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Summary
The infrastructure in the Netherlands is becoming more and more focused on more sustainable forms
of transport, like public transit or cycling. This increases the need for a good cycling infrastructure,
especially around the intersections. Intersections are a bottleneck, so a high capacity at that point is
crucial. Before it is possible to adapt the design of the intersection, it is import to know what factors
affect the capacity of an intersection. At the moment, not much is known about the microscopic flow
characteristics of cyclists, because most of the research done is focused on cars.

This thesis will aim to answer the following research question: How can the capacity of cyclists
be determined at the stop line of a signalized intersection? This will be done with the help of a liter-
ature study and by analyzing an available data-set that contains the trajectories of cyclists during the
queue discharge. Here, the queue discharge means the cyclists leaving the cycle path and passing
the stop line when the light goes green. The capacity is influenced by several conditions. In this data-
set, specific scenarios will be sought that might influence the maximum queue discharge rate. These
scenarios do not totally represent any of the conditions the capacity is dependent on, so this thesis
will be talk about the maximum queue discharge rate instead of the capacity when looking at those
scenarios. The scenarios will be quantified and the maximum queue discharge rate of these scenarios
will be estimated, to analyse the scenarios. The estimation of the maximum queue discharge rate will
be done based on the composite headway model. The time headway is the time that passes between
two cyclists when they cross a certain point, which is the stop line before the intersection in this case.
The composite headway model states that the total headway distribution is the sum of the constrained
headway distribution and the free flow headway distribution. A cyclist with free flow has all the space
it needs, while a constrained cyclist is stuck behind another cyclist.

The capacity is dependent on several conditions: the base conditions, the roadway conditions, the
traffic conditions and the control conditions. The scenarios analyzed in this thesis are part of the traffic
conditions. Based on the available data-set, 6 scenarios were analysed. It was determined that the
maximum queue discharge rate decreases when the front of the queue is very dense, but increases
when the first cyclists take a long time before leaving. No definite conclusions could be made about
cyclists overtaking each other, the density at the back of the queue and the effect of cyclists standing
next to each other instead of behind each other.

The most interesting results are the importance of the first cyclists in the queue and the negative
effect the density at the front of the queue seems to have on the maximum queue discharge rate. Even
though previous studies found that increased density has a positive effect on the queue discharge.

These results help in understanding the randomness in capacity estimations and give more insight
in how the microscopic traffic flow characteristics affect the maximum queue discharge rate.

Future research can focus on improving the design of intersections using these results. Other re-
search options are to further analyze the scenarios to see if these results are representative for different
intersections or to further analyze the effect of the first cyclists on the maximum queue discharge rate.
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1
Introduction

1.1. Background information
Infrastructure in the Netherlands is becoming more and more focused on public transport, cyclists and
pedestrians, instead of being centred around cars. This increases the need for a good infrastructure,
that can handle the increasing number of cyclists. In other words, the capacity of the roads has to be
increased. When cyclists approach an intersection, they first have to decelerate and stop for the red
light. More cyclists arrive and they form a queue. After some time the light goes green and the cyclists
have to accelerate again and cross the stop line. This last part is called the queue discharge. This
takes more time than simply cycling on a straight road, making an intersection a large bottle neck in
the road network. That is why it is especially important to increase the capacity of intersections. At the
moment, not much is known about the microscopic flow characteristics of cyclists, because most of the
previous research done is focused on cars. This means there is a lot of room for more research.

According to Hoogendoorn and Knoop (2013), the capacity is often defined as: “The maximum
hourly rate at which people or vehicles can reasonably be expected to traverse a point or uniform
section of a lane or roadway during a given time period (usually 15 minutes) under prevailing roadway,
traffic and control conditions.” The capacity is not a constant, but varies due to several factors. It is a
characteristic of the infrastructure in combination with several factors. The capacity can be calculated
by taking the reciprocal of the mean time headway, in which the time headway is the time that passes
between the rear bumpers of two vehicles, measured at a cross section. This is under the condition
that all vehicles are following each other and there is no free flow. For cars, this can be done relatively
easy because there will be only one car in each lane at a cross section. Cyclists, however, move a lot
more heterogeneous. This makes it difficult to determine the capacity for cyclists.

1.2. Research question
The main research question will be:

How can the capacity of cyclists be determined at the stop line of a signalized intersection?

This question will be answered by looking at the microscopic and macroscopic flow characteristics of
of the bicycle traffic flow before the stop line at a signalized intersection. The microscopic traffic flow
characteristics give information about the individual behaviour of a cyclist, while the macroscopic traffic
flow characteristics give information on the average state of all cyclists (Hoogendoorn & Knoop, 2013).
A large focus will be placed on specific ’scenarios’ that can happen during the queue discharge and
how these scenarios affect the maximum queue discharge rate. These scenarios will mainly have
something to do with the microscopic flow characteristics.

To answer this research question, several sub-questions will be answered. When looking at the
capacity, it must first be clear how the capacity is defined. For that it is also important to know which
conditions influence the capacity at the signalized intersection. Based on literature study, a method
must be found to determine an estimate of the capacity of the intersection. This first part of the study will
provide a more general answer to the main research question and will be based on literature research.
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2 1. Introduction

Because much is still unknown about the microscopic traffic flow characteristics of cyclists, the
research will mainly focus on specific scenarios that can happen during the queue discharge. Even
though these scenarios will not give a complete idea of the all the factors that affect the capacity,
they can help to better the understanding of all the different things that can affect the capacity at a
signalized intersection. These scenarios will not accurately reflect all the different conditions that affect
the capacity, but will be part of one of those conditions. This is done to limit the scope of this thesis.
That is why this thesis will talk about the maximum queue discharge rate when looking at a specific
scenario instead of talking about the capacity.

The literature study will also serve as an inspiration for different scenarios to analyze. After several
scenarios are identified that can affect the maximum queue discharge rate, the scenarios will be looked
for in the data-set and their effect on the maximum queue discharge rate will be analyzed with the help
of the method that is found to determine an estimate for the capacity.
This plan is summarized in the following sub-questions:

• How can the capacity at a signalized intersection be defined?

• Which conditions influence the capacity at a signalized intersection?

• How can the capacity of cyclists at a signalized intersection be estimated?

• What scenarios could affect the maximum queue discharge rate?

• How do these scenarios affect the maximum queue discharge rate?

The first four questions will be answered using literature study. The last sub-questions will be answered
using coding to analyze an available data-set. This data-set shows the individual trajectories of cyclists
during the queue discharge phase.

