of the evaluated satura-
tion levels. From these results, one could conclude that this means VA does also prioritize cyclists over car
drivers. However, this conclusion should not be drawn. This is because, contrary to SFGA, VA does not
control for individual delays but bases the control decisions on a binary ’Is there traffic in the active phases
dilemma zones?’. Where SFGA systematically prioritizes based on density, VA only does so in some occa-
sions. For VA, high traffic density, can result in more green time extensions, and therefore more total green
time and a lower average delay. This does does require uniform arrivals however, because when travellers
instead arrive in platoons, the higher density results in fewer extensions than with with uniform arrivals.
High traffic densities are only beneficial, if the traffic light is already green. Facing a red light, travellers have
to wait for the active phase to cycle back to the block containing the cycle lights. A large number of travellers
waiting for the traffic light in this case only means that a lot of travellers are waiting, resulting in a higher to-
tal delay. In these scenarios, cyclists do not benefit from the high traffic density, but instead benefit from the
low traffic density in car lanes, which results in fewer green time extensions. In scenarios with low volumes
of car traffic, early green time ends in car lanes can occur more often, allowing VA to cycle back to the con-
flict group with the bicycle paths. At higher traffic levels, this becomes increasingly unlikely to happen, thus
it cannot be said that VA actively prioritizes cyclists. This contrary to the SFGA, that consistently prioritizes
traffic lanes with higher densities. For VA, the lower delays of cyclists compared to cars, likely originates
from very low traffic levels in car lanes. In Figure 5.3a, between 30 and 45% traffic saturation, the average
delay of cyclists increases more rapidly than between 15 and 30%. This corresponds with the notion that
with larger traffic volumes, the relative benefit of cyclists at VA decreases. At traffic saturation levels higher
than 45%, the average delay of cyclists may even exceed that of car drivers.

The expected results (Section 4.1.6) indicated that some prioritization of cyclists was already expected for
both controllers, at the cost of higher delays for car drivers. Figure 5.3b shows the delay of car drivers is
indeed larger than the delay of cyclists for both controllers, but this comes at a higher cost for VA control
than for SFGA. The larger delays of car drivers in VA may be caused by infrequent green time extensions in
conflicting movements, resulting in delays for a larger number of waiting car drivers. This contrary to SFGA,
which can decide to truncate green in conflicting movements with few travellers in proximity to the traffic
light, in order to allow a larger number of cars to cross. SFGA may also force the first car driver in the queue
to wait a little longer, contrary to VA where the traffic light would now start green time when the previous
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phase has ended. This can result in lower average delays, because it may allow a car driver following this car
to now cross in the same green duration, instead of having to wait for the next cycle.

The structure free controller also outperforms VA, with respect to how often cyclists have to make a full
stop on a traffic light approach. The SFGA performs 1.9 times as well at the lowest saturation rate, and
2.3 and 3.1 times better for 30 and 40% respectively. This difference may again be explained by the higher
traffic densities in the cycle lanes and the prioritization of the many, but may also originate from the better
performance of SFGA in general.

Figure 5.4: The percentage of traffic light approaches requiring cyclist to make a full stop

All together, the results have shown that the structure free controller outperforms VA in all of the perfor-
mance metrics. The relative performance of the controllers (K PISFG A/K PIV A) is summarized in Table 5.1.
At the lowest saturation rate, performance is the most similar between all metrics, with SFGA performing at
most twice as good as VA on all accounts. In absolute terms the difference is only a couple of seconds. With
increased saturation levels the differences between the controllers increase in both relative and absolute
terms. Only in terms of average car driver delay the relative performance is quite similar over all saturation
levels.

Table 5.1: Performance ratios (SFGA/VA)

Saturation rate
15% 30% 45%

Average delay 1.8 2.6 3.0
Avg. delay - Cyclist 1.6 2.8 5.6
Avg. delay - Car driver 2.0 2.5 2.2
Traffic light approach with stop - Cyclist 1.9 2.3 3.1

5.1.3. Understanding the differences in performance
The experimental setup (Section 4.1) described that the expected differences between VA and SFGA likely
originate from fewer people waiting for the traffic light and a larger share of travellers that is able to cross
the intersection with a relatively short delay.

SFGA does indeed result in fewer people waiting for the traffic light. This can be seen in Figure 5.5, that
shows the average number of travellers in the dilemma zones for both controllers. For all saturation rates,
there are always fewer people in the dilemma area for SFGA than for VA. Initially the results are very similar.
Over time the number of travellers in the dilemma area grows, and after a while becomes relatively constant,
indicating some warm up time until the controllers function at a equilibrium. Such an equilibrium is not
as clearly identifiable for VA at 45% saturation. The absence of a clear equilibrium may be caused by higher
cycle times, due to higher traffic numbers, resulting in fewer cycles fitting in the total simulation time of
180s.

Because the controllers are evaluated for identical traffic scenarios, the inflow of both controllers in the
dilemma area is similar, and the output differs because of control decisions. Therefore, the fact that both
controllers seem to converge to an equilibrium, indicates that both controllers achieve a similar throughput
of the intersection. However, in order to achieve this throughput, VA requires, on average, a higher number
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of travellers in the dilemma areas, waiting for the traffic lights. SFGA manages a similar throughput with a
lower number of waiting travellers, resulting in lower average delays.

The lower number of travellers in the dilemma area required for SFGA to achieve throughput similar to VA,
may be caused by the larger variety of combinations of traffic lights the controller can use. Without any
implemented flexibility, VA must wait for a traffic light to be a part of the active conflict group, in order
for it to be allowed green. This contrary to SFGA, that can allow any traffic light show green, as long as no
conflicting traffic lights are active at the same time. A second reason for fewer people in the dilemma areas,
is that SFGA prioritizes lanes with more travellers over lanes with fewer travellers. This means that it may
choose a movement with three travellers to cross, instead of a movement with one traveller that VA allows
to cross because it is in the active conflict group.

(a) 15% traffic saturation (b) 30% traffic saturation (c) 45% traffic saturation

Figure 5.5: Average number of travellers in the dilemma area over time for the three different saturation rates

The structure free controller prioritizes traffic lights with larger platoons of travellers, over traffic lights with
less effect on the total delay. VA only considers whether or not there is any number of travellers in the
dilemma zone of the active group when deciding on if a green light is shown (See Section 4.1.3). This dif-
ference results in the median delay of the structure free controller being lower than that of VA. Figure 5.6
shows a histogram with the individual delays of travellers of both controllers, for the three different satura-
tion levels.

The figures show that, compared to VA, the shape of the histograms of the SFGA tend to be shifted more
towards lower delays. This means, if the intersection is controller by SFGA, a higher number of travellers
experience lower delays compared to VA. This supports the expectation that SFGA allows a larger number
of travellers to cross the intersection at the cost of a lower number of people that are delayed. Interesting
is, that the delay of this lower number of travellers does not tend to be very long, as for all saturation levels,
the delay probabilities of SFGA converges to zero faster than VA. This indicates that the prioritization of the
many does not necessarily lead to additional, much longer delays for the few. Instead, it indicates that there
is a choice to be made on what group of travellers to delay briefly, and what group travellers to delay for a
longer time.

(a) 45% traffic saturation (b) 15% traffic saturation (c) 30% traffic saturation

Figure 5.6: Histogram, normalized by the number of runs, of delays experienced by travellers

VA and SFGA follow different procedures when deciding on the control actions for a given traffic situation.
A number of metrics related to the control strategies will be discussed. These metrics relate to the total
green time, effective green use, traffic light combinations that show green at the same time, and how often
a specific number of agents is in the dilemma zone when a controller ends green time.
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SFGA is expected to sometimes truncate green time, even if there are travellers in the dilemma zone. Figure
5.7, that shows how often green time is truncated as a function of the number of travellers in the dilemma
zone, supports this hypothesis. In almost all occasions, VA ends green time when there are no longer any
people in the dilemma area. In the few that this does not happen, the maximum green time has been
reached. This contrary to SFGA, for which there are still travellers in the dilemma area, in a significant share
of the green time end. This likely happens, when there is a larger number of travellers waiting in a con-
flicting movement, or a combination of conflicting movements. The controller may also decide to truncate
green, when travellers in the active movement are relatively far upstream of the traffic light, allowing other
travellers to cross, at a relatively small cost for the traffic now facing a red light. Finally, the controller can
also be forced to end a green time because a traveller in a conflicting direction has been waiting for almost
the maximum waiting time.

Figure 5.7 shows clearly, that the more travellers there are in the dilemma zone, the less often SFGA truncates
green time. This is because the controller will only end green, if this is beneficial in means of total delay.
The cost of ending green time is larger with more people in the dilemma area. The figure also shows, that
with higher traffic saturation, SFGA more often chooses to end green time, and does so more often with
more people in the dilemma area. This too is sensible, because even though the cost of ending green time
increases with more people in the dilemma area, the cost of not doing so is also higher when there are more
travellers waiting for other traffic lights.

(a) SFGA (b) VA

Figure 5.7: Spread of green time endings over how many agents are located in the dilemma area in the moment of switching

When and who controllers allow to cross, can result in differences in effective green use. The structure free
controller chooses to end green time if it predicts that it is more effective to let another traffic light show
green instead. It is expected that this is often the case when there is a larger number of people benefiting
from the other traffic light being green. If there are more people benefiting from the green light, the effective
use of green time is likely higher. As discussed in the experimental setup (Section 4.1), the average headway
at the moment of crossing the stopping line is used as a metric for effective green use. Figure 5.8 shows this
average headway of cyclists and cars for the two controllers at three saturation rates.

(a) Cyclists (b) Cars

Figure 5.8: Average headways at the moment of crossing the stopping line. A lower average headway indicates more effective use
of green, as travellers follow each other more closely.
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Results contradicts the expectations with regard to effective green use: on average, crossing headways are
larger for the SFGA controller than for VA. This may be because the structure free controller is expected to
show green more often and earlier in time than VA. This results in more time for queues to form for VA,
which in turn results in more effective green use. However, this SFGA allows individual travellers to cross
more often, resulting in fewer cars waiting, but also in less effective use of green time. This behavior of SFGA
can be seen in the trajectories presented in Figure 5.1.

Differences in when and where a green light is provided, are expected to be visible in the total green time.
As was explained in the experimental setup (Section 4.1), at low traffic levels, it may occur that there are no
travellers in the dilemma zone upstream of a traffic light in the active phase of VA, causing the traffic light
to show red. No movements outside the active phase are allowed to show green for VA, contrary to SFGA,
which can allow another traffic light to be green, resulting in more total green time. At higher traffic levels,
this is less likely to occur and the total green time of SFGA may even be lower, because of the more frequent
switching behavior of the SFGA, resulting in more loss time and hence less total green time. Figure 5.9 shows
average the total green time.

Figure 5.9: Average total green time by travel mode in a simulation of 180s .

The average total green time provided by SFGA is higher than that of VA, for all saturation rates. As was
explained in the previous paragraph, this was only expected to be the case for low traffic saturation levels,
due to the larger degrees of freedom of SFGA. This may indicate that the scenario, in which there is no
traffic in proximity of the traffic light in any of active movements, is more profound than expected at the
evaluated saturation rate. That the scenarios in which VA shows green for only a subset of the traffic lights
in the conflict group, is supported by the VA showing more total green time for car lanes at higher saturation
levels. Because there is more traffic, these scenarios should occur less often and total green time should
increase.

Interesting is that SFGA results in very similar total green times, independent from the traffic saturation.
This is likely due to a design choice of the structure free controller. The controller will only end green time
when it is more effective to show green somewhere else. This means that, if there is no traffic benefiting
from a green light, the controller will make a random decision on what traffic light shows green, even if
this does not have any use. This unused green can been seen in Figure 5.1, around 125 seconds in lane 06.
Inclusion of a cost for total green time, orders of magnitude smaller than the cost for delay, may help resolve
this and allow for more profound conclusions based on the total green time.

The final metric that explains differences in performance for the controllers, is the variety of traffic light
combinations that show green green at the same time. The histogram, showing this metric, provided in
Figure 5.10, clearly shows SFGA makes use of a larger variety of combinations. The fact that SFGA makes
use of so many alternative options, hints that there may be significant efficiency gains by using alternative
paths in the control structure of VA. Note that of all but one of the combinations, that are only used by SFGA,
could be implemented as alternatives in the control structure of VA, if flexibility had been allowed. Only
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the combination [01, 04, 10] could not be included, because these traffic lights are part of three different
phases, where all other combinations can be made up of combinations of two subsequent phases of the
control structure of VA (See Figure 4.2).

One should be careful to conclude that inclusion of flexibility would allow VA to perform similar to the SFGA.
First of all, the structure free controller uses the genetic algorithm to determine what combination of traffic
lights results in the lowest delays. Even if VA is allowed to use the same combinations, it will only use the
alternatives if there is no detected traffic in a movement that otherwise would be used. If there is any traffic
detected, a less effective combination in terms of resulting delay may be used. Secondly, in this case study,
a large number of combinations can be included as alternatives, because the intersection layout of this case
study is very simple and includes only three conflict groups (See Figure 4.1). With three conflict groups, the
probability that a combination can be made up from the movements of two subsequent conflict groups is
larger than when four or more conflict groups would be included. Therefore, at more complex intersections,
it can be expected that fewer combinations that are used by SFGA, can be implemented as alternatives.

Figure 5.10: Average occurrence of green traffic light combinations in a single simulation run.