1.3. Significance and stakeholders
This thesis will aim to increase the knowledge about the microscopic flow behaviour of cyclists. This
research is relevant because there is not much knowledge about the microscopic traffic flow char-
acteristics at the moment. Especially because the Netherlands is becoming less car dependent and
focuses more on forms of transport like cycling. This thesis is relevant for other researchers that are
doing a similar research or for city planners that are aiming to design new intersections for cyclists.
The recommendations in section 6.2, will give a detailed list of possible subjects for further research.

1.4. Structure
In this subsection, a short overview will be given of the contents of the rest of the report. In chapter 2,
a literature study is done to get some background information about the capacity, the flow character-
istics of bicycles around an intersection and to get a clear idea of the research that has already been
done. It will also give inspiration for possible scenarios to analyze In chapter 3 the methodology will be
explained. This chapter will tell about the data-set and how this research will be conducted, including
the equations and methods that will be used. Chapter 4 will give the results of the data processing after
the methodology has been applied on the data-set. Finally, chapter 5 will contain the discussion and
chapter 6 will give the conclusions and the recommendations for further research.



2
Literature research

2.1. Introduction
This chapter will provide some background information about this subject based on the available liter-
ature. First, the definition of the capacity will be given, including the different factors that influence the
capacity. After that, some theory about capacity estimations will be given and finally, some literature
that will serve as inspiration for the different scenarios will be covered.

2.2. Definition of capacity
In the introduction chapter, a general definition has been given for the capacity. Still, there are different
ways to express the capacity of the road. Three different definitions for the capacity are described
below (Minderhoud et al., 1997).

• Design capacity: The design capacity is the maximum traffic volume that can pass a cross-
section under pre-defined road and weather conditions. The design capacity is very useful when
designing roads and can be estimated based on existing guidelines and simulation models. This
capacity is a value, that can be derived from a distribution;

• Strategic capacity: The strategic capacity is the maximum traffic volume a road section can
handle. This is useful for analyzing roads and can be based on observed traffic flow data. The
strategic capacity is also a value, which can be derived from a distribution. The strategic capacity
is also the capacity that can be obtained based on the available data-set;

• Operational capacity: The operational capacity is a value which represents the actual maximum
traffic volume of a road. It is a useful value for traffic control procedures.

Despite these definitions, it is not possible to give a quantitative definition of the capacity of a road,
because the capacity can only be defined in relation to the traffic flow. The maximum capacity can
be defined as: The ”ability to achieve the maximum throughput under the full utilization of personal
capabilities, means of transportation and available infrastructure.” (Minderhoud et al., 1997) Most of
the time, however, it is more useful to look at the capacity under predefined and common conditions.
This will give values for the capacity, which are lower than the maximum. This is because of the
assumption that not all the available resources are optimally used. In other words: Because the factors
human drivers, the vehicles and the available infrastructure are not perfectly used, the capacity is a
random variable. So all the different capacity values also form a distribution (Minderhoud et al., 1997).
Some of the factors affecting the capacity, are shown in figure 2.1.

According to the highway capacity manual (Transportation Research Board, 2010) there are dif-
ferent types of conditions that affect the capacity. These conditions are fairly similar to the conditions
depicted in figure 2.1. This is written for car traffic, but some of the theory about car traffic can also be
applied on cyclists.

First there are base conditions which include, among other things, the weather, the condition of the
pavement and the familiarity of users with the road. When making models, these conditions are often
assumed to be ’favourable’, to obtain a capacity as high as possible, but in reality that can be different.
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4 2. Literature research

Figure 2.1: Factors affecting the Roadway capacity distribution (Minderhoud et al., 1997)

Besides the base conditions, there are also roadway conditions. This is about the existing infras-
tructure and includes things like the width of the lane and the horizontal and vertical alignments.

The third category is the traffic conditions. This includes vehicle types (on a cycle path this can be
scooters, normal bikes, electric bikes or other special kind of bikes); the directional and lane distribution,
which says something about how road users are spread over the road; and the driver population. When
looking at car drivers, non-commuters and regular commuters display different behaviour. For cyclists
this will probably be the same.

Lastly, there are the control conditions. This includes things like traffic lights (for example: the cycle
length and the allocation of green time), but also normal stop signs or other types of traffic regulation.

2.3. Theories about capacity estimation
Hoogendoorn and Daamen (2016) did research on the bicycle capacity on a busy intersection, based
on the headway of constrained cyclists. (Constrained cyclists are cyclists that are following another
cyclist, whose speed is lower than their own desired speed.) This research calculates the capacity
halfway on the intersection. A large difference with the data-set available for this bachelor final project
is that the data only shows the trajectories of cyclists up to the stop line, so the data is mainly about
cyclists who are stopping before a red light and then continuing again. This means that the speeds are
very low and it will take some time for cyclists to start cycling again after the green light.

Yuan et al. (2019) did research on the same data-set as used for this thesis, and looked at the
capacity at the intersection before the stop line. In this research, the capacity is determined using the
saturation headway. The saturation flow can be defined as the inverse of the average headway when
the queue is moving steadily. The saturation headway is the headway in a saturation flow. This is then
multiplied with the number of virtual sublanes (the number of queues of cyclists than can cycle next to
each other on the same cycle path). The difficult part with cyclists is that the width and the number of the
virtual sublanes are not fixed values, which is the case with cars. The research proposes an improved
method to calculate the saturation headway and the time lost when starting with cycling after a green
light and it gives a newmethod to estimate the number of virtual sublanes on a cycle path. The research
mainly focused on more average values, like the saturation flow and thus the macroscopic traffic flow
characteristics. Its methods can be used to calculate several key variables of the traffic flow. To prevent
repeating the same research, this bachelor final project will have more focus on the microscopic traffic
flow characteristics and how specific scenarios impact themaximum queue discharge rate. To illustrate,
Yuan et al. (2019) found that the saturation headway, the time lost starting up and the number of virtual
sublanes are highly stochastic. By looking more at individual scenarios, it might give an explanation for
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some of the randomness. This information can then be used in future research and design questions
to improve capacity of the intersection by anticipating on the different scenarios.

2.4. Possible scenarios during the queue discharge
This thesis will mainly focus on the different scenarios that can happen during the queue discharge
with regard to the locations and movements of the individual cyclists. This section describes some
peculiar things that can happen during the queue discharge, that might have an affect on the maximum
queue discharge rate. This information will later be used to develop certain scenarios to look for in the
data-set, as will be described in section 3.4.

An example of such a specific scenario is researched by Wierbos et al. (2020) where the impact of
merging cyclists on the queue discharge rate was studied. This study found that cyclists who merged
while overtaking had a positive influence on the discharge, while cyclists who merged from a perpendic-
ular direction had a negative impact on the discharge. In the available dataset for this bachelor thesis
there could also be looked for situations of overtaking cyclists.