As a final note, a lot of the reasoning on why the structure free controller performs better been attributed
to the fact that densities are higher on cycle lanes. This is an unintended bias, introduced by the combined
choices of infrastructure layout and modal split. However, it must be noted that by default bikes occupy
less space than cars do. A car travelling at 50 km/h occupies roughly 140m2, whereas a moving bicycle
occupies only 5m2 [39]. Therefore, these higher densities on cycle paths may not even be that far-fetched
compared to the real world. The results have shown that for VA, the average delay of cyclist increased,
whereas the structure free controller kept this delay fairly constant. All the results together indicate that the
SFGA controller as of itself, so without any cyclist prioritization, already will serve the needs of cyclists way
better than VA control.

As was explained in the experimental setup (Section 4.1, there are things things that can be done to adapt
VA to perform more like the structure free controller. Other changes to VA can be made as well, for example
having green for bicycle traffic light twice each cycle. But even with these adaptations, the structure free
controller does actively control for traffic density, something VA by definition does not do. Therefore, this
thesis does contribute to the evidence that controllers, other than VA may be better suited for serving the
needs of other modalities than the car.
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5.2. Performance of SFGA control with cyclists prioritization
The previous section compared the SFGA controller to traditional VA. This section will now discuss how
performance of the structure free controller changes, when it objective function includes weights that pri-
oritizes the desires of cyclists over those of car drivers. Two parameters are varied: the relative weight of
delay for cyclists compared to car, and the weight for a full stop made by a cyclist. See Section 4.1 for the full
experimental setup.

Figure 5.11 shows the effect of varying relative weight for cyclist delay and the stop weight on the average
delay of all travellers. The effect of the weights on the average delay is very limited at 15% traffic saturation,
but at higher traffic saturation the parameters do lead to bigger changes, both in mean delay and in delay
spread. Note that less influence on the average delay does not necessarily mean that the parameters have
no effect, as delay may shift from cyclists to car drivers.

The inclusion of weights that prioritize cyclists, result in choices of the controller on ending, extending or
starting green time, are more often made to the benefit of the cycle paths. Because the weights result in
negative effects for cyclist contribution more to the objective function, solutions that result in lower delays
or number of stops for cyclists are stored and selected for adaptation in successive generations. As was ex-
pected, the average delay increases when larger weights for delays of cyclists are used, and these increases
are larger at higher traffic saturation rates (Section 4.2). At higher saturation rates the chance of a trade
off resulting in a green light for any of the cars decreases, because with more travellers in the system, total
delays increase and the relative effects of the weights increase. The (small) improvements in cyclist delay
can therefore result in (larger) increases of car driver delay. As delays for the traffic modalities scale dispro-
portionately, the average delay can increase. Interesting is the observation that the average delay for 45%
saturation is larger at a relative weight of 1.7 than at the weight of 3.3. This phenomenon will be discussed
alongside the discussion of the effect of the stop weight on the delay of cyclists and car drivers, later on this
section.

Regardless of the relative weight for delays, the effect of the weight for full stops on the average delay is
fairly limited. This indicates that this weight either has little effect whatsoever, or does a better job at pro-
portionally shifting delay from cyclists to car drivers. Generally, the increases in delay are limited for any
of the saturation rates as well. This contradicts the expectation, as the effect of this weights was expected
to be the largest at low saturation rates and decrease with increased traffic demand. This may be explained
by the controller decisions at low traffic levels, resulting in a ’who to allow to cross first’ choice, and inclu-
sion of cyclist prioritizing weights allow cyclists to cross first. This in turn does result in car driver delays,
proportional to the delay the cyclist would otherwise have endured.

(a) 15% traffic saturation (b) 30% traffic saturation (c) 45% traffic saturation

Figure 5.11: The average delay and the 75th percentile delay as a result of different relative weights (1.0, 1.7, 3.3, 5.0) for cyclist
delay for each of the saturation levels

Figures 5.12 and 5.13 show the average delay of cyclists and car drivers respectively, as a result of different
combinations of delay and stop weights for all evaluated saturation rates. As was expected, the weights
result in decreases for average delay for cyclists, and increases in delay for car drivers. Generally, the largest
decreases in average cyclist delay are achieved by the 1.7 and 3.3 weights, while improvements are less
substantial with a weight of five. In a similar manner, increases in car diver delay are generally quite low for
1.7 and 3.3 and increase more rapid with a weight of five. This can be explained by the exponential impact of
the weights that was discussed in the previous paragraph, and indicates that some small prioritizing effects
may be the most suitable for prioritizing cyclists. The relative smaller weight results in prioritization in cases
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where little additional harm is done to car drivers, but does not choose to prioritize cyclists when this causes
very large negative effects for car drivers.

(a) 15% traffic saturation (b) 30% traffic saturation (c) 45% traffic saturation

Figure 5.12: Average cyclist delay and the 75th percentile cyclist delay as a result of different relative weights (1.0, 1.7, 3.3, 5.0) for
cyclist delay for each of the saturation levels

(a) 15% traffic saturation (b) 30% traffic saturation (c) 45% traffic saturation

Figure 5.13: Average car driver delay and the 75th percentile car driver delay as a result of different relative weights (1.0, 1.7, 3.3,
5.0) for cyclist delay for each of the saturation levels

The average delay graph (Figure 5.11a) shows the weight for full stops results has a small effect on the av-
erage delay. This was attributed to either very little effect whatsoever, or to this weight being able to shift
delays relatively proportional from cyclists to car drivers. Figures 5.12 and 5.13 help substantiate the latter.
Delays of cyclists get reduced by roughly three seconds by inclusion of this weight, whereas car driver delays
roughly increase with a similar, though slightly larger amount. This indicates that green time distribution
may not be changed significantly but the timing of green green duration may be translated in order to avoid
stops. This in turn is also more effective in terms of cyclists delay, but is slightly less effective in terms of
absolute average delay. This also indicates that, even though the values for relative delay weight are based
on literature, metrics that do result in disproportional delay differences, are not suited for transferring delay
from one mode to another. Disproportional delay differences may of course not be a problem, depending
on what goal is aimed for by implementing the controller.

Another interesting observation is that average delays for car drivers do not seem to increase to much more
than 30 seconds. This is likely because of the imposed maximum waiting time of 100 seconds. When car
drivers get delayed in order to allow cyclists to cross first, after a while the first car driver a the queue will
approach the maximum waiting time. No matter how large the weights for cyclists are, this car driver will be
allowed to cross. Other cars, queuing behind this traveller, can also make use of this green time, as the light
is green for at least the minimum green time, allowing multiple travellers to cross the stopping line. This
results in averages lower than 100 seconds. This also means there is a maximum to what can be achieved by
including weights for cyclists prioritization. At some points car drivers will be allowed to cross anyway.

The maximum waiting time may also provide an explanation for why the average delay of the system is
higher with a relative weight factor of 1.7, compared to 3.3 when evaluation at 45% traffic saturation. Figure
5.13c illustrates that the average car driver delay is relatively constant, around 30 seconds, for any of the rel-
ative weights. As explained, this is likely due to the maximum waiting time. The larger weight can however
still result in lower delays for cyclists, what does happen according to Figure 5.11). A constant car driver
delay but a lower average cyclist delay results in a lower average delay because of the fifty fifty modal split.

76



5.2. Performance of SFGA control with cyclists prioritization 5. Case study: Results

Another noteworthy observation is, that the delay of car drivers is lower at 45% saturation with inclusion
of the stop weight, than without. This may be explained by the translations of green duration as a result of
the stop weight being less harmful for car drivers. These decisions with less impact on cars are not chosen
without the inclusion of cyclist weight, because the relative delay weight of 1.7 makes the impact on car
drivers of lesser importance than those of cyclists.

Figure 5.14 shows the probability of a cyclist having to make a full stop on a traffic light approach. This
figure confirms the expectation that the relative weights for delay also reduces the number of stops for
cyclists. However, the constant weight turns out to be way more effective in doing so. A relative weight of
five is required to approach the same effect as the stop weight. In relative terms, the stop weight contributes
less to stop reduction the higher the relative weight of delay. This is sensible, as when delays of cyclists
are already at a very low value, there is less room for improvement. Additionally, the relative cost of one
stop compared to one additional second of delay becomes lower, thus the relative importance of stops is
reduced.

(a) 15% traffic saturation (b) 30% traffic saturation (c) 45% traffic saturation

Figure 5.14: The percentage of traffic light approaches of cyclists resulting in a full stop as a result of different relative weights for
cyclist delay for each of the saturation levels
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6
Conclusion and Discussion

Section 6.1 presents the conclusion of this Thesis. Section 6.2 then provides the discussion, containing some
high level nuances that should be kept in mind when applying the conclusions of this thesis to other work.

6.1. Conclusion
The research objective of this thesis is To design and evaluate the performance of an intelligent intersection
controller, that prioritizes the interests of cyclists, and that controls an isolated intersection in an environment
with connected cars and bicycles, without causing unreasonable delays for car drivers. A number of sub
questions were formulated and all are answered in order to fulfill this objective.

A literature review has been performed to identify the desires of car drivers and cyclists with regard to con-
trolled intersections. It is concluded that, cyclists want no motorized traffic to be allowed to cross their path
when they are allowed to do so, slow down as little as possible, avoid low speeds and full stops, short wait-
ing times and delays, and to be allowed to start moving as soon as the last conflicting traffic has crossed.
The most important desires of car drivers are concluded to be to minimize their delay and waiting time, to
prevent queues from blocking approach lanes of other traffic lights and sufficiently long green times. These
desires have been translated to control objectives, and a trade off is proposed. For simplicity sake, a subset
of these desires has been selected, based on the main negative effects of intersections on cyclists. Average
cyclist delay and full stops have been chosen the most important metrics to represent cyclists’ desires. Car
drivers’ desires are represented by the delay of car drivers. Based on literature, a value of time 1.7 to 5 times
higher is concluded to be a reasonable range for the weight of cyclists delay compared to cars. Unreasonably
long waiting times are concluded to be waiting times longer than 100 seconds, because RLR probabilities
increase above this threshold.

A literature review conducted on traffic system model for cyclists, cars and traffic lights, has concluded that
a microscopic, rule based kinematic model to be best suitable model to represent the identified desires of
cyclists. A car following model from literature and individual representation of traffic lights were concluded
to be the best suited for representing cars and traffic lights. Literature review on control methodologies
has concluded that simulation based control with optimization by means of a genetic algorithm is the best
control methodology for the controller. Vehicle actuated control is concluded to be the best benchmark for
performance.

The results of the case study allow for the conclusion that the designed structure free controller is suited as
a controller for an isolated intersection that prioritizes the interests of cyclists, without causing unreason-
able delays for cars. This conclusion is drawn for traffic saturation rates of 15, 30 and 45 % of intersection
capacity. In terms of average delay, regardless of the transport modality, the controller outperformed the
benchmark by a factor 1.8, 2.7 and 3.0 for each of the evaluated saturation rates.

The controller does not require explicit prioritization of cyclists, in order to result in lower delays for cyclists
than for cars. The percentage of cyclists that has to make a stop is also drastically reduced compared to VA.
The controller allows for different weights for delay, as well as for inclusion of a weight for the number of full
stops. Introducing any of these prioritizing weights, results in even better performance metrics for cyclists,
but this comes at the cost of disproportionate increases of delays for car drivers. Whether or not this increase
of delay of car drivers is acceptable is up for personal interpretation. It is concluded that that the higher the
delay priority ratio, the more disproportionately delays of car drivers increase compared to cyclists. A low
delay priority factor, or a cost for a full stop for cyclists is suggested to be the least intrusive method of
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providing additional priority for cyclists. Following the definition of reasonable delays as a waiting time
exceeding 100 seconds, no unreasonable delays for car drivers are caused by the SFGA controller.

The better performance of the structure free controller compared to the benchmark is attributed to the the
fact that the SFGA optimizes with a large degree of freedom, whereas VA follows a predefined set of rules
based. It is unlikely that state of the art methods, that improve VA control performance, can achieve a same
level of performance.

Without inclusion of weights that explicitly prioritize cyclists, the SFGA controller already tends to priori-
tize cyclists. This is attributed to higher traffic densities on cycle paths compared to car lanes, resulting in
the controller prioritizing traffic on these lanes over car lanes. These higher densities can be expected in
situations that follow the use case for this thesis: urban cores with lots of bicycle traffic.

In the case study, VAC also resulted in lower delays for cyclists than for car drivers. It is concluded that this
lower average delay should be mainly attributed to the choices in infrastructure layout. The conclusion
that the structure free controller better prioritizes cyclists’ desires can be made, provided a large number
of cyclists make use of the intersection compared to the number of cars. The SFGA considers individual
travellers and prioritizes the movement that benefits the most from crossing first. Cycle paths, with higher
density, are prone to be prioritized over car lanes, with lower densities. The reason that VAC has led to
lower delays for cyclists, is that the infrastructure layout has led to more frequent green time extensions
and scenarios in which the cyclists can pass, because no traffic in other signal groups has been detected.
This will change with changing infrastructure layout, while the reason why the SFGA controller structurally
prioritizes cyclists.

All in all, the main conclusion to be drawn from this thesis is that a controller does not necessarily need
to weigh the desires of cyclists more heavily than those of car drivers, in order to have a tendency towards
prioritization of the interests of cyclists. When actively controlling for the delay of travellers on the inter-
section, instead of following predefined sequences, the desires of cyclists are already represented better in
the controller decisions, because of the higher traffic density that is often associated with bicycle paths. The
controller can be applied for cycle paths with lower demand, however inclusion of weights that explicitly
prioritize cyclists over car drivers may be required to achieve prioritization of cyclists.