Another example for a possible scenario can be found in the research from Wierbos et al. (2021)
where the jam density was increased by giving queueing instructions in a controlled experiment. It was
found that a higher queue density gave a higher discharge rate. This has not yet been verified in a
field test, so looking for situations in the dataset with a significantly higher jam density, can also be a
scenario to look for in the dataset.

A third scenario which is possible to look into is the effect the first cyclists have on the discharge
of the total queue. According to Yuan et al. (2019), the first cyclists in a group tend to lose some time,
because they have to react to the traffic light turning green. In other words, the time headway between
the first cyclists is usually larger than the headway of later cyclists. The moment they cross the stop
line, they are still accelerating and starting up, instead of having a constant speed like cyclists who
start later in the queue. It can be interesting to look at the influence of the first cyclists on the maximum
queue discharge rate.





3
Methodology

3.1. Introduction
This chapter will describe themethodology of this bachelor thesis. As described in section 2.2, there are
different types of conditions that affect the capacity. From these conditions, this thesis will focus on the
traffic conditions, and more specific: on certain scenarios that can happen during the queue discharge
flow, regarding the locations and the movement of the cyclists. So the vehicle type and the population
will not be a factor. As said in the introduction, because the different scenarios that will be described do
not accurately reflect the traffic conditions, there will be spoken of the maximum queue discharge rate
under a specific scenario. So first, the capacity of cyclists on the intersection will be estimated based on
the whole data-set and after that, the maximum queue discharge rate will be determined when certain
scenarios occur during the queue discharge period. For this, the same method will be used as for the
capacity estimation for the whole data-set.

First, in section 3.2 some explanation about the available data-set will be given. After that, in section
3.3, some general methods will be explained. This includes a way to estimate the capacity based on
the composite headway model, an explanation of the Pearson correlation coefficient and the p-value
and a way to estimate some parameters that are needed for the capacity estimation. Finally, in section
3.4, the different scenarios will be given, including a way to find those scenarios in the data-set.

3.2. Explanation of the data-set
The data-set that is used for this thesis is provided and consists of 57 queueing phases of bicycles
standing before the traffic light and leaving. The data is obtained from a signalized intersection in
Amsterdam and the cycle path has a width of 2 meters. The data-set contains both cyclists and people
riding scooters, but the percentage of scooters is very low (Yuan et al., 2019). Because of the low
percentage of scooters, in previous research was chosen to refer as cyclists to both the people riding
bicycles and the people riding scooters, with the assumption there will be no effect on the analysis.
For this bachelor thesis, the same assumption will be made; both the people riding on bicycles and the
people riding on scooters will be referred to as cyclists.

The trajectories of the cyclists were derived from top-view video images, with the help of two cam-
era’s on poles that covered a total of 20 meters of a cycle path. The footage came from June 6th in
2016 and the queue discharge periods that met several criteria were selected. The exact criteria and
the procedure to get the data from the video images, is described in Yuan et al. (2019).

This data-set is initialized in Matlab, but for this thesis, python will be used to analyse the data-set.
For some parts of the code and the modules used, see appendix A. The methodology will be described
in more general terms, to make this research repeatable with other programming languages.

3.3. General methods
This will section will give the general methods used in this thesis. This includes the capacity estimation,
an explanation of the Pearson correlation coefficient and the p-value and it will explain how to estimate
some of the parameters needed for the capacity estimation.
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8 3. Methodology

The capacity
To estimate the capacity and the maximum queue discharge rate, a method using composite headway
modeling and the mean empty zone from Hoogendoorn and Daamen (2016) will be used. The same
composite headway estimation is explained a bit more elaborate in Hoogendoorn (2005). The exact
equation are sometimes a bit different between the two mentioned papers. When this is the case, the
equations fromHoogendoorn (2005) will be used. This is done because these versions of the equations
were easier to implement in the coding.

The capacity can easily be estimated based on the empty zone. The empty zone is the minimum
headway that a cyclist has when following another cyclist (i.e. the minimum headway of a constrained
cyclist). Not every cyclist will have the same empty zone, so the empty zone is a distribution of a
random variable X. The first step in determining the empty zone is to determine the time headway of
a cyclist. As described before, this is the time that passes between two following cyclists crossing a
cross section. For that, it has to be determined when a cyclist is following another cyclist. To determine
the leader of cyclist 𝑖 that passes the cross section at 𝑡𝑖, with lateral position 𝑦𝑖(𝑡𝑖), the leader can be
found with equation 3.1, where 𝑗 < 𝑖.

|𝑦𝑗(𝑡𝑗) − 𝑦𝑖(𝑡𝑖)| ≤
1
2𝑎 (3.1)

In this equation 𝑎 > 0 and equals the width of the cyclists handlebars and a small extra distance on
either side. This means that 𝑎 times the headway distance equals the free space in front of the cyclist.
Using equation 3.1 to determine the leader, the time headway ℎ𝑖 of cyclist 𝑖 can be determined by
equation 3.2.

ℎ𝑖 = 𝑡𝑖 − 𝑡𝑗 (3.2)

All these different time headways together form a distribution. To simplify, the headways of the cyclists
without a leader will not be taken into account. These are the first or the first few cyclists of a queue.
According to the composite headway model, the total distribution 𝑓(ℎ) is the sum of the distribution of
the free headway 𝑟(ℎ) and the distribution of the empty zone 𝑔(ℎ). The fraction of constrained cyclists
is denoted by 𝜙. This gives equation 3.3.

𝑓(ℎ) = 𝜙𝑔(ℎ) + (1 − 𝜙)𝑟(ℎ) (3.3)

When the capacity of an intersection is reached, all the cyclists are restrained so 𝜙 = 1. Equation 3.4
gives the capacity 𝐶 in cyclists per hour per meter.

𝐶 = 1
2𝑎𝐸(𝑋) (3.4)

Here the 𝐸(𝑋) is the mean empty zone. To find the total capacity, 𝐶 has to be multiplied with the width
of the cycle path, which is 2.0 meters is this case. This gives equation 3.5.

𝐶𝑡𝑜𝑡 =
1

𝑎𝐸(𝑋) (3.5)

The main problem left is to determine the mean empty zone, from the total distribution 𝑓(ℎ). This can
be done in several steps, by determining an estimation for the free headway distribution and subtracting
that from the total distribution.

To get an estimation for the free headway distribution, the arrival rate, 𝜆, and the normalization
constant, 𝐴, have to be determined, based on a part of the distribution that has only free flow. This can
be done by evaluating all headways that are greater than 𝑇∗, where 𝑔(ℎ) = 0 for all ℎ > 𝑇∗. This gives
equation 3.6 for the estimation of 𝜆 and equation 3.7 for the estimation of 𝐴.