6.2. Discussion
Some precautions should be taken when interpreting the conclusions drawn in Section 6.1. The absolute
values, regarding relative performance of the structure free controller, are calculated based on a single case
study, which is subject to the effects and assumptions in the traffic system model, thesis scope and in-
tersection layout. This section will discuss the most important things to keep in mind when applying the
conclusions outside the scope of this thesis.

First of all, this thesis assumes perfect data quality and penetration rate for CV technology. Both these as-
sumptions are major simplifications of reality that can have a large effect on the performance of a controller
in the connected environment [80][53].

Evaluation is performed in a simulated environment. Because of this, assumptions have had to be made
with regard to behavior of cyclists and car drivers. These assumptions are to a large extent based on models
provided in the literature, but there always is a discrepancy between models and the actual behavior of
humans. For car drivers, the model assumes infinitely long approach lanes and no lane switching behavior.
Additionally, the car following model is fairly simple and only includes distance to the predecessor and a
drivers’ own speed as predictors. The major simplification made in the model of cyclists behavior is, that
nearby cyclists do not influence each other, and therefore there is no queuing behavior included in the
traffic model. This can result in increasingly large underestimations of delay for higher traffic volumes. This
assumption is the reason that performance evaluation has been done up to 45% saturation rate. A more
sophisticated traffic model for cyclists, considering interaction between cyclists as well as the interaction
with traffic lights would greatly improve the applicability of this research.

Additionally, behavior of travellers is, as is often done in intersection control research, generalized. All car
drivers are assumed to behave identical, and cyclists are subdivided in three different categories. This is a
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major simplification for both modalities, but likely has more impact on cyclists, as cyclist behavior is very
heterogeneous.

Finally, the design of the infrastructure layout and modal split influence the results. The combined choice of
these values, has unintentionally led to amplification in the traffic density difference between car lanes and
cycle paths. Conclusions on controller performance can still be drawn, as the use cases for this controller
are likely to have higher densities in bicycle paths than car lanes, but the extend to which the amplification
of density differences influences performance is yet unknown.

Finally, this controller is designed and evaluated only for an isolated intersection. Prioritizing the desires
of cyclists may have relatively low negative impact on individual intersections, but it may cause problems
elsewhere in the road network. Note that the SFGA controller is designed to function in unsaturated traffic
flows, so the effects on network level may be low, but this should be researched before actual conclusions
on this can be drawn.
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7
Future work

As this thesis represents -to the best knowledge of the author- the first work with regard to a structure free
controller in the connected environment that includes cyclists, the work on this thesis has identified in a lot
of suggestions for future work. These suggestions are organized in five main categories: improvements for
traffic system model, improvements of the controller itself, a wider range of case studies to evaluate perfor-
mance, expansion of the scope in which the designer is ought to function and other detection methods that
do not require CV technology.

7.1. Improved traffic system model
The underlying kinematic models for both transport modalities have been chosen mainly because these
models are the only models found in literature that approach the requirements of this thesis. No existing
micro-simulation models were found that combine the interaction between travellers, the interaction with
a traffic light and more complex aspects of driving and cycling behavior.

If such a model is to be formulated and validated in future research, this is likely to be of great benefit for
the functioning of the controller designed in this thesis, as well as for research on connected vehicle based
intersection controllers that include cyclist in general. This is not limited to connected environment only.
Traditional intersection control research will also benefit greatly from such a model.

7.2. Improvements for the controller design
The genetic algorithms converges to good solutions within few generations. The next generations achieve
only marginal performance improvements. This may mean that the algorithm is very effective, but it can
also indicate the algorithm only finds near optimal solutions. Improvements in current solution generation
algorithms, alongside inclusion of additional algorithms may achieve better performance. Improvements
in the algorithms are also desirable to reduce computation time, as the minimum green time constraint is
not captured very effectively. Each generated solution is evaluated for conflicts with any of the constraints.
These tests discarded 29% of solutions based on the minimum green time constraint. Reducing the num-
ber of discarded solutions, allows for the computation time to be used more effectively. Finally, efficiency
improvements of the simulation and controller code, in terms of both run time and memory consumption,
can allow for simulations of a longer duration with identical resources. This means either a longer simu-
lation time, or more freedom to choose the controller tune parameters (See Section 4.1.4). The controller
design improvements will now be discussed in depth.

The effectiveness of solution generation can be improved in three ways. First of all, the share of infeasible
solutions can be reduced. The algorithm iterates between randomly assigning a green duration of half a
second and updating the solution based on system knowledge, see Section 3.3.3.2. This is done to generate
a solution as random as possible, but can in some occasions result in two randomly generated green du-
ration preventing each other from being prolonged to the minimum green time. This may be improved by
changing the duration of the first green time of a single light to the minimum green time. Second, muta-
tion algorithms should include green time extensions and reductions of some random duration instead of
incremental steps of 0.5 seconds each generation. This can result in fewer generations required to achieve
the optimal green duration. Using another set of rules for the rule based solution generator, may also speed
up the convergence process of the GA. The proposed rule based system did not contribute to faster conver-
gence. Instead, a highest density first approach may perform better.

Finally, a new mutation algorithm should be included that has the goal of ending green time of some move-
ments earlier and starting the green time of the succeeding traffic light later, in order to squeeze through
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traffic from another movement. This was ought to be achieved by the current green time extension and re-
duction algorithms, but this failed. Firstly, because solutions that would extend and reduce green time are
not stored in successive generations, because of higher delays. However, a higher delay may be temporarily
required, to make a large improvement later on. As these solutions are not stored long enough, no possibil-
ity for a third intermediate traffic light to be green is available. Secondly, green time reductions immediately
result in longer green time for already active traffic lights, even if this has little additional benefit. Including
a weight for the total green time in the selection procedure, may also help reduce this effect. This weight,
that should be orders of magnitude smaller than the negative rewards for delay and other control objectives,
will also result in less unused green time. This is because it allows the controller to, in a situation with two
different solutions that result in identical delays, select the solution with less green time.

Another improvement for the controller is that it is expected to be very beneficial, is to include some penalty
for travellers still waiting at the end of the prediction horizon. In its’ current form, the controller may decide
on a signal plan that does forces a cyclist to reduce speed, but does not result in a full stop yet. However, if the
prediction horizon would be one second longer, this cyclist would be forced to make a full stop. Similarly,
a traveller forced to slow down will experience more delay after the prediction horizon than a traveller at
cruising speed, as this traveller does need to accelerate. These phenomena are not captured in the decision
making process of the proposed controller. Note that the controller has the ability to ’correct’ its’ mistakes,
as in the next window, the decision that forces the cyclist to stop is overruled. However, inclusion of a
weight penalty for travellers still waiting or travelling at reduced speed at the end of the prediction horizon
may improve predictions and thereby the effectiveness of the controller.

7.3. Extension of the evaluation framework
The performance of the structure free controller is evaluated in a single case study. The extend of this case
study is fairly limited, as the traffic saturation is only varied between three discrete values, the largest of
which was only 45%. Evaluation in a wider range as well as with smaller intervals can substantiate the
conclusions drawn in this thesis and allow these conclusions to be generalized. Note that in order for the
traffic saturation rate to exceed 45%, the traffic model must be improved to include queuing behavior for
cyclists. The controller should also be evaluated for a wider range of weights for a full stop of cyclists to fully
understand the influence this weight has on controller performance.

Similar to saturation rate, case studies with more variation in modal split and infrastructure layout can
provide a stronger foundation for the benefits of the designed controller. This also will allow to quantify
the relative differences in performance caused by the controller design and traffic density differences due
to modal split and infrastructure layout.

Finally, this thesis has assumed perfect data quality and penetration rate. These are quite large assumptions,
and evaluation for these variables is required to have a clear understanding of the implications of using the
designed controller in the connected environment.

7.4. Expansion of the design framework
Finally, future work recommendations are now provided that relate to expanding the design scope of the
thesis as described in Section 3.1.2. The scope of this thesis is fairly limited, due to time restrictions and
because this is, to the best knowledge of the author, the first controller of its’ kind.

First of all, a larger subset of the desires of car drivers and cyclists may be selected to function as control ob-
jectives. This can provide more insight in the extend of the what improvements for cyclists can be achieved
an how these improvements (negatively) effect other traffic modalities. Research on a more profound quan-
tification of the relative importance of these desires for cyclists may help in prioritizing these desires.

Some improvements may be achieved fairly simple. Relaxations on constraints of clearance time, yellow
time and minimum green time could already provide significant improvements in controller performance,
regardless of the type of controller. At low saturation levels, the loss time due to these factors is relatively
large. Additionally, CV technology may allow for these relaxations without significant decreases in safety.

As was explained in Section 7.3, the controller should be evaluated for different data quality and connec-
tivity penetration rates. In order to perform better under sub-ideal data circumstances, the missing data
estimation may become essential, This can be model based, but data can also be enhanced using fixed
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place sensors or vehicles as mobile sensing nodes, as proposed in [111].

Finally, a wider range of transport modalities should be included in the controller to be better suited to func-
tion in the real world. Think of pedestrians, public transport or automated vehicles. More determination in
the types of travellers should also be made in terms of behavior and personal characteristics. Examples are
differentiating between cars and trucks, mechanical bicycles and e-bikes, experienced and inexperienced
cyclists or elderly and younger cyclists. This also allows for more safe decisions to be made with regard to
ending green, as some types of travellers can decelerate faster than others, resulting in different abilities to
stop.

If all the before-mentioned improvements to the controller and extensions to the framework are made,
controlled tests of the controller in real life may be feasible. This would be a very large undertaking for the
researcher taking up this challenge, however it could provide very interesting results and represent a major
step in the CE research field. Eventually, the controller might even be used for practical implementation.

7.5. Connected environment without connected vehicles
The connected environment can help significantly improve vehicle detection and provide information on
personal characteristics that influence movement behavior. This is not a purely positive development, as it
rises a lot of questions with regard to privacy. A survey from the American League of Bicyclists found 40%
of respondents are not willing to be connected to vehicles and infrastructure around them[7]. Other, less
privacy invasive detection methods do exist, for example traffic cameras that locally convert video image
of travellers to points, with some characteristics. This less privacy sensitive data could then be used for
controlling as well. The initial motivation for this thesis was to show that these less privacy invasive methods
could provide comparable or even better performance.

This was not feasible within the time limit of this thesis. It is however still one of the major recommendations
for future work. In addition to being less privacy invasive, these camera based may even result in better
performance, once factors as a non perfect penetration rate are incorporated for CV technology. This is
because a camera may still have (near) perfect knowledge, even though this would be in a more limited
area.

7.6. Future work summary
This chapter has provided an extensive list of future work that may be inspired by this research. A wider
availability of validated traffic system models will be very beneficial for the the designed controller, as well
as for other bicycle related intersection control research. Improvements for traffic system model are pro-
posed, mainly with regard to improvements in and additions of solution generation algorithms. Addition-
ally, inclusion of a penalty for green time, orders of magnitude smaller than contributions of delays and
stops has been proposed as a means to reduce unnecessary green time. A penalty for travelers waiting at
the end of the controllers prediction horizon is proposed as a means to achieve lower delays.

Extension of the evaluation framework, to solidify the claims made in this research, and the design frame-
work, to expand the applicability of the controller are proposed. Finally, this chapter proposes the use of
other detectors, like traffic cameras, as a means to circumvent the use of connected vehicles in order to
attend to privacy related concerns that are associated with them.
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A
Intersection dimensions and capacity

calculation

The intersection layout is provided in the figure below. A rough estimation to be made on the capacity of
the intersection. The intersection contains six car lanes of which four are turning lanes and two are straight
going lanes, which have a capacity of 1800veh/h and 2000veh/h respectively[12], and two cycle lanes, with
saturation rate estimates between the 4.500 and 6.500 bicycles per hour[124].

Figure A.1: Intersection layout, flow numbering and clearance time matrix

The capacity of one full cycle can be estimated by multiplying the capacities of each lane with the maximum
green time of that lane in one full cycle. The hourly capacity of the intersection can then be found by mul-
tiplying this factor by one hour divided by the cycle time and equals approximately 7000/h. Both car lanes
and cycle paths contribute roughly half to this capacity.

Cest = (4∗48∗ 1800

3600
+2∗48∗ 2000

3600
+2∗48∗ 5500

3600
)∗ 3600

152
≈ 7000/h (A.1)
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B
The connected environment and prediction

errors

As was explained in Chapter 3.3.2, the same traffic system model is applied for the simulator used for evalu-
ation and the structureless controller to make predictions. This results in perfect system knowledge, some-
thing that is not realistic. This appendix discusses how the traffic system model can be split into two differ-
ent simulators: the evaluation simulator and the controller simulator. This is done in a manner that allows
for controlled variation of the prediction error. Controlled variation of the prediction error may allow to as-
sess the impact of prediction error on the functioning of the controllers in future work. In this thesis, perfect
predictions will be assumed.

The traffic system as a whole can be interpreted as follows. At regular time intervals∆T each cyclist commu-
nicate his or her position xc yc (t ), speed vc yc (t )[m/s] and other relevant data to the intersection controller.
This information is used to make predictions up to the prediction horizon on the future location xc yc [k]
and speed vc yc [k] of the cyclists. When no prediction error is assumed, the actual position of the cyclist
in the next time step of the evaluation simulator is equal to the position predicted by the controller, i.e.
xc yc (t+∆T ) = xc yc [k+∆k]. The cyclist would send the new updated position, xc yc (t+∆T ) = xc yc [k+∆k], to
the intersection controller who uses tho start making new predictions. With perfect predictions, there is no
benefit for the controller to start predicting again with the newly received data, as this will result in the same
outcomes of the previous predictions. If the newly sent prediction does not equal the predicted location,
the controller simulator would need to start predicting again, using the newly received inputs.