�̂� = [ 1𝑚

∞

∑
𝑖=1
{ℎ𝑖 − 𝑇∗|ℎ𝑖 > 𝑇∗}]

−1

(3.6)

�̂� = 𝑚
𝑛 𝑒

�̂�𝑇∗ (3.7)
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Here 𝑛 is the total number of time headways and 𝑚 the number of headways that are greater than 𝑇∗.
The total equation for the estimate of the free headway distribution is given in equation 3.8 together
with equation 3.9.

�̂�1(ℎ) = �̂��̂�𝑒−�̂�ℎ [1 −
1
�̂�
∫
∞

ℎ
( ̂𝑓𝑛(𝜏) − �̂�1(𝜏))𝑑𝜏] (3.8)

�̂� = ∫
∞

0
( ̂𝑓𝑛(𝜏) − �̂�1(𝜏))𝑑𝜏 (3.9)

This can be solved iteratively, giving as a result �̂�1(ℎ). This process is ready when the difference
between �̂�𝑖(ℎ) and �̂�𝑖−1 is small enough. Most of the time, this doesn’t take more than five iterations.
According to Hoogendoorn (2005) equation 3.10 is a good initial solution.

�̂�(0)1 = �̂��̂�𝑒−�̂�ℎ; �̂�(0) = 0.9 (3.10)

Finally, an estimate for the empty zone is given by equation 3.12, the average of the constrained head-
way distribution, using equation 3.11. This can than be used in equation 3.5 to determine the capacity
of the intersection.

�̂�(ℎ) = �̂�1(ℎ)
�̂�

=
̂𝑓𝑛(ℎ) − �̂�1(ℎ)

�̂�
(3.11)

𝐸(𝑥) = 𝑔(ℎ) (3.12)

A more detailed methodology of this capacity estimation and the theory behind it can be found in
Hoogendoorn and Daamen (2016) and Hoogendoorn (2005).

This capacity estimation will be used to determine capacity based on all available data. An individual
discharge period does not contain enough headways to get a large enough distribution. To use this
method to estimate the maximum queue discharge rate of smaller subgroups, individual phases that
contain the same scenario can be grouped. This way it is also possible to compare the maximum queue
discharge rate of the different scenarios with each other.

The Pearson correlation coefficient and the p-value
In Wierbos et al. (2020) the Pearson correlation coefficient and the p-value are used to see if there is
some sort of relation and correlation between two variables. Those values can also be useful in this
research to see if there is some sort of relation between the maximum queue discharge rate and the
scenario.

The Pearson correlation coefficient (𝑟) can be used to see how strong the linear correlation is be-
tween two variables and the direction of this relation (positive or negative). The coefficient gives a value
between -1 and 1. Here a value of -1 signifies a perfect negative correlation, while a value of 1 signi-
fies a perfect positive correlation. When the coefficient is 0, no correlation between the two variables
can be identified based on the data. To use this coefficient it must be assumed the values come from
a normal distribution and the relation between the variables is linear. It can be calculated by taking
the covariance of the variables (𝑐𝑜𝑣(𝑥, 𝑦)) and dividing that by the product of their respective standard
deviations (𝑆𝑥 and 𝑆𝑦), see equation 3.13.

𝑟 = 𝑐𝑜𝑣(𝑥, 𝑦)
𝑆𝑥 ∗ 𝑆𝑦

(3.13)

First, a null hypothesis and an alternative hypothesis must be specified. For this thesis the null hypoth-
esis will be that there is no relation between the scenario and the maximum queue discharge flow and
the alternative hypothesis is that there is some form of relation between those variables. After that, the
t-test can be performed, which gives the t-value (𝑡). This can be done with equation 3.14. Here 𝑛 is
the sample size.

𝑡 = 𝑟 ∗ √𝑛 − 2
√1 − 𝑟2

(3.14)

For every t-value is a corresponding p-value. This p-value can be found by looking it up in the so-called
t-table or by using coding or a software. The p-value gives the probability that the null hypothesis is
true, or in this case the probability that there is no relation between the maximum queue discharge rate
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and the scenario. Most of the time in research the threshold will be a p-value of 0.05. This means the
null hypothesis will be rejected if the p-value is lower than 0.05, which means that there is less than 5
percent chance the two variables are not related. (Jaadi, 2021)

The p-value is very important here, because it takes the size of the sample in account. When using
a small sample size, the chance is big the Pearson correlation coefficient indicates there is some cor-
relation, while in reality there are not enough data points to really say something about the correlation.
To summarize: The Pearson correlation coefficient quantifies the correlation and the p-value gives the
chance this correlation is just by chance. So the Pearson correlation coefficient and the p-value should
be used together. (OPEX resources, 2019)

Parameter estimates
For the capacity estimation, as described earlier in this subsection, some parameter estimations have
to be made in advance, namely: 𝑎 and 𝑇∗. The parameter 𝑎 is the width of a cyclist and a bit of
extra free space because of the fear of obstacles. According to CROW (2016) the width of a cyclist is
about 0.75 meters and the distance between two cyclists about 0.25 meters. In other words a cyclist
maintains about 0.125 meters of free space on either side. Those values are used while designing
bicycle infrastructure. This thesis does not focus on determining the exact width of a virtual sublane
(see chapter 2 for more information about these sublanes), so 𝑎 = 1 meter is a reasonable assumption
for now.

According to Hoogendoorn (2005) the parameter 𝑇∗ can be easily estimated by plotting the empirical
survival function �̂�𝑛(ℎ) = 1 − �̂�𝑛(ℎ), where �̂�𝑛(ℎ) is the cumulative distribution function of ̂𝑓𝑛(ℎ). This
function must be plotted on a logarithmic scale. The free flow follows an exponential function, so the
plotted line will be straight for ℎ > 𝑇∗. The moment the line will bend, it means that there is no fully free
flow anymore. The value for 𝑇∗ will be determined in chapter 4. Based on the results, one value of 𝑇∗
will be used for all the maximum queue discharge rate estimates or a new value of 𝑇∗ will be estimated
each time. Because 𝑇∗ does not have to be very precise, but just big enough to only include free flow,
it might not be needed to make a new estimate for every maximum queue discharge rate estimation.

3.4. Scenario methods
In this subsection, the different scenarios will be explained. As described earlier, the influence of a
scenario on the maximum queue discharge rate will be analyzed. The scenarios described in this
subsection will have something to do with the queue composition or the behaviour of the cyclists during
the queue discharge. The scenarios have been chosen based on things that seemed relevant in the
literature study and interesting situations that could be found in the data-set. These scenarios are by
no means a complete list of all possible scenarios that can have an influence on the maximum queue
discharge rate. First of all, off all the components that affect the capacity, there will be only looked at
the traffic conditions and the scenarios will not represent all those traffic conditions, but are only part of
these conditions. They can, however, give an idea of the different scenarios that can be present during
the queue discharge and how these scenarios affect the maximum queue discharge rate. This will give
more insight in the microscopic traffic flow behaviour of cyclists.

For the different scenarios, a motivation will be given why this scenario will be analyzed and the
method to identify these scenarios in the data-set will be given. The different scenarios will be quanti-
fied. This means that every queue discharge phase will be given some quantity based on the presence
of the scenario. After that, the queueing phases will be grouped based on those quantities and the
maximum queue discharge rate for each of those groups will be estimated. The groups will be formed
based on the results to make appropriate group sizes. When a group contains too few phases for a
successful maximum queue discharge rate estimation, the group will be merged with another group.
The exact requirements for this will be determined in chapter 4, based on the results. These different
estimations can then be compared, to see if there is some sort of relation with the maximum queue
discharge rate and the scenario. The Pearson correlation coefficient and the p-value can help with this.
All the scenarios will be identified in the data-set with the help of coding.

The front or the back of the queue is very dense
As stated in chapter 2, the queue density can have a significant influence on the discharge rate. Based
on those studies, the maximum queue discharge rate seems to get higher with a higher density. An
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interesting scenario is to look at the density at the front and the back of the queue and how this affects
the maximum queue discharge rate. For this, the density can be calculated over the last 𝑛𝑞 and the
first 𝑛𝑞 cyclists, where the number of cyclists (𝑛𝑞) can vary to get more data.

According to Wierbos et al. (2021) the density of a queue can be calculated by dividing 𝑛𝑞 by the
dimensions of the waiting area (𝐴). The number of cyclists waiting in the queue are not necessarily the
same as the number of cyclists that pass the stop line. It might be possible that some cyclists join the
queue later. The dimensions of the waiting area can be calculated by multiplying the width of the cycle
path by the length of the queue. When looking at the density at the front of the queue, the length will
be the distance form the stop line until the last cyclist. When the first cyclist has already past the stop
line, the length of the queue will be calculated based on the position of that cyclist. The initial locations
of the cyclists will be used, in other words: the location at the beginning of the measurements when all
the cyclists are standing still. When looking at the density at the back of the queue, the distance from
the last cyclist up to the first cyclist from the part the density will be calculated over, will be used. This
gives equation 3.15.

𝑘 =
𝑛𝑞
𝐴 =

𝑛𝑞
2.0 × 𝐿 (3.15)

Here 𝑘 is the density and 𝐿 the length of the queue.

Cyclists standing behind each other while waiting
As stated in the section above, the local density of the queue might have an affect on the maximum
queue discharge rate. Density is more of a macroscopic traffic flow characteristic, so it might give some
extra insight to look more at the queue configuration on a microscopic level. Sometimes, a cyclist might
chose to stand behind another cyclist, while there is still enough enough space next to the other cyclist.
In other words, the queue becomes longer and less dense. To identify this scenario there must be
looked for places in the queue, before the discharge has started, where there is enough space for
another cyclist. This will be done by looking at every cyclist, who is not the last cyclist in the queue,
if there is enough space for another cyclist to stand next to it. The number of times there is enough
space, will be counted. In other words, the number of times cyclists were standing behind each other
instead of next to each other. Because not every cyclist has the same size and not every cyclist wants
to keep the same space to another cyclist, this scenario can be tested with different widths of a cyclist.

To look for this scenario, the average dimensions of a cyclist must be known. The maximum width
of the handlebars of a bike are 75 cm and adding some free space around the cyclist for movement
adds up to 100 cm (CROW, 2016). The average bike has a handlebar width of 60 cm and the extra
space adds up to 80 cm (Wierbos et al., 2021). These different values (with and without free space)
can be used to determine if a space is wide enough to fit another cyclist. The average length of a
cyclist is 195 cm (CROW, 2016), so rounding up gives a length of 200 cm. This length should be the
minimum distance between two cyclists in the x-direction. Here, the x-direction describes the length
of the cycle path and the y-direction the width of the cycle path. In the available data-set, the point of
measurement is the middle of the head (Goñi-Ros et al., 2018), which is approximately in the middle
of the total length of the cyclist. It will be counted as two cyclists standing next to each other when
at least half of the cyclist overlaps, so the maximum distance in x-direction between a cyclist and the
middle of the free space is 1 meter. This way there is enough space for another cyclist to stand next
to the first cyclist. In figure 3.1 the requirements as described above are visualized. The figure shows
the queue of one phase in the data-set, but it can also be applied on other data-sets. The purple lines

Figure 3.1: The figures shows two examples of possibles spaces where another cyclist can fit in purple, using a width of 80 cm.
The red lines mark the spaces of the existing cyclists

are possible spaces that count as enough space for another cyclist to fit with a width of 80 cm. These
are not the only possible spaces for another cyclist to stand. In this example, the imaginary cyclist next
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to cyclist 11 could stand more to the back and the imaginary cyclist next to cyclist 12 could stand more
to the front. The space next to cyclist 13 does not count, because it is the last cyclist in the row. The
empty space behind cyclist 1 and 2 is also not counted because the code will only look for spaces next
to another cyclist.

Cyclists overtaking each other
In chapter 2 it was stated that according to a study, the overtaking of cyclists can have a positive
influence on the queue discharge rate. That is why this scenario will also be looked for in the available
data-set to see if the data shows that it affects the maximum queue discharge rate. To see if cyclists
were overtaken in the data-set, there will be looked at the order in x-direction the cyclists were situated
while waiting for the traffic light and the order the cyclists passed the stop line. Every time a cyclist
would pass the stop line earlier than a cyclist that was standing closer to the stop line at the start of
the queue discharge, the scenario overtaking took place. For each phase, the number of times the
overtaking took place will be counted.

The first cyclists take a long time before leaving
As described in chapter 2 the first cyclists of the queue show a different behaviour in comparison with
the cyclists further down in the queue. This might have an influence on the maximum queue discharge
rate. For this scenario the discharge time of the first cyclist(s) in the queue will be looked at. According
to Wierbos et al. (2021) this is the time interval between the first cyclist to leave the waiting area (in this
case, passing the stop line) and the last cyclist to leave the area. This gives equation 3.16, where 𝑇𝑑𝑖𝑠
is the discharge time.