This more realistic behavior can be achieved by introducing an error between the actual position of agents
and the predicted position. This concept is shown in in equation B.1 and Figure B.1. This error can be
introduced in the form of a normal distribution around the predicted position. A normal distribution is
proposed, as CV technology currently relies upon GPS technology[35] and the prediction error of GPS over
the reference distance of 1 metre follows a normal distribution (µ,σ2) = (0.2,0.3) of which the systematic
error can be neglected[86]. For more realistic behavior the error will should introduced around the speed of
a traveller instead of the position. It would be unrealistic for a cyclist to all of a sudden make a jump of half
a metre during a discrete time interval of 0.1[s]. The shape of the prediction error for speed is the same, as
speed is the function of position variables[86].

Figure B.1: Example of the difference between actual position and predicted position with σ ̸= 0. Note that for initial evaluation
sigma will be fixed to zero in order to exclude data imperfection as a factor that influences results

xnew = xol d + v ∗∆T + vr andom ∗∆T (B.1)
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B. The connected environment and prediction errors

It should be noted that this randomness is not introduced when on the verge of the stopping line as this
could lead to situations where a cyclists waiting for a red light could cross the stopping sign and run the light.
Note that for the initial evaluation sigma and therefore the vr andom will be fixed to zero as an assumption
for perfect data quality.
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C
Elaboration on Case study parameter values

C.1. Traffic system model parameters
This appendix provides values for the variables of the traffic system model described in Section 3.2 com-
bined with the source or reasoning on which this value is based.

C.1.1. Behavioral model of cyclists
The traffic model introduces personal characteristics for cyclists: their preferred speed vpr e f , constant de-
celeration rate dmodel a maximum comfortable acceleration rate am and a maximum deceleration rate dm .
The traffic model is based on the work of [104] and in this work, cyclists are classified in three clusters: slow,
average and fast cyclists. This classification for cyclists is used in this thesis as well and personal charac-
teristic values are extracted from graphs in this paper. The rate of occurrence of each of the categories of
cyclists is also based on the occurrence in the data set of of [104]. The used parameter values are presented
in Table C.1.

Table C.1: Personal characteristics of cyclists

Type of cylcist Slow Average Fast
vpref 4 5 6
Poccurance 0.25 0.42 0.33
dmodel -0,37 -0,43 -0,49
dmax -0,5 -0,63 -0,81
amax 0,625 0,675 0,79

A the last model parameter is the turning speed vtur n . As this variable was not included in [104], another
source is required. No direct source has been found that provides information on the speed at which bi-
cyclists make turns. The information closest resembling this information is figure 3 in the research of [38].
This figure provides cumulative probability graphs of the average speed 6 metres upstream and downstream
of merging bicyclists on a T-junction. The average speed provided by all runs was closely read at the cumu-
lative probabilities 0.5, representing a first estimation of the average turning speed. However, these speeds
are the average speed 6 metres before and after the turn. Therefore these speeds are translated by a the
deceleration that can be achieved in 3 metres using the standard deceleration rate of the movement model
in this thesis. This results in a turning speed of vtur n = 2[m/s] .

C.1.2. Behavioral model of car drivers
All but the maximum speed parameters for the kinematic model of cars are taken from the model proposed
in [117]. The maximum speed is chosen to be 50[km/h], based on the standard speed limit in Dutch cities.
Note that a speed of 30[km/h] could also be defended, as many cities choose to enforce this lower speed
limit. The speed limit for car drivers that make a turn has been artificially lowered to represent the lower
speed used when making turns. This is done by enforcing a lower speed limit slightly upstream of the traffic
light up to the point that the car has crossed the intersection. The location of enforcement and magnitude
of the speed limit has been manually tuned up to the point that cars make a turn with speeds corresponding
to turning speeds found in [128].
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C.1. Traffic system model parameters C. Elaboration on Case study parameter values

C.1.3. Traffic light related parameters
All traffic light timing related parameters are rounded to half seconds. This allows the intersection con-
trollers to make a control decision every half second. For convenience, traffic signal related parameters are
rounded to half seconds as well.

Minimum green time is fixed to six seconds for all traffic lights. This is a very common value in the Nether-
lands [60]. Note that in some occasions different values are used, also with lower minimum green time for
cyclists. The maximum green time, which is only enforced for VAC, not for the structureless control, is set
to 48 seconds. This is done so the waiting time of any traveller will never exceed the maximum waiting time
of 100s, which was set based on the literature review on desires of travellers in Section 2.2.

The yellow time is based on the Dutch current practice relation between the required yellow time for both
cars and bicycles for a range of speed limits and deceleration rates, described in [10]. Evaluation of the
simulation model shows a resulting deceleration rate for cars of 6 ms−2. Combined with a speed of 50 km/h
this results in a yellow time of 2.2 seconds, or two seconds when rounded to halves. The required yellow
time for cyclists is 2.1 seconds, which rounded down also is 2 seconds.

Clearance time, the time between the start of red for one direction and the start of green of a conflicting
direction, is an important parameter within signalized traffic control. Figure C.1 illustrates the conflict and
all relevant parameters to explain and calculate these values. The conflict zone is the area that overlaps
between the lanes of two conflicting directions. If traveller two crosses the stopping line just before the
traffic light turns green and traveller 1 were to given green directly, one can imagine the two colliding, as
traveller two has not yet cleared the conflict zone when traveller one enters it. Therefore a non-negative
clearance time is calculated that ensures traveler 2 has cleared the conflict zone before traveller one can
reach it i.e. equation C.1. The clearance time is different for all combinations of conflicting flows. It also
depends on the sequence: it takes longer to ensure 2 has crossed and traveller 1 enters then the other way
around.

tclear ance (i , j ) = texi t (i )− tentr ance ( j ) => 0 (C.1)

A lot of researchers make the simplifications of a zero second clearance time in their traffic system repre-
sentation. This assumption could be challenged as a clearance time increases the cost of switching signals.
Especially in case of a structureless controller, where one can expect more signal switches, this assumption
should not be made as the cost of switching signals should be considered. Another simplification that is
often made is a equal clearance time for all flow combinations. This simplification will also not be made
this will lead to either over or underestimations for the cost of changing signals.

Figure C.1: Illustration for clearance time by [72]

Clearance times are calculated by determining the exit and entry times for all combinations of conflicting
directions. The exit time can easily be calculated according to texi t = sexi t /vexi t with vexi t = vmax . The
entrance time is more complex and requires a model for assumed movement behavior. For safety the lowest
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C.2. Reasoning behind the evaluation saturation rates C. Elaboration on Case study parameter values

possible clearance time should be used. This thesis follows the method as described by [72] to estimate it.
This model assumes travellers brake the last possible second with a braking rate that would bring them to
a standstill at the stop line. The light then turns green and -after a reaction time- they accelerate back to
vmax . However, as the traffic model of this thesis does not include a reaction time this value is assumed to
be zero. Analytically this translates to the following three equations.

tentr ance =
√

2∗ sentr ance

aacc −adec
i f sentr ance ≤ scr i t i cal (C.2)

tentr ance = sentr ance

vmax
+ vmax

2∗ (aacc −adec )
i f sentr ance > scr i t i cal (C.3)

scr i t i cal =
v2

max

2∗ (aacc −adec)
(C.4)

The traffic system model assumes a constant acceleration and deceleration rate. For cyclists, the values of
the most aggressive type of cyclist from [104] are taken. For car drivers, [72] itself proposes aacc −adec = 2.4
provides the best fit of the entrance times for dutch car drivers. This value will therefore be used.

Values for sentr ance and sexi t are chosen based on points of investigation as described in [6]. Distances
between the points are based on the dimensions of the intersection. No smooth curves were assumed. This
means the clearance times are a rough approximation and the values presented in Figure C.2 may diverge
slightly from a real intersection. This is acceptable, as it is important to show include a reasonable cost for
changing signals, not the exact cost.

Figure C.2: Clearance times of the intersection controller

C.2. Reasoning behind the evaluation saturation rates
The assumption that there is no interaction between cyclists, leads to unrealistic behavior when more than
three cyclists are waiting in front of a red line. The underestimation of delay is estimated to be 1.5[s] per
cyclist for the second group of three cyclists, 3[s] for the third group of three cyclists and so on. A hard limit
of eight cyclists in a queue was proposed in cChapter 3.2. Translating this limit to a maximum demand level
is difficult as the the stochastic nature of the system and type of controller can result in different number
of cyclists in a queue for different runs with the same demand levels and controller. A visual inspection of
multiple trajectory plots for a number of different demand levels is deemed the best way to set this limit. A
more exact analysis could be performed but has not been done to save time.

These visual inspections were done for runs controlled by VAC for practical reasons, as computation time for
runs using this controller are significantly shorter than the structureless controller (30s versus 20h). The in-
spection resulted in observations that up to demand demands up to 2500/h (saturation rate ≈ 36% ) queues
containing more than eight cyclists are rare. Between traffic demands demands of 2500 and 3500 (saturation
rate = 50%) cyclists queue lengths grow to approximately eight and above 3500 queues of eight and more
appear frequently. Three equally spaced values below 50% are chosen for evaluation, resulting in saturation
rates of 15%, 30% and 45%.
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D
Verification scenarios and model changes

As was explained in Section 4.1.5, the verification process has led to a few minor model changes to deal with
overshoot problems caused by discretization, which are not described in this thesis. Larger changes have
been made to the kinematic model of car drivers. These are described now. Starting on the next page, a list
of all the scenarios used for verification are provided.

Firstly the upper bound application limit of [117] becomes infeasible in the scenario where a cars speed
equals the speed limit vmax , meaning no upper limit can be calculated once a cars speed approaches the
speed limit. This is because the argument of the term ar ct anh(2v0/vmax −0,9762) (Part of Equation 3.25)
exceeds one at the speed limit, which is mathematically impossible. Because the model assumes an lower
boundary of −t anh(2.22), a mirrored value of +t anh(2.22) is assumed in these situations. Secondly, in
some cases [117]s formulation results in negative optimal speeds when the leading car approaches the stop
line, resulting in car drivers driving backwards very slowly. A non-negative constraint is added to the optimal
speed to prevent this from happening. Finally the assumption related to the speed limit for turning cars was
revised after verification. The initial speed limit was enforced after the stopping line, but this led to a speed
when turning which is too high, as the cars did not spend sufficient time in the turning area that they could
not achieve this lower speed. Therefore this boundary was shifted to 5 metres before the stopping line,
which leads to cars entering the turn at the lower turning speed and accelerating to the actual speed limit
again after the turn is made.
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Verification performed for the three different types of cyclistsL

Scenario Expectation
1 cyclist (straight)

Enter with red light, light stays red
Approach at constant speed, at some point start constant deceleration and stops
 at stopping line

Enter with red, light turns green with x < x_approach Keep constant speed throughout simulation
Enter with red, light turns green with x > x_approach -

                             1) Before full stop
Approach at constant speed, at some point start constant deceleration, start
 accelerating to v_pref when the light turns green

                             2) After full stop
Approach at constant speed, at some point start constant deceleration and stops 
at stopping line. Then start accelerating to v_pref when the light turns green

Enter with green light, light stays green
Keep constant speed throughout simulation. Required deceleration should 
increase starting at x_approach from -0.42 up to maximum deceleration

Enter with green light, light turns red and required acceleration > a_max Keep constant speed throughout simulation
Enter with green light, light turns red and required acceleration < a_max Start decelerating from the moment the light turns red. Stop at the stopping line
Enter with green light, light turns red and required acceleration < a_max, 
light turns green before full stop

Start decelerating from the moment the light turns red. Start accelerating to 
v_pref when the light turns green

1 cyclist (turning)
Before turning left

Enter with red light, light stays red
Approach at constant speed, at some point start constant deceleration and 
stops at stopping line

Enter with red, light turns green with x < x_approach
Keep constant speed, start decelerating to v_turn, starting upstream of the 
crossing point

Enter with red, light turns green with x > x_approach -
                             1) Before full stop -

                            1.2. ) & v < v_turn
Approach at constant speed, at some point start constant deceleration, start 
accelerating to v_turn when the light turns green



                            1.2. ) & v > v_turn

Approach at constant speed, at some point start constant deceleration. Keep 
constant  speed after the traffic light turns green, later on start decelerating 
to v_turn upstream of the crossing point. 

                             2) After full stop
Approach at constant speed, at some point start constant deceleration and stops at 
stopping line. Then start accelerating to v_pref when the light turns green

Enter with green light, light stays green
Keep constant speed, start decelerating to v_turn, starting upstream of the crossing 
point

Enter with green light, light turns red and required acceleration > a_max
Keep constant speed, start decelerating to v_turn, starting upstream of the crossing 
point

Enter with green light, light turns red and required acceleration < a_max Start decelerating from the moment the light turns red. Stop at the stopping line
Enter with green light, light turns red and required acceleration < a_max, 
light turns green before full stop -

                            1.2. ) & v < v_turn

Start decelerating from the moment the light turns red. Start accelerating to v_turn 
when 
the light turns green

                            1.2. ) & v > v_turn

Start decelerating from the moment the light turns red. Keep constant speed 
starting 
when the light turns green. Start decelerating later on again to v_turn.

Turning left
Agent should enter the system of the other lane using the same personal characteristics, at location x_turn with speed v_turn. 
After turning left

Enter with red light, light stays red
Approach at constant speed, at some point start constant deceleration and stops at 
stopping line

Enter with red, light turns green with x > x_approach (Always happends) -

                             1) Before full stop
Approach at constant speed, at some point start constant deceleration, start 
accelerating to v_pref when the light turns green

                             2) After full stop
Approach at constant speed, at some point start constant deceleration and stops 
at stopping line. Then start accelerating to v_pref when the light turns green



Enter with green light, light stays green

Keep constant speed throughout simulation. Required deceleration should increase 
s
tarting at x_approach from -0.42 up to maximum deceleration

Enter with green light, light turns red and required acceleration > a_max Keep constant speed throughout simulation
Enter with green light, light turns red and required acceleration < a_max Start decelerating from the moment the light turns red. Stop at the stopping line

Enter with green light, light turns red and required acceleration < a_max, 
light turns green before full stop

Start decelerating from the moment the light turns red. Start accelerating to v_pref 
when the light turns green

Multiple cyclists

Multiple agents should be able to be in the system at the same time
Everyting is expected to occur as described in earlier mentioned scenarios, as 
cyclists do not hinder each other.

1 car (straight)
Enter with green, light stays green Keep constant speed
Enter with green, light turns red with x < x_up Keep constant speed up to x_low, then decelerate and stop at stopping line
Enter with green, light turns red with x > x_low Keep constant speed.
Enter with green, light turns red with x_up > x > x_low Keep constant speed, decelerate when light turns red and stop at stopping line
Enter with red, light stays red Keep constant speed up to x_low, then decelerate and stop at stopping line

Enter with red, light turns green before full stop
Keep constant speed, decelerate when light turns red and start accelerating to 
v_max again when the light turns green

1 car (turn)

Enter with green, light stays green
Keep constant speed, decelerate to 30 km/h after passing traffic light. Accelerate 
again afterwards

Enter with green, light turns red with x < x_up Keep constant speed up to x_low, then decelerate and stop at stopping line
Enter with green, light turns red with x > x_low Keep constant speed, decelerate to 30 km/h after passing traffic light
Enter with green, light turns red with x_up > x > x_low Keep constant speed, decelerate when light turns red and stop at stopping line
Enter with red, light stays red Keep constant speed up to x_low, then decelerate and stop at stopping line

Enter with red, light turns green before full stop
Keep constant speed, decelerate when light turns red and start accelerating again 
to 30 km/h when the light turns green

Multiple (3) cars
Any scenario No overtaking
Green light all the time Constant headway



Enter with green, red forcing first car to stop Headway decreasing to approx. 20/3 60s after a red light. (Minic graph from  paper)
Enter with green, first car crosses, then light turning red Cars 2 and 3 stop
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Abstract
Bicycles have an important role to play in the transition towards a more sustainable mobility. This thesis proposes a design
for a structureless intersection controller in the connected environment that is able to control for and prioritize the desires
of cyclists. The desires of cyclists are identified and used as control objectives. The proposed controller design uses
simulation based control, combined with a genetic algorithm to speed up the optimization process. A simulation based
case study shows the controller, even without active prioritization, outperforms the benchmark controller significantly. Active
prioritization improves the performance with regard to cyclist related metrics, but this comes at the cost of of disproportionate
decreases in car related metrics.

1. Introduction

Sustainable mobility is one of the major challenges for cities
going in the 21st century. Between 2005 and 2025 the num-
ber of trips made in urban areas are expected to increase by
50%. Cities around the world will have to make choice to de-
cide how they want to adapt to the increased demand. If the
car remains the main mode of transport this will lead to either
gridlocked road networks or increasingly larger networks re-
sulting is less space for urban life[1].

Bicycles have a number of advantages over cars. First of
all, bicycles are responsible for noise and air pollution than
cars[2][3]. Bicycles also occupy way less space than cars,
both while parked and in motion. Additionally, replacing mo-
tor vehicle trips by bicycle can also help increase health via
increasing health enhancing physical activity[4][5]. Bicycles
are most competitive in low to medium distance trips, which
are common in urban centers. In the urban cores of the
Netherlands for example bicycles contribute to 28% of all
trips and 34% to 47% of short (0.5-5km). In order to achieve
a modal shift towards bicycles, more attention must be paid
to the desires of cyclists[6].

Controlled intersections do allow for protected crossings for
cyclists with motorized vehicles, but this comes at the cost
of increased travel time and required effort for accelerating
back to cruising speed. The inconvenience of controlled in-
tersections is illustrated by the concept that cyclists generally
will choose routes that avoid traffic signals[7][8] and are will-
ing to make significant detours (average of 1.3km) to avoid
routes with many of them[9].

Recent research on structureless intersection control [10]

and technological connected vehicles [11][12] has shown the
potential of both concepts. Combined, they may allow for the
design of an intersection controller that is able to control for
or even prioritize the desires of cyclists over cars. This may
provide a boost to bicycle use and help achieve a modal shift
towards more sustainable mobility. This paper proposes an
intersection controller design for an intersection controller in
an environment with connected cars and bicycles, which can
be used to prioritise the interests of cyclists over car drivers.
The performance of the controller is evaluated with a simula-
tion based case study.

This paper is organized as follows. Section 2. establishes the
desires of cyclists and car drivers with regard to controlled in-
tersections and proposes a trade off between these desires.
Section 3. presents the system description. The fourth sec-
tion describes the proposed controller design. The experi-
mental setup and the results of the case study is provided
in Section 5.. The conclusion and future work recommenda-
tions are presented in Sections 6. and 7..

2. The desires of cyclists and car drivers with regard to
controlled intersections

A literature review was performed, with the goal of identifying
the desires of cyclists with regard to controlled intersections
and proposing a trade off with the desires of car drivers. In
order to do so, determinants of bicycle use were investigated
and projected on controlled intersections. Leading in this
review has been the literature review of [13] on bicycle fre-
quency and duration determinants. Additional sources and
references have been collected.



2.1 Determinants of bicycle use

The resistance to travel for cyclists increases disproportion-
ately with travel time and trip distance. While these factors
are important for all travel modes, the variables are of much
greater influence for cyclists than for car drivers [14][15]. This
difference be explained by different power sources: a cy-
clists needs to provide the power for propulsion by physical
effort.Sharp turns, stop signs or red traffic lights, require a
bicycle to slow down and provide a lot of effort to acceler-
ate back to the cruising speed. This is illustrated by [16], in
which it is estimated that the average speed of a 70kg per-
son producing 100W will be reduced by 40% for a road with
a stopping sign every 90m. In order to keep the speed on
an average of 20 km/h, a power output of 500W would be
necessary, which is a power level that is only expected from
a serious racing cyclist.

The presence and continuity of dedicated bicycle infrastruc-
ture are big determinants in both bicycle mode and route
choice [17][18]. This may be explained by the increased
safety. Lower risk of injury can be linked to higher bicycle
use[6][19] and the presence of dedicated bicycle infrastruc-
ture does improve perceived and objective safety for cyclists
[20][21].

Finally, transportation cost, social-economic factors and psy-
chological factors can help determine bicycle use, but cannot
be directly influenced by intersection control. This is also the
case for the presence of slopes, that negatively impact cyclist
utility because of additional effort [6][22], and weather con-
ditions [23][24], however, under these conditions one could
argue that factors related to travel time and effort have larger
impact on the total cycling utility.

2.2 Projecting determinants on controlled intersections

The factors travel time, required effort and (perceived) safety
come together in the controlled intersection. Controlled inter-
sections can ensure protected crossings, but the additional
safety that is provided, comes at the cost of additional travel
time and required effort, in the form of reduced speed, stops,
and safety concerns for cyclists due to cyclists low speeds.
The inconvenience of controlled intersections make them a
major obstacle that cyclists tend to avoid [7][8]. Stops are
not confined to only once per intersection crossing. When
the number of cyclist is high, it can occur that queues are
not dissolved after a single green cycle. Stopping twice at a
single intersection also can happen when making a left turn.

It can even be argued that long waiting times are a reason for
red light running behavior, which in turn reduces the positive
safety effect of protected crossings. Red light running may be
an indication of cyclist feeling like they do not get served well
and that for them the risk of running red light is outweighed

by the benefits of not having to stop and lose time. Red light
running also occurs often when a cyclist stops at a red light
and waits, but start riding again before a green light. Further
inspection showed all of these cyclist accelerated only after
all crossing traffic has cleared the intersection[25]. This may
indicate that the clearance times enforced by the intersection
controller is unpractical and too long for cyclists.

Altogether, the desires cyclists with regard to controlled inter-
section can be summarized by the following points. A cyclist
wants

• no motorized traffic to be allowed to cross their path,
when they are allowed to do so.

• to be forced to slow down as little as possible.
• to avoid lows speeds, stops and double stops.
• to short waiting times.
• to start moving as soon as possible after the last vehicle

from crossing directions has passed and not have to wait
for the light to turn green with for a couple of seconds
without conflicting traffic passing.

• to be allowed to cross the road if no conflicting traffic
is passing for a duration in which the cyclist could have
crossed the road.

2.3 Trade off with desires of car drivers

Trip distance distance, free-flow travel time, time spent in
congestion, travel time reliability, travel cost and number of
turns are used in research on route and mode choice for car
drivers [26][27]. Projected on controlled intersections, car
drivers want to minimize their delay. The safety provided by
protected crossings is of also important for car drivers and
the intersection controller should discourage red light run-
ning (RLR) behavior. In French cities, waiting times below
100 seconds result in very low RLR probabilities, but these
probabilities increase to up to 10% for waiting times between
100 and 300 seconds [28]. This suggests the waiting time
should be limited to a maximum of 100 seconds.

When delays do not exceed this threshold, a trade off be-
tween the delays of cyclists and car drivers has to be made.
Delays can be weighed equally, or can take the different val-
ues of time (VoT) into account. Based on estimations on
perceived vs. actual waiting time for cyclists (3 [15], 5 [29])
and car drivers, (1 [30] and 1.8 [31]), a low (3/1.8 = 1.7) and
high (5/1 = 5) estimation for relative VoT is proposed.

3. Traffic system model

This section proposes a traffic system model, that describes
the movement of individual cyclists and car drivers over an
intersection. Cyclists follow a set of rules based on their po-
sition and speed. The kinematic model used is the model
proposed by Twaddle and Grigoropoulos, which is validated
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using real life data. The car following model is the model
proposed by Wen-xing, Jing-yu, and Ze-Rui. Traffic lights
are represented individually, instead of the common conflict
group based representation.

The traffic lanes i, j ∈ I are modelled as separate sub-
systems, with no interaction between agents in different
lanes. Individual agents are represented as ccyci ∈ Ccyc

i and
ccari ∈ Ccar. The system is simulated over the time indices
k ∈ K = [k0, kmax] where kmax = Tmax/∆T ], with Tmax

representing the length of the prediction horizon and ∆T the
constant time step.

3.1 Traffic lights

Given the sets of directions i, j ∈ I and the set of time indices
k ∈ K, the set of individual traffic signal states for each time
step is defined as si,k ∈ S. The binary values of a traffic
signal state is defined as follows:

si,k

{
0, if red or yellow
1, if green

∀i ∈ I, k ∈ K (1)

Minimum and maximum green time constraints (gmin,i ∈
Gmin, gmax,i ∈ Gmax) are enforced by evaluating the green
duration Gd[k] (Equation 2) of all traffic lights every time step.

Gd[k] = Gd[k − 1]⊙ Sk−1[i] + Sk[i] ∗∆T (2)

Protected conflicts, yellow time and clearance time con-
straints are enforced by Equation 3. A delay tdelay is im-
posed between two subsequent greens, consisting of the
required yellow time tyellow[i, j] ≤ 0 and clearance time
tclearance[i, j]0.

S[j, k2] = 0, if

{
S[j, k1] = 0

k2 − k1 < Tdelay[i, j]

∀i, j ∈ I, ∀k1 ∈ K, ∀k2 > k1

(3)

3.2 Mathematical model for cyclists behavior

The position of a cyclist is defined as the location with re-
spect to the entry point of the system, as is shown in Figure
1. No interaction between cyclists is assumed. Position, ve-
locity and acceleration are related by Equations 4 to 6. The
acceleration of the cyclist is dependent on the state of the
traffic light, a cyclists velocity and the area in which a cyclist
is located.

x[k] = x[k − 1] + v[k − 1] ∗∆T (4)

v[k] = v[k − 1] + a[k − 1] ∗∆T (5)

a[k] = f(x[k − 1], v[k − 1], si[k − 1]) (6)

Straight travelling cyclist
Unless located in area A2.1 (See Figure 1) and facing a
red light, a straight travelling cyclist is assumed to acceler-
ate towards their preferred speed vpref in accordance with
Equation 7. In this equation, the acceleration is a function of
the speed ratio a(θs) = (vc[k] − vi)(vtarget − vi), relating a
cyclists current speed vc[k], initial speed when acceleration
started vi and target speed vtarget ∈ {vcpref , vturn} (Equa-
tion ??). The equation also includes acycmax, representing a
cyclists personal maximum (Comfortable) acceleration rate
and Ccyc, Bcyc, ccyc, acyc, which are model parameters based
on personal characteristics. Three different types of cyclists
are included to represent heterogeneity, identical to the cat-
egories used by [32].