𝑇𝑑𝑖𝑠 = 𝑇𝑙𝑎𝑠𝑡 − 𝑇𝑓𝑖𝑟𝑠𝑡 (3.16)

In this particular case, 𝑇𝑓𝑖𝑟𝑠𝑡 will be the time at which the light goes green and 𝑇𝑙𝑎𝑠𝑡 will be the time
that cyclist 𝑛 crosses the stop line. This way, the time that is lost during the start-up time will also be
included. Because the discharge time will be determined for several 𝑛 number of cyclists, the resulting
times can be pretty far from each other. (To clarify: the first cyclist to leave the stop line, will take
considerably less time than the sixth cyclist to cross the stop line.) To get time stamps that lay closer to
each other, it can also be interesting to divide the discharge time by the number of cyclists. This gives
the inverse of the traffic flow. The traffic flow 𝑞 is often defined as: “average number of vehicles (𝑛) that
pass a cross-section during a unit of time (𝑇)” (Hoogendoorn & Knoop, 2013). Written as an equation
this gives equation 3.17. Here ℎ is the average time headway.

𝑞 = 𝑛
𝑇 =

1
ℎ

(3.17)

In other words, by dividing the discharge time of the first cyclists by the number of cyclists, the average
headway for those cyclists will be obtained. However, the average headway that will be obtained with
this method is different than the average headway obtained with the method described in section 3.3.
This is because for this calculation the headway of the first cyclist will also be taken into consideration.
In this case, the headway of the first cyclist is the time that passes between the light that goes green
and crossing the stop line.



4
Results

4.1. Introduction
This chapter shows the results of the methodology when applied on the dataset. First, the headway
distribution is given, after that the estimation of 𝑇∗ and then the capacity estimation. After that, the
scenarios covered in the methodology will be worked out. In appendix A (parts of) the code that is
used to get these results can be found.

4.2. Headway distribution
In figure 4.1 the headway distribution from all the data is shown. This gives an initial idea what the
distribution looks like. For every cyclist the 𝑦-position and the time stamp when the cyclist crossed the
stop line at 𝑋 = 28.7m were determined. Because the exact time stamps when the cyclists crossed the
stop line were not available, interpolation was used. This was done by getting the data points before
and after the stop line and using linear interpolation to get an estimate of the exact position and time
while crossing the stop line. After that, the leader of each cyclist was determined using equation 3.1
and then the time headway by using equation 3.2.

Figure 4.1: Time headway distribution from all the data
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The average time headway is 1.83 seconds and the median is 1.57 seconds. When looking at the
histogram most cyclists seem to have a headway between 1 and 2 seconds. There are not many
cyclists with a headway lower than 1 second and the number of cyclists that have a headway larger
than 2 seconds are rapidly decreasing.

4.3. Determining 𝑇∗
To determine an appropriate value for 𝑇∗, the survival function will be plotted on a logarithmic scale,
as described in section 3.3. For the total headway distribution, this gives the plot in figure 4.2. The
graph shows a bend for headway values lower than 1.5 seconds. Because the 𝑇∗-value is the threshold
value, all headway values that are greater than 𝑇∗ are part of the free flow. So it is better to choose a
𝑇∗ that is a bit too large, than a 𝑇∗ that is a bit too small. So to be on the safe side, a headway value of
𝑇∗ = 2 seconds will be chosen as parameter. This value will be used in the estimation for the capacity
for the whole data set and in all the estimations of the maximum queue discharge rate. This value can
be used for all estimations, because the graph shows that all headways larger than 2 seconds are part
of the free flow. When taking only a part of the total distribution, this fact will not change.

Figure 4.2: The survival function S(h) on a logarithmic scale

4.4. Capacity estimation
In figure 4.3 the total headway distribution and the estimate of the free flow distribution and the con-
strained distribution, according to the composite headway model is shown. This made it possible to
estimate the capacity for the total headway distribution. The capacity, and several other parameters
are shown below. All of these are determined according to the method described in the methodology
in chapter 3.3.

• 𝐸(𝑋) = 1.25 s

• �̂� = 27.6%

• �̂� = 0.979

• �̂� = 2.16

• 𝐶 = 2889 cyclists / hour
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Here 𝐸(𝑋) is the mean empty zone, or in other words the average headway value for constrained
cyclists. �̂� is the ratio of constrained cyclists, �̂� is a parameter called the arrival rate (equation 3.6) and
�̂� a parameter called the normalization constant (equation 3.7). Finally, 𝐶 is the capacity estimated
based on the total headway distribution with the help of equation 3.5 with 𝑎 = 1.

Figure 4.3: Time headway distribution from all the data

A large limitation when estimating the maximum queue discharge rate with this method is the relatively
small sample size. When comparing the different scenario’s a sample size that is too small would fail.
However, the number of samples needed was not very consistent. Sometimes a sample size containing
only 3 phases would succeed, while a sample size with more than 10 phases or even 20 phases would
fail. When grouping the different phases based on the scenarios, groups with a minimum of 3 phases
were formed. When the estimation of the maximum queue discharge rate would fail, the group was
merged with another group and it was tried again. Because of the small sample size, especially when
comparing different scenarios, the exact estimates of the maximum queue discharge rate might be
not very accurate. However, because there will be mainly looked at the relations, the difference in the
maximum queue discharge rate can still say something about the effect a scenario has on the maximum
queue discharge rate.

4.5. Scenarios in the dataset
In this subsection, the results of the scenarios described in section 3.4 will be shown and the results
will be further clarified and explained if possible. The exact numerical results of all the estimations of
the maximum queue discharge rate and the sample sizes used for these estimations can be found in
appendix B.
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The front or the back of the queue is very dense
To calculate the density at the front and the back of the queue, there was looked at the density of the
first 𝑛 cyclists and the last 𝑛 cyclists in the queue. When looking at the data, a cluster of cyclists at the
beginning and the end, consisted most of the time of around 4 or 5 cyclists. To get a better idea how
the maximum queue discharge rate changed when the density changed, the density of the front and
the back of the queue was calculated for 2 to 6 cyclists. The density at the front of the queue is plotted
against the maximum queue discharge rate in figure 4.4 and the density at the back of the queue is
plotted against the maximum queue discharge rate in figure 4.5. In both figures, the change in the
maximum queue discharge rate over the total density of the queue has also been taken into account.

Figure 4.4: Estimations of the maximum queue discharge rate based on the front density of the queue. Here, c is the number of
cyclists in the front of queue the density has been calculated for.