When located in A2.1, bound by the traffic light approach
point and the traffic light, and facing a red light, cyclists make
a stop and go decision. They evaluate their required decel-
eration rate dcycreqlight, which is described in Equation 8). In
this equation, deceleration rate is related by the stop veloc-
ity vstop, a cyclists current speed v[k] and location x[k]) and
the location of the traffic light xlight. If the required decla-
ration rate exceeds a cyclists maximum acceptable decel-
eration rate dcycmax, they will continue ignoring the red light.
Otherwise, they will decelerate and stop at the stopping line.
The location of the traffic light approach point depends on
personal characteristics and is described in Equation 9. This
equation also includes a deceleration rate dconstant, which is
taken from the work of Twaddle and Grigoropoulos

a[k] = a(θs) = Ccyc ∗ acycmax ∗ (sin(πθs[k])

+Bcyc ∗ sin(2πθs[k])) + (
1

θ2s + ccyc
+ acyc)

(7)

dcycreqlight = −
v2stop − v2[k]

2(xlight − x[k])
(8)

xlightapproach = xcyclelight −
v2stop − v2pref
2 ∗ dconstant

(9)

Cyclists that make a left turn
Turning cyclists leave the first cycling path the crossing point
travelling with turning speed vturn. They enter the second
traffic lane at the after turn point with the turning speed and
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Figure 1: System description of bicycle lane. The acceleration of a cyclist depends on what area (A1 to A6) he/she is located in. A straight travelling cyclist
enters the system at the entry point and leaves the system at the exit point. Cyclists that make a left turn pass through two bicycle lanes. The first lane is
entered at the entry point and exited at the crossing point. The second lane is entered at the after turn entry point and left at the exit point.
* The location of these points is dependent on a cyclists personal characteristics

traverse the lane to the exit point, behaving as a straight trav-
elling cyclist. Similar to straight travelling and turned cyclists,
the turning cyclist will in the basis aim to be travelling at its’
preferred speed, following the basic acceleration equation 7.
Their behavior diverges from straight travelling cyclist, when
located in the turn approach area (A6). In A6, cyclists con-
sidering the turn they have to make.

When travelling faster than the turn speed, assumed to keep
travelling at this speed up to the point that they need to start
braking with dmodel- to reach the crossing point with the turn-
ing speed. At this point, they will decelerate with dmodel until
arriving at the crossing point. When travelling slower than
vturn, the cyclist will accelerate in accordance with Equation
7, with target speed vturn. A6 is bound by the crossing point
and the maximum braking turn point, described in Equation
??, which represents the point from which a cyclist, travel-
ling at his preferred speed, must start braking - using the
comfortable deceleration rate dcycmodel- to reach the crossing
point with the turning speed. Cyclists of whom the maximum
turn approach point is located downstream of the traffic light
will fist keep accelerating towards their preferred speed until
they enter A6. This situation is visualized in Figure 1 as area
A5.5.

xmaxturnapproach = xcrossing −
v2turn − v2pref
2 ∗ dconstant

(10)

xbraketurnmax = xcrossing −
v2turn − v2pref
2 ∗ dconstant

(11)

3.3 Mathematical model for car driver behavior

For simplicity sake and to stay within the applicability range
of source model of Wen-xing, Jing-yu, and Ze-Rui, sorting

lanes of the intersection are assumed to start at the system
boundary and car drivers are assumed to enter the system
on the correct lane designated for their destination, travelling
at the speed limit vmax. The position and of cars is deter-
mined the same way as for bicycles, following Equation 4).
Cars determine their new speed based on the current speed
and acceleration, in accordance with equations 12 and 13.
Acceleration is calculated based on a cars’ current and op-
timal speed Vopt, which differs depending on a red or green
traffic light.

vcar[k] = vcar[k − 1] + acar[k − 1] ∗∆T (12)

acar[k] = 0.85(V (∆xcar(k))− vcar[k]) (13)

The optimal velocity for a vehicle following another vehi-
cle is defined in equation 14. In this equation, xcar[k − 1]
and ∆xm[k − 1] are the the position of the vehicle and the
headway with its’ predecessor in the previous time step.
vmax ∈ {30, 50}[km/h] represents the speed limit in turns
and for straight parts of the road respectively. When fac-
ing a red traffic light, the first car between the upper (Lup)
and lower (Llow) bounds for the influence of the traffic light
starts braking in accordance with Equation 15. The upper
and lower bounds are calculated following Equations 16and
17. Cars downstream of the lower bound pass the carry on
at their current speed.

V (∆xcar[k − 1]) =
vmax

2
∗ (tanh (0.13(∆xm[k − 1]− 12.5)

−1.57) + tanh (2.22)

(14)
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V (∆xcar[k − 1] =
vmax

2
∗ (tanh (0.13(xlight − x[k − 1]

−7.5)− 1.57) + tanh (2.22
(15)

Lcar
up =

arctanh( 2vo
vmax

− tanh 2.22) + 1.57

0.13
+ 7.5 (16)

Lcar
low = −0.014 ∗ v2o + 1.022 ∗ vo − 0.017 (17)

3.4 Definition of control objectives

For simplicity sake, only a subset of the desires of cyclists
presented in Section 2.2 are included in the objective func-
tion. These two variables are the delay of cyclists and the
number of stops cyclists have to make, to represent desires
related to additional travel time and the additional required
effort. The delay of car drivers is included to represent the
desires of car divers. Delays are calculated following Equa-
tion 18, relating the total time spent (TTS) in the system with
the time spent in the system at free flow speeds. The number
of stops is calculated following Equation 19

Dcyc = TTScyc − vpref ∗ xexit

Dcar = TTScar − vmax ∗ xexit

(18)

N c
stops =

{
N c

stops + 1, ifvc[k − 1] < vstop ⩽ vc[k]

N c
stops, if else

∀c ∈ C,∀k ∈ K

(19)

4. Structure Free Genetic Control

A structure free controller is proposed that uses model based
control (SFGA) to predict the effect of signal plans on the traf-
fic state. A genetic algorithm is used to optimize the signal
plan over a rolling horizon TRH . Model based control is pre-
ferred over data driven control, because this allows for control
over prediction errors in future work.

The signal plan of the first tc seconds of the prediction hori-
zon are already determined in the previous control window.
This represents the time available for computation were the
controller to be implemented in real life. Signal plans are
created and evaluated by means of simulations that use the
state of state of the main simulation at the start of the RH win-
dow as a starting point. The RH simulations are performed
entirely independent of the main simulation and evaluate the
effect of generated signal plans over the duration of TRH .

The first tc seconds of the signal plan of the next control
window are fixed to the signal plan of the best performing
solution. The entire process then is repeated until the main
simulation has ended.

Figure 2: Rolling Horizon and control interval

The simulations are conducted in a Python environment.
Scenarios for the main simulator are generated by means
a seed that determines at what moment in time travellers are
generated, the personal characteristics of these travellers
and in which traffic lane they spawn.

The genetic algorithm functions as follows. At the start of
each control moment, a fixed number Npop (Population size)
of random solutions (Signal plans S, composing of traffic sig-
nal states s[i, k] ∈ S are generated. The effect of the so-
lutions are evaluated by means of simulation using the traf-
fic system model described in Section 3.. After evaluation,
the Nkeep with the lowest objective values are stored and are
adapted with proposed mutation and crossover algorithms.
This process is repeated for a fixed number of generations.
GA parameter settings are determined by evaluating the re-
sulting delay and convergence of successive generations.
Used parameter settings are provided in Table 1.

Table 1: GA parameters

Variable Value
Prediction horizon 20 [s]

Population size 25
Number of generations 10
Crossover probability 0.4
Mutation probability 0.4

Random solution probability 0.2
Stored best performing solutions 8

4.1 Solution generation

Random solution generation, two mutation algorithms and
crossover algorithms are now discussed. The crossover al-
gorithm is designed to combine signal plans, with the aim of
determining the optimal sequence of traffic lights that show a
green light. The mutation algorithms are designed to cause
green time extensions and earlier ends of green, with the

5



aim of determining the most optimal moment to switch be-
tween successive green periods, allowing as many travellers
to cross before the light turns red and and avoiding unused
green. All algorithms alternate between

All algorithms start with an signal plan S, of which the entries
corresponding with the first tc seconds are determined and
the remainder is filled with NaNs. Then, the algorithms alter-
nate between updating the matrix regard to minimum green
time, conflicts, clearance time and yellow time (Equations 2
and 3) and selecting a new matrix entry s[i, k] to be green.
Updating the matrix with regard of these constraints is re-
ferred to as updating with system knowledge. This process
is repeated until the entire matrix is filled.

Algorithm 1 shows the pseudo-code for the random solution
algorithm. Algorithm 2 does the same for the crossover algo-
rithms. Algorithms 3 and 4 describe the green time extension
and green time reduction algorithms. Note that an extension
of one green time results in a later start and green time re-
ductions result in an earlier start of successive green periods
of conflicting movements.

Algorithm 1 Random solution generator

Initialize sets:
Empty spots E: e(k, f) ∈ E
Set of ones and zeros: o(k, f) ∈ O, z(k, f) ∈ Z
Discrete time steps up to Gmin: D ∈ {0, 1, 2..Gmin}

while E ̸= ∅ do:
for all o(k, f) ∈ O do: ▷ Place ones based on Gmin

for all d ∈ D do:
S(x, f) = 1 for x ∈ {k, k+1...k+Gmin−d})
S(X, f) = 1 for x ∈ {(k +Gmin − d), (k +

Gmin − d− 1), .., k
update E,O
for all o(k, f) ∈ O do:

s(k2, f2) = 0 if p(f, f2) = 1 ▷ Place zeros based
on conflicts

s(k, f2) = 0 if k2 − k1 < Cl(f, f2) ▷ Place zeros
based on clearance time

update E,Z
for allf ∈ F : ▷ Place zeros based on Gmin

for all
(
o(k1, f1), o(k2, f1)

)
∈
(
n

k

)
:

s(k1 : k2, f) = 0 if S(k1 : k2, f) ∈ E and
k2 − k1 < Gmin

update E
N = random index from E ▷ Generate a random

empty location and place a one
en(k, f)← 1
update E,O,Z

Algorithm 2 Crossover algorithm

Initialize:
Sparent1 , Sparent2

sc(k, f) = {0, 1} ← Sparent1(k, f) for k ¡ 6s ▷ Fix first
six seconds of the solution

update Schild with system knowledge, E ▷ Also
update empty subset of Schild

Niterations = 0
while E ̸= ∅ do:

SOptions1 = {(Sparent1 ∩ E}, SOptions2 = {Sparent2 ∩
E}

if SOptions1 ̸= ∅ and SOptions2 ̸= ∅ do:
if Niterations is even ∨ SOptions2 = ∅ do:

n(kn, fn) ∈ SOptions1

elif Niterations is uneven ∨ SOptions1 = ∅ do:
n(kn, fn) ∈ SOptions2

else do:
n(kn, fn) ∈ E ▷ Select a random empty location

Schild(kn, fn)← 1
update Schild with system knowledge, E

Algorithm 3 Green time extension mutation

Initialize:
sp(k, f) = {0, 1} ∈ Sparent

sc(k, f) = e(k, f) ∈ Schild

R =
{
(k, f) if s(k − 1, f) ∗ s(k, f) = 0 ∧ s(k, f) =

0 ∧ k > 6s
}

: ▷ Set of start of red time
n(kn, fn) ▷ Randomly chosen start of red
Schild(0 : (kn − 1), f)← Sparent(0 : (kn − 1), f)
Schild(kn, fn)← 1

for all kcopy ∈ {kn + 1, kn + 2, ...kmax} do:
update Schild with system knowledge, E
Schild(kcopy, f)← Sparent(kcopy, f)∀(kcopy, f) ∈ E

4.2 Evaluation and selection

Each generation, all generated signal plans are simulated
over a time horizon TRH seconds to determine the effect
of signal plans on the traffic system. Afterwards, a per-
formance cost Rc for each solution is calculated following
Equation 20, where Dcyc, N cyc

stop, ∗Dcar, Wcycdelay Wstop and
Wcardelay represent the delay and number of stops of each
cyclist and the delay of each car driver and the correspond-
ing weighs respectively. The Equation also includes the pa-
rameters Nmaxwaitingtime and Wmaxwaitingtime, representing
the number of travellers that exceeded the maximum waiting
time and the corresponding weight, which is orders of mag-
nitude larger than all other weights.
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Algorithm 4 Early end of green mutation

Initialize:
sc(k, f) = {0, 1} ← Sparent

Gend =
{
(k, f)

}
if(

s(k, f) = 1∧k = kmax

)
∨
(
s(k, f)∗ sn(k+1, f) =

0 ∧ s(k, f) = 0
)

k > 6[s] and
s(k − 6[s], f) = 1 ▷ Set of end of green time

n(kn, fn) ▷ Randomly chosen start of red
Schild(kn, fn)← 0
Schild(k, f) = e(k, f) if p(fn, f) = 1 ▷ Clear entries

based on conflicts
Schild(k, f) = e(k, f) if k2 − kn < Cl(fn, f) ▷ Clear

entries based on clearance time
while E ̸= ∅ do:

m(km, fm) ▷ Place random one
Schild(km, fm)← 1
update Schild with system knowledge, E

Rc =

cyc∑(
Wcycdelay ∗Dcyc +Wstop ∗N cyc

stop

)
+

car∑
Wcardelay ∗Dcar +Wmaxwaitingtime ∗Nmaxwaitingtime

(20)

The Nkeep best performing solutions are stored and used
as input for the solution generation algorithms of the next
generation. Duplicate solutions and different solutions with
identical Rc values are distinguished with the overlap factor
Of =∈ [0, 1] ( Equation 21) is introduced, where a 0 indicates
no overlap at all and a 1 indicates a fully identical solution. If
the number of solutions with an identical Rc value and a dif-
ferent overlap factor result in more than Nkeep solutions being
stored, a random selection is made.