Looking at these graphs, the maximum queue discharge rate seems to go down when the front of the
queue is dense. The Pearson correlation coefficient is −0.77 and the p-value 0.0022, when calculating
these values for all the data points shown in the graph. This indicates that there is a pretty strong
negative correlation between these variables. The p-value is below the threshold of 0.05 and indicates
that there is more than 99% chance that the density at the front of the queue is somehow related with
the maximum queue discharge rate.

This is an interesting result, because earlier studies found that the queue discharge was positively
correlated with the total density of the queue (Wierbos et al., 2021)(Goñi-Ros et al., 2018). In this
study the density at only the front of the queue is considered, which can explain part of the difference.
However, also the total density and the densities when a larger part of the front queue was considered,
seem to show a negative correlation with the maximum queue discharge rate. Though the number of
data points for the total density is way less and thus is the correlation less reliable. Another difference
between this study and the aforementioned ones, is that here a focus lies on the maximum queue dis-
charge rate, instead of the observed queue discharge rate. A third interesting point is the difference in
steepness of the several fitted lines. The negative correlation between the maximum queue discharge
rate and the front density seems to be strongest when only the first 2 or 3 cyclists are considered. When
more cyclists are considered the steepness becomes less. This might indicate that the position of the
cyclists at the front have the largest effect on the maximum queue discharge rate.

When looking at the density in the back there does not seem to be any clear correlation. The lines
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Figure 4.5: Estimations of the maximum queue discharge rate based on the back density of the queue. Here, c is the number of
cyclists in the back of queue the density has been calculated for.

are all over the place. It can be noticed that when looking at the back density of the last 2 or 3 cyclists,
there is a positive correlation with the maximum queue discharge rate, while there is none or a negative
correlation when calculating the density of more cyclists at the back. The Pearson correlation coeffi-
cient for all data points in the graph is −0.026 and p-value 0.93. In other words, the chance that the
density at the back is related with the maximum queue discharge rate is less than 7%, which makes
this statistically insignificant.

When comparing the density at the back and the density at the front, it is not unexpected that the
density at the front seems to have a larger influence on the maximum queue discharge rate than the
density at the back. The back of the queue can only pass the stop line after the front of the queue
has done so. When something happens at the front of the queue the cyclists at the back of the queue
are also affected, while when something happens at the back of the queue the cyclists at the front will
probably not notice the effects.

Cyclists standing behind each other while waiting
For this scenario, there was looped over each cyclist (except the last one in the queue) from each
phase to determine if there was enough space for another cyclist to stand next to it. As an extra
variable, the width of a cyclist was taken. These number of spaces were plotted against the maximum
queue discharge rate, which can be seen in figure 4.6. The results for a cyclist width of 0.75 meters
and of 0.8 meters are identical, which is not weird considering the width does not differ much. The
Pearson correlation coefficient gives a value of−0.12, which indicates a very weak negative correlation.
However, the p-value is 0.66, which is way too high to make any conclusions based on these results.
If there is indeed no correlation, this indicates that even though the density has a large effect on the
maximum queue discharge rate, it does not matter much if there are some wide spaces in the queue,
as long as the rest of the density is high (or low) enough.

Cyclists overtaking each other
Each cyclist in the data-set had an initial number, which was given based on the 𝑥-coordinate of their
start position. The higher the number, the farther away from the stop line. As described in the method-
ology, this scenario was counted when a cyclist crossed the stop line earlier than another cyclist with a
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Figure 4.6: Estimations of the maximum queue discharge rate based on how many times cyclists are standing behind each other
instead of next to each other. The capacity estimates are done for a width of the cyclist of 0.6 meters, 0.75 meters, 0.8 meters
and 1.0 meters. Note: the results for 0.75 meters and 0.8 meters are exactly the same.

lower number. At most, 7 cyclists were overtaken in one phase and at least 0 cyclists. After all the times
a cyclist was overtaken was found, the phases were grouped according to the number of ’overtakings’
that took place in the phase. However, the estimations of the maximum queue discharge rate for all
the groups with 4 or more overtakings failed, just like the estimation for the group with 1 overtaking.
The groups of 0 and 1 were taken together, just as the groups with 3 and more overtakings. The group
with 0 overtakings and 3 overtakings were still included in the graph to get more data points, so these
groups are represented in two estimations of the maximum queue discharge. See figure 4.7 for the
capacity estimation. The x-axis represents the (average) number of overtakings in the group.

Looking at the graph, there seems to be a positive correlation between the number of overtakings
and the maximum queue discharge rate. The Pearson correlation coefficient is 0.84, which indicates a
strong positive correlation. The results are not unexpected, when looking at previous research about
merging and overtaking cyclists, which found that overtaking had a positive influence on the queue
discharge rate (Wierbos et al., 2020). The p-value, however, is 0.077. This is just a bit above the
threshold of 0.05. It is still likely that the number of overtakings has a positive effect on the maximum
queue discharge rate, because of the results of previous studies and the fairly low p-value, but based
on the results from this thesis alone, this can not be concluded.

The first cyclists are taking a long time before leaving
For this scenario, the discharge time for the first cyclist up to the discharge time for the fifth cyclist has
been calculated. There has been chosen to do this calculation up to fifth cyclist, because when going
through the dataset, the clusters of cyclist at the front seemed to be a around a maximum of 5 cyclists.
A few times it occured that the first cyclist was already past the stop line before the light went green.
In that case, the first cyclist was not counted and the second cyclist from that phase would be the first
cyclist in the calculation. This has been done to avoid negative discharge times.

After the discharge time for each number of cyclists was calculated, the cyclist were grouped and
the maximum queue discharge rate was estimated. The results can be seen in figure 4.8 Here, 𝑐 is
the number of cyclists the discharge time was calculated for, so each colored line represents another
number of cyclists. In figure 4.9 the discharge time has been divided by the number of cyclists. In other
words, the average headway of the first cyclist is plotted against the maximum queue discharge rate.

An interesting observation based on the aforementioned graphs is that the maximum queue dis-
charge rate seems to increase with a higher discharge time. This is true for both graphs. So when the
first cyclists take a longer time to leave, the maximum queue discharge time gets higher. The Pearson
correlation coefficient for all the data points in the graph displaying the discharge time is 0.53 and the
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Figure 4.7: Estimations of the maximum queue discharge rate based on the number of times a cyclist was overtaken in one
phase

coefficient for the graph with the average headway is 0.42. So in both cases the time shows a moder-
ate positive correlation with the maximum queue discharge rate. The p-values are 0.0030 and 0.024,
respectively. Both of these values are below the threshold, which indicates the presence of a relation
between the discharge time of the first cyclists and the maximum queue discharge rate.