Of (S1, S2) =

∑
S1 ⊙ S2 +

∑
(S1 − 1)⊙ (S2 − 1)

fmax ∗ kmax
(21)

5. Case study

A simulation based case study is performed to evaluate the
performance of SFGA under different traffic demand levels.
Performance is measured in terms of average values and
spread of delay and delay by mode and the percentage of
traffic light approaches that result in a full stop for cyclists.
SFGA is benchmarked against Vehicle Actuated control (VA).
For performance benchmark, the objective function of the
controller weighs delay for car drivers and cyclists equally
and Wstop is set to zero. Finally, the effect of using different
weights in the objective function is investigated.

5.1 Experimental setup

The simulation environment is created in a Python environ-
ment, which allowed for multiple simulations to be run simul-
taneously on the DelftBlue Supercomputer [34]. Limited by
computation time, simulations of 180 seconds are simulated
The intersection layout is provided in Figure 3). Perfect pre-
diction quality is assumed. In each scenario, the number of
to be generated travellers is determined, from the the simu-
lation duration and the traffic demand and mode split. Every
traveller is assigned a time stamp at which they enter the
system, following an uniform distribution, and a traffic modal-
ity, following probabilities in accordance with the modal split.
Finally, all cyclists are distributed uniform over all cycle paths
of the infrastructure layout and all car drivers are distributed
uniform over all the car lanes. After generation, all travellers
follow the traffic system model presented in Section 3..

Figure 3: Intersection layout of the case study

To account for stochastic behavior in agent generation and
cyclist heterogeneity, 14 scenarios are run for each combi-
nation of simulation parameters. The base value for modal
split is Cyclist/Car = 0.5, based on the average modal split
for trips between one and seven kilometres in a Dutch ur-
ban cores [35]. Cyclist heterogeneity is included by means of
three different types of cyclists with different personal charac-
teristics [32]. Thirty percent of the cyclists travelling in cycling
path 22 (See Figure 3) are assumed to make a left turn.

The performance of both controllers is evaluated at three sat-
uration rates, the percentage of the intersection capacity of
approximately 7000 travellers per hour, divided roughly equal
between cars and cyclists. Three equally spaced saturation
rates (15%, 30% and 45% for both modalities) are used. Sim-
ulation of higher saturation rates provide unrealistic results,
due to the assumption made in the traffic system model that
cyclists do not interact with each other.

For the benchmark comparison, only the traffic saturation is
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varied. For the investigation of the effect of including different
weights in the objective function of SFGA, the esimated val-
ues for VoT proposed in Section 2.3 (1.7, 3.3, 5) are used. A
value of Wstop equal to the equivalent of 0 and 15 seconds of
car driver delay is used. Experimenting with different param-
eter values showed 15 to be a value that influences controller
performance, without forcing the controller into always priori-
tizing cyclists over cars.

5.2 VA as comparison benchmark

The VA controller follows a fixed sequence of active combi-
nations of traffic light, so called phases or blocks. The used
control structure, one of the control structures with the low-
est minimum cycle time generated by the VRIGen software
for the intersection layout of Figure 3, is visualized in Figure
4. Algorithm 5 describes VA in pseudo-code.

Figure 4: Control structure of benchmark VA control

Only traffic lights that are part of the current active phase are
allowed to show green. If a traffic light has been green for
less than the minimum green time, or if the controller detects
traffic in this lane, green time is extended up to the maximum
allowed green time. When the current phase has been ac-
tive for the maximum allowed green time, or if no traffic is de-
tected in any of the active traffic lanes, the next phase is acti-
vated. Conflicts related to yellow time and clearance time are
enforced, similar to SFGA. The VA does not include flexibility,
meaning no alternatives are included in the control structure
that allow for an earlier start of one of the movements of the
next phase, because this allows for a more universal bench-
mark, as the performance of VA is not influenced by choices
on what alternatives are allowed.

Because this research considers the CE, traffic is not de-
tected by means of induction loops, but instead instead VA
is assumed to detect any traffic located between the traffic
light and the start of the dilemma area. This area is the area
in which travellers are assumed to make a stop and go deci-
sion. The start of dilemma area is located a distance equal
to the yellow time multiplied by the maximum speed [36]. Be-
cause of the CE, VA considers personal characteristics of
travellers and hence the distance from where the travellers
are detected differs per traveller type. This is shown in Table
2.

Table 2: Detection distance of VAC upstream of the traffic light

Traveller Detection range [m]
Slow cyclist 18.2
Average cyclist 28.9
Fast cyclist 42.0
Car 65.7

Algorithm 5 VA benchmark algorithm

Initialize system state:
Active block Ba, active block duration Bd

for all k ∈ {k0, k1, k2, ..., Tmax/∆T} do:
update main simulator
if k corresponds with multiple of 0.5 seconds:

if Bd = 0 ▷ All red phase
Activate random phase with detected trav-

ellers in dilemma zone. Update Ba and Bd

If no travellers detected: Bd = 0
if 0 ≤ Bd ≤ Gmax −Gmin

Prolong green for i with Gd < Gmin

i ∈ Ba with detected travellers: green
i ∈ Ba without detected travellers: red
If all i ∈ Ba red: activate next block

if Gmax −Gmin ≤ Bd ≤ Gmax

i with Gd < Gmin: prolong green
i ∈ Ba without detected travellers: red
If all i ∈ Ba red, activate next block

5.3 Results

The averaged delay per traveller over the 14 simulation runs
is provided in Figure 5. The figure also shows the 75th per-
centile. The average delay of SFGA is a factor 1.8 lower than
VA at 15% saturation, and 2.7 and 3.0 times lower for 30
and 45%. The average delay of VA increases more rapidly
with higher traffic saturation than SFGA. This indicates that,
at low traffic demand, the structure free controller is more
flexible to accommodate additional travellers within its’ sig-
nal plans. The delays of SFGA show less spread than VA,
because SFGA controls for individual delays and therefore is
inclined to allow travellers to cross if their delay grows larger.
This contrary to VAC, where travellers have to wait until it is
their turn to cross.

SFGA results in lower delays for car drivers and cyclists than
VA. Delays of car drivers are similar to the combined average
delays, but difference regard to cyclists are more profound
(Figure 6). At 15% traffic saturation the controllers perform
relatively similar, with 4.1s and 6.7s average delays for the
SFGA and VA respectively, but at saturation rates the delay
of VA increases to 12.0s and 22.3s, while for SFGA delays
increase to 4.6s, only to be reduced to 4.0s at 45% satura-
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Figure 5: Delay of a traveller crossing the intersection

tion. In addition to lower delay for cyclist, the number of stop
that are made by cyclists is also lower for SFGA.

The the lower delay and number of stops of SFGA com-
pared to VA are attributed to differences in control mecha-
nisms. The structure free controller considers the effect of
its’ control decisions on the delay of all travellers, thereby pri-
oritizing traffic lanes with higher traffic densities. VA follows
a fixed control sequence that can be accelerated by the ab-
sence of travellers in the currently active phase. For SFGA,
this results in prioritization of movements with higher traffic
densities. Higher traffic densities can be expected in bicycle
lanes in urban areas, because of the smaller and higher sat-
uration rate of bicycles. These density differences are unin-
tentionally magnified by the choice of intersection layout. The
prioritization of cyclists comes at the cost of car drivers, how-
ever average car driver delays do not get excessively long,
because of the enforced maximum waiting time of 100s. If a
car approaches this waiting time, the traffic light turns green
and the cars waiting in this queue, can cross the intersection.

The relative (KPISFGA/KPIV A) performance of the con-
trollers is summarized in Table 3. At the lowest saturation
rate, performance is the most similar between all metrics,
with BSGC performing at most twice as good as VAC on all
accounts. In absolute terms the difference is only a couple of
seconds. With increased saturation levels the differences be-
tween the controllers increase in both relative and absolute
terms. Only in terms of average car driver delay the relative
performance is quite similar over all saturation levels.

Table 3: Performance ratios (BSGC/VAC)

Saturation rate
15% 30% 45%

Average delay 1.8 2.6 3.0
Avg. delay - Cyclist 1.6 2.8 5.6
Avg. delay - Car driver 2.0 2.5 2.2
Full stops - Cyclist 1.9 2.3 3.1

The structure free controller is able to predict and choose
the most effective signal plan for the current traffic state.
This results in fewer people waiting for the traffic light and
a larger share of travellers that is able to cross the inter-

section with a relatively short delay (Figure 7). On average,
there are always fewer people in the dilemma area areas of
BSGC than for VAC. Over time the number of travellers in the
dilemma area remains relatively constant. This indicates that
both controllers achieve a similar throughput of the intersec-
tion, however, in order to achieve this the VAC requires -on
average- a higher number of travellers in the dilemma areas,
waiting for the traffic lights, which results delay distributions
that tend more towards low delays.

SFGA is able to accommodate a larger number of travellers
that cross earlier because of two main reasons. Firstly, it is
able to truncate green if even if there is traffic in proximity
of the traffic light, allowing another movement with a larger
number of travellers to cross. Secondly, it is able to use any
non-conflicting combination of traffic lights that is most ef-
fective, instead of predefined combinations. Figure 8 shows
SFGA truncates green more often when there are travellers
in the dilemma area than VA, which is only able to do so if the
maximum green time has passed. Note that inclusion of flex-
ibility would provide VA with a larger degree of freedom as
well, but including all alternatives in the control structure be-
comes increasingly difficult with a more complex intersection
layout.

The ability of SFGA to choose the combination of traffic lights
with the largest positive effect on delays is expected to re-
sult in a more effective use of green. However, on average,
VA results in a slightly lower average crossing headway, in-
dicating green time is used more effectively (Figure 9). This
is because, if there is no conflicting traffic, SFGA allows a
low number of travellers to cross, resulting in large crossing
headways. VA forces these travellers to await their turn, al-
lowing more time for queues to form, which in turn have a
lower crossing headways when allowed to cross. This may
be demonstrated by evaluating the total green time of both
controllers, but SFGA gives green to a random movement
without traffic, when there is nowhere else the green time
would result in lower delays. Inclusion of a weight for to-
tal green time in the objective function, order of magnitudes
smaller than any of the other weights, would prevent the con-
troller from providing this unused green. Additionally, switch-
ing more often results in larger loss times which means it
cannot be certain if the total green time would indeed be
larger for SFGA.

Figures 10 to 13 the effect of explicitly prioritizing cyclists
over cars on the delay of all travellers, the delay of both
modalities and the percentage of traffic light approaches of
cyclists resulting in a full stop. The inclusion of weights that
prioritize cyclists results in choices of the controller on end-
ing, extending or starting green time more often being made
to the benefit of the cycle paths. Different relative weights for
delay result in lower average delays and delay spread for cy-
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Figure 6: Impact of SFGA and VA on delay of cyclists (left), delay of car drivers (middle) and percentage of traffic light approaches of cyclists resulting in a
full stop (right)

(a) 15% traffic saturation (b) 30% traffic saturation (c) 45% traffic saturation

(d) 45% traffic saturation (e) 15% traffic saturation (f) 30% traffic saturation

Figure 7: Average number of travellers in the dilemma area over time (top) and the corresponding delay distributions (bottom) for 15 (left), 30 (middle) and
45 (right) % traffic saturation

Figure 8: Share of green truncation given a number of travellers in the
dilemma area for SFGA (left) and VA (right)

clists, but in disproportionately larger delays and spread for
car drivers. At higher saturation rates the chance of a trade
off resulting in a green light for any of the cars decreases
because with more travellers in the system, total delays in-
crease and the relative effects of the weights increase rapidly.
The (small) improvements in cyclist delay therefore result in
(larger) increases of car driver delay. Average delays for car
drivers do not seem to increase to much more that 30 sec-
onds. This is likely because of the imposed maximum waiting

Figure 9: Average headways at the moment of crossing the stopping line
for cyclists (left) and cars (right). A lower average headway indicates more
effective use of green, as travellers follow each other more closely.

time of 100 seconds, which provides at least a green dura-
tion of the minimum green to this movement, allowing mul-
tiple cars to cross. This also means there is a maximum to
what can be achieved by including weights for cyclists prior-
itization. At some points car drivers will be allowed to cross
anyway.

Even though the relative delay weigh achieves a reduction in
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full stops for traffic lights, the constant weight is more effec-
tive in doing so. Regardless of the relative weight for delays,
the effect of the weight for full stops on the average delay is
fairly limited. This indicates that this weight does a better job
at proportionally shifting delay from cyclists to car drivers.

However, with the high volumes of cyclists in this case study,
resulting in already low cyclist delays for SFGA, it may be
questioned whether explicitly cyclist prioritization is required.
Prioritization may be better suited for scenarios in which cy-
clist volumes are low and prioritization is required for low cy-
clist delays.

6. Conclusion

This paper proposes proposed a structure free intersection
controller based on a genetic algorithm, for an isolated inter-
section in an environment with connected cars and bicycles.
The structure free controller uses simulation model based
control to determine the effects of control decisions and a
genetic algorithm to optimize for a combination of car driver
delay, cyclist delay and full stops of cyclists. The controller
tends to prioritize movements with the largest traffic densi-
ties, meaning the controller can prioritize cyclists in urban
areas with large enough bicycle use. The weights in the ob-
jective function can be adapted to explicitly prioritize cyclists.

The results from the case study suggest that the con-
troller outperforms the benchmark vehicle actuated control.
In terms of average delay, the controller outperformed the
benchmark by a factor 1.8, 2.7 and 3.0 for each of the eval-
uated saturation rates. The delay of the separate modalities
and the percentage of cyclists that has to make a stop is also
drastically reduced when compared to the benchmark.

The better performance of the structure free controller is at-
tributed to the controller optimizing with a large degree of
freedom, unlike vehicle actuated control that follows a prede-
fined set of rules based.

Introducing any of prioritizing weights results in even better
performance metrics for cyclists, but this comes at the cost of
disproportionate increases of delays for car drivers. Whether
or not this increase of delay of car drivers is acceptable is
up for personal interpretation. A low delay priority factor or
a cost for a full stop for cyclists is suggested to be the least
intrusive method of providing addition priority for cyclists.

7. Future research recommendations

Further research is recommended on expansion of the scope
of the controller and controller design. The controller should
accommodate additional traffic modalities and more hetero-
geneity in personal characteristics. Solution generation al-
gorithms can be improved to increase the share of feasible
solutions and by by extension and reduction of green times

with random lengths. The objective function should include a
weight for total green time, orders of magnitude smaller than
other weights, to avoid unused green time and the controller
design should be evaluated and improved to function under
non-perfect data and prediction quality.
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Figure 11: Average cyclist delay and the 75th percentile cyclist delay as a result of different relative weights (1.0, 1.7, 3.3, 5.0) for cyclist delay for each of
the saturation levels

Figure 12: Average car driver delay and the 75th percentile car driver delay as a result of different relative weights (1.0, 1.7, 3.3, 5.0) for cyclist delay for
each of the saturation levels

Figure 13: The percentage of traffic light approaches of cyclists resulting in a full stop as a result of different relative weights for cyclist delay for each of
the saturation levels

12



[11] P. Jing, H. Huang, and L. Chen, “An adaptive traffic signal
control in a connected vehicle environment: A systematic re-
view,” Information (Switzerland), vol. 8, no. 3, 2017, ISSN:
20782489. DOI: 10.3390/info8030101.

[12] K. Gao, S. Huang, J. Xie, N. N. Xiong, and R. Du, “A re-
view of research on intersection control based on connected
vehicles and data-driven intelligent approaches,” Electronics
(Switzerland), vol. 9, no. 6, 2020, ISSN: 20799292. DOI: 10.
3390/electronics9060885.

[13] E. Heinen, B. van Wee, and K. Maat, “Commuting by bicy-
cle: An overview of the literature,” Transport Reviews, vol. 30,
no. 1, pp. 59–96, 2010, ISSN: 01441647. DOI: 10 . 1080 /

01441640903187001.

[14] B. V. Wee, “Is average daily travel time expenditure con-
stant ? In search of explanations for an increase in average
travel time,” Journal of Transport Geography, vol. 14, no. 2,
pp. 109–122, 2006. DOI: 10.1016/j.jtrangeo.2005.06.
003.

[15] M. Wardman, M. Tight, and M. Page, “Factors influencing the
propensity to cycle to work,” Transportation Research Part A,
vol. 41, no. 4, pp. 339–350, 2007. DOI: 10.1016/j.tra.
2006.09.011.

[16] J. Fajans and M. Curry, “Why Bicyclists Hate Stop Signs,”
Access, vol. 18, pp. 21–22, 2001.

[17] J. D. Hunt and J. E. Abraham, “Influences on bicycle use,”
Transportation, vol. 34, no. 4, pp. 453–470, 2007, ISSN:
00494488. DOI: 10.1007/s11116-006-9109-1.

[18] M. A. Stinson and C. R. Bhat, “Analysis Using a Stated Pref-
erence Survey,” Transportation Research Record, vol. 1828,
no. 03, pp. 107–115, 2003.

[19] A. Hull and C. O. Holleran, “Bicycle infrastructure : can good
design encourage cycling ?” Urban, Planning and Transport
Research, vol. 2, no. 1, pp. 369–406, 2014. DOI: 10.1080/
21650020.2014.955210. [Online]. Available: http://dx.
doi.org/10.1080/21650020.2014.955210.

[20] A. R. Lawson, V. Pakrashi, B. Ghosh, and W. Y. Szeto, “Per-
ception of safety of cyclists in Dublin City,” Accident Analysis
and Prevention, vol. 50, pp. 499–511, 2013, ISSN: 00014575.
DOI: 10 . 1016 / j . aap . 2012 . 05 . 029. [Online]. Available:
http://dx.doi.org/10.1016/j.aap.2012.05.029.

[21] J. Vanparijs, L. Int, R. Meeusen, and B. D. Geus, “Exposure
measurement in bicycle safety analysis : A review of the liter-
ature,” Accident Analysis and Prevention, vol. 84, pp. 9–19,
2015, ISSN: 0001-4575. DOI: 10.1016/j.aap.2015.08.007.
[Online]. Available: http://dx.doi.org/10.1016/j.aap.
2015.08.007.

[22] D. A. Rodrı́guez and J. Joo, “The relationship between non-
motorized mode choice and the local physical environment,”
Transportation Research Part D: Transport and Environment,
vol. 9, no. 2, pp. 151–173, Mar. 2004, ISSN: 1361-9209. DOI:
10.1016/J.TRD.2003.11.001.

[23] M. Nankervis, “The effect of weather and climate on bicy-
cle commuting,” Transportation Research Part A: Policy and
Practice, vol. 33, no. 6, pp. 417–431, Aug. 1999, ISSN: 0965-
8564. DOI: 10.1016/S0965-8564(98)00022-6.

[24] C. Brandenburg, A. Matzarakis, and A. Arnberger, “The
effects of weather on frequencies of use by commuting
and recreation bicyclists,” Advances in tourism climatology,
vol. 12, no. 1, pp. 189–197, 2004.

[25] M. Johnson, J. Charlton, and J. Oxley, “Cyclists and Red
Lights — A Study of Behaviour of Commuter Cyclists in
Melbourne,” in Australiasian Road Safety Research, Polic-
ing and Education Conference, 2008, pp. 519–524, ISBN:
1876346566.

[26] C. Prato, T. Rasmussen, and O. Nielsen, “Estimating value of
congestion and of reliability from observation of route choice
behavior of car drivers,” Transportation Research Record,
no. 2412, pp. 20–27, 2014, ISSN: 03611981. DOI: 10.3141/
2412-03.

[27] S. Bekhor, M. E. Ben-Akiva, and M. S. Ramming, “Adapta-
tion of logit kernel to route choice situation,” Transportation
Research Record, vol. 2, no. 1805, pp. 78–85, 2002, ISSN:
03611981. DOI: 10.3141/1805-10.

[28] N. Speisser, “Impact of Waiting Times on Pedestrians ’ and
Car Drivers ’ Behaviour on Signalised Tramway Crossings,”
in Car Drivers ’ Behaviour on Signalised Tramway Crossings,
2018, pp. 1–10.

[29] T. Fioreze, B. Groenewolt, J. Koolwaaij, and K. Geurs, “Per-
ceived waiting time versus actual waiting time: a case study
among cyclists in Enschede, the Netherlands,” Transport
Findings, pp. 0–3, 2019. DOI: 10.32866/9636.

[30] X. Wu, D. M. Levinson, and H. X. Liu, “Perception of wait-
ing time at signalized intersections,” Transportation Research
Record, vol. 1, no. 2135, pp. 52–59, 2009, ISSN: 03611981.
DOI: 10.3141/2135-07.

[31] D. Othayoth and K. K. Rao, “Assessing the relationship be-
tween perceived waiting time and level of service at sig-
nalized intersection under heterogeneous traffic conditions,”
Asian Transport Studies, vol. 6, no. September, p. 100 024,
2020, ISSN: 21855560. DOI: 10 . 1016 / j . eastsj . 2020 .

100024. [Online]. Available: https://doi.org/10.1016/
j.eastsj.2020.100024.

[32] H. Twaddle and G. Grigoropoulos, “Modeling the speed, ac-
celeration, and deceleration of bicyclists for microscopic traf-
fic simulation,” Transportation Research Record, vol. 2587,
no. 1, pp. 8–16, 2016, ISSN: 21694052. DOI: 10.3141/2587-
02.

[33] Z. Wen-xing, Z. Jing-yu, and S. Ze-Rui, “Study on braking
process of vehicles at the signalized intersection based on
car-following theory,” Physica A, vol. 523, no. -, pp. 1306–
1314, 2019, ISSN: 0378-4371. DOI: 10.1016/j.physa.2019.
04.076. [Online]. Available: https://doi.org/10.1016/j.
physa.2019.04.076.

[34] DHCP, DelftBlue Supercomputer (Phase 1), 2022. [Online].
Available: https://www.tudelft.nl/dhpc/ark:/44463/
DelftBluePhase1.

[35] O. Jonkeren, H. Wust, and M. D. Haas, “Mobiliteit in stedelijk
Nederland,” Tech. Rep., 2019, p. 63. [Online]. Available:
https://www.kimnet.nl/publicaties/rapporten/2019/

06/04/mobiliteit-in-stedelijk-nederland.

13

https://doi.org/10.3390/info8030101
https://doi.org/10.3390/electronics9060885
https://doi.org/10.3390/electronics9060885
https://doi.org/10.1080/01441640903187001
https://doi.org/10.1080/01441640903187001
https://doi.org/10.1016/j.jtrangeo.2005.06.003
https://doi.org/10.1016/j.jtrangeo.2005.06.003
https://doi.org/10.1016/j.tra.2006.09.011
https://doi.org/10.1016/j.tra.2006.09.011
https://doi.org/10.1007/s11116-006-9109-1
https://doi.org/10.1080/21650020.2014.955210
https://doi.org/10.1080/21650020.2014.955210
http://dx.doi.org/10.1080/21650020.2014.955210
http://dx.doi.org/10.1080/21650020.2014.955210
https://doi.org/10.1016/j.aap.2012.05.029
http://dx.doi.org/10.1016/j.aap.2012.05.029
https://doi.org/10.1016/j.aap.2015.08.007
http://dx.doi.org/10.1016/j.aap.2015.08.007
http://dx.doi.org/10.1016/j.aap.2015.08.007
https://doi.org/10.1016/J.TRD.2003.11.001
https://doi.org/10.1016/S0965-8564(98)00022-6
https://doi.org/10.3141/2412-03
https://doi.org/10.3141/2412-03
https://doi.org/10.3141/1805-10
https://doi.org/10.32866/9636
https://doi.org/10.3141/2135-07
https://doi.org/10.1016/j.eastsj.2020.100024
https://doi.org/10.1016/j.eastsj.2020.100024
https://doi.org/10.1016/j.eastsj.2020.100024
https://doi.org/10.1016/j.eastsj.2020.100024
https://doi.org/10.3141/2587-02
https://doi.org/10.3141/2587-02
https://doi.org/10.1016/j.physa.2019.04.076
https://doi.org/10.1016/j.physa.2019.04.076
https://doi.org/10.1016/j.physa.2019.04.076
https://doi.org/10.1016/j.physa.2019.04.076
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.kimnet.nl/publicaties/rapporten/2019/06/04/mobiliteit-in-stedelijk-nederland
https://www.kimnet.nl/publicaties/rapporten/2019/06/04/mobiliteit-in-stedelijk-nederland


[36] “Onderzoek geeltijden,” IVER, Tech. Rep., 2016.

14


	Summary
	List of Figures
	List of Tables
	Introduction
	Problem statement and research questions 
	Scientific contributions
	Report Structure

	Literature review
	Intersection control in the connected environment
	Trade off for desires of car drivers and cyclists with regard to intersections
	General desires of the commuter cyclist
	The (in)convenience of intersections
	How to deal with cars when prioritizing cyclists?
	Conclusion of the desire related literature review

	Traffic models
	Level of aggregation
	Behavioral model of cyclists
	Behavior models of car drivers
	Traffic light model

	Optimization methods used in intersection control research 
	Control method requirements
	Concepts overview

	Summary of the literature review

	Methodology
	Framework
	Design methodology
	Scope of the design space

	Traffic system model
	System wide sets and notation conventions
	Mathematical representation of the traffic lights
	Mathematical model for cyclists behavior 
	Mathematical model for car driver behavior
	Definition of control objectives 
	Model limitations and assumptions

	Controller design
	Interaction between the controller and the traffic system model
	Model Based Control using a GA
	Solution generation
	Evaluation and selection


	Evaluation Framework
	Experimental setup
	Simulation environment
	Simulation run parameters
	Performance comparison benchmark
	Tuning parameters of the GA
	Model verification and validation
	Performance evaluation metrics and expected results first stage 

	Performance evaluation metrics and expected results second stage 
	Summary of the evaluation framework

	Case study: Results
	Performance of the SFGA Control compared to VA Control 
	General performance
	Performance with respect to separate transport modalities
	Understanding the differences in performance

	Performance of SFGA control with cyclists prioritization

	Conclusion and Discussion
	Conclusion
	Discussion

	Future work
	Improved traffic system model
	Improvements for the controller design
	Extension of the evaluation framework
	Expansion of the design framework
	Connected environment without connected vehicles
	Future work summary

	Bibliography
	Appendices
	Intersection dimensions and capacity calculation
	The connected environment and prediction errors
	Elaboration on Case study parameter values
	Traffic system model parameters
	Behavioral model of cyclists 
	Behavioral model of car drivers 
	Traffic light related parameters

	Reasoning behind the evaluation saturation rates

	Verification scenarios and model changes
	Paper: Design of a structure free intersection controller for connected bicycles and cars using model based control and a genetic algorithm
	Introduction
	The desires of cyclists and car drivers with regard to controlled intersections
	Determinants of bicycle use
	Projecting determinants on controlled intersections
	Trade off with desires of car drivers

	Traffic system model
	Traffic lights
	Mathematical model for cyclists behavior 
	Mathematical model for car driver behavior
	Definition of control objectives 

	Structure Free Genetic Control
	Solution generation
	Evaluation and selection

	Case study
	Experimental setup
	VA as comparison benchmark
	Results

	Conclusion
	Future research recommendations