These results are counter intuitive. The capacity, or in this case the maximum queue discharge,
can be estimated by taking the inverse of the headway of a constrained cyclist. When this mean empty
zone gets higher, the maximum queue discharge rate gets less. In this case, the average headway of
the total distribution gets higher, but the average headway of the constrained distribution should get
lower for the maximum queue discharge rate to increase. This means that the ratio or the form of the
constrained distribution changes when the discharge time of the first cyclists gets higher.

Plotting the discharge time of the first cyclists against the ratio of constrained cyclists gives a Pear-
son correlation coefficient of 0.15 and a p-value of 0.45, which seems to indicate that there is no relation
between the discharge time and the ratio of constrained cyclists. However, when plotting the average
headway of the first cyclists against the ratio of constrained cyclists a Pearson correlation coefficient
of 0.36 is obtained and a p-value of 0.052. The correlation becomes weaker, but the p-value gets very
low, just above the threshold, making it more likely there is some form of correlation between the aver-
age headway of the first cyclists and the ratio of constrained cyclists. If this is true, it means that when
the average headway of the first cyclists are higher, so when the time distance is larger, more cyclists
are constrained. A possible explanation for this could be that if the first cyclists take a longer time to
leave, the cyclists behind cannot cross the stop line and are stuck behind the first cyclists, making them
constrained. So a larger part of the later cyclists are constrained.
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Figure 4.8: Estimations of the maximum queue discharge rate when cyclists based on the discharge time of the first cyclists.
Here, c is the number of first cyclists the discharge time was calculated for.

Figure 4.9: Estimations of the maximum queue discharge rate when cyclists based on the average time headway of the first
cyclists. Here, c is the number of first cyclists the average headway was calculated for.



5
Discussion

This chapter contains the discussion. It will cover certain points that could be improved in further
research.

This research covered several scenarios that could happen during the queue discharge phase,
which were assumed to have some kind of effect on the maximum queue discharge rate. Because
these scenarios did not accurately reflect the conditions that affect the capacity, this research focused
on the maximum queue discharge rate, instead of on the capacity. However, the scenarios that were
chosen to analyze were kind of random. The inspiration for the scenarios has been obtained from
literature and the scenarios mostly focus on the microscopic traffic flow characteristics, but they do not
have much in common other than that. Looking only at this research, nothing can be said about the
whole capacity or all things that affect the maximum queue discharge rate, but only a few scenarios
that can happen are briefly covered. A full answer to the research cannot be given based on this thesis
alone.

To estimate the maximum queue discharge rate, the available data-set was split up in several
smaller groups consisting of 3 or more queueing phases. On top of that, not every group had the
same size. It is unclear to what extent this has influenced the maximum queue discharge rate esti-
mations. Sometimes, the estimations failed even though the group consisted of more than 10 phases,
while other times the estimation succeeded with a group of just 3 phases. This made the estimations
less reliable. Furthermore, because the number of groups that could be formed was not very high, the
number of estimations for the maximum queue discharge rate was also not very high. Because there
were only a few data points in some scenarios, it was more difficult to judge if there was a relation
between the scenario and the maximum queue discharge rate.

Another element that was not included in this research was a differentiation between the sizes of
the different queue discharge phases. The smallest phase had a size of 6 cyclists, while the largest
group had a size of 20 cyclists. For example, when looking at the density of the first and last cyclists,
up to 6 cyclists were considered. For this smallest sample size, this meant that the density of the whole
queue was considered, while when looking at the phase with the most cyclists, just a bit more than a
quarter of the queue was considered. It has not been researched if this had any effect on the results.
For future research it might be good to differentiate between the queue sizes and, for example, only
uses queue sizes that are large enough.
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6
Conclusions and recommendations

6.1. Conclusions
This thesis has the research question: How can the capacity of cyclists be determined at the stop line
of a signalized intersection? The capacity of an intersection is dependent on several conditions: the
base conditions like weather, pavement condition and the user’s familiarity with the road; the roadway
conditions which includes the existing infrastructure; the traffic conditions, which is about the vehicle
type, lane distribution and the driver population; and the control conditions which includes traffic regu-
lations. The capacity of an intersection could be estimated using the composite headway model. For
this, only the headway distribution of the cyclists at an intersection was needed. Finding a general
method to determine the capacity at a signalized intersection which includes all possible factors that
could affect the capacity did not fall into the scope of this thesis. However, several scenarios that were
part of the traffic conditions were analyzed to see how they affected the maximum queue discharge
rate. A summary of these results is given below.

Based on the available data-set of cyclist trajectories, several scenarios were identified and plotted
against estimates of the maximum queue discharge rate. In total 6 scenarios were analyzed, when
the front and back density are treated as different scenarios, as well as the discharge time of the
first cyclists and the average headway. The Pearson correlation coefficients (𝑟) and the p-values (𝑝) for
each scenario can be found in table 6.1. When the absolute value of the Pearson correlation coefficient
is larger, the correlation between the scenario and the maximum queue discharge rate was stronger.
However, only when the corresponding p-value was very low this correlation is likely real and not just
by chance. The threshold for this is a p-value of 0.05.

Scenario 𝑟 𝑝

Front density -0.77 0.0022
Back density -0.026 0.93

Cyclists standing behind each other -0.12 0.66
Overtaking 0.84 0.077

Discharge time first cyclists 0.53 0.0030
Average time headway first cyclists 0.42 0.024

Table 6.1: The Pearson correlation coefficients and the p-values for each scenario

The density at the front of the queue seems to have a strong negative correlation with the maximum
queue discharge rate. So when the density gets higher, the maximum queue discharge rate decreases.
These findings seem to contradict earlier studies that showed that the the queue discharge rate was
positively correlated with the density. The correlation is strongest when looking only at the density of the
first 2 or 3 cyclists. This could indicate that the cyclists standing almost totally at the front have a high
influence on the maximum queue discharge rate. When looking at the density at the back of the queue,

23



24 6. Conclusions and recommendations

there is no clear correlation with the maximum queue discharge rate based on these results. Interesting
though, is the difference in correlation for the density of the last 2 or 3 cyclists and the density for more
cyclists. The data-set used for research does not contain enough data points to make any conclusions
about this. The number of times there is enough space next to a cyclist for another cyclist had a weak
correlation and a very high p-value. This p-value was too high to make any conclusions. There seems
to be a very strong positive correlation between the number of times cyclists are overtaking and the
maximum queue discharge rate. However, the p-value is too high to make any definite conclusions.
The strong correlation is line with earlier research that stated that overtaking had a positive affect on
the queue discharge rate. So even though based on solely the numbers, no conclusion can be made, it
would be in-line with the existing theory, to assume the overtaking has a positive effect on the maximum
queue discharge rate. The discharge time of the first cyclists and the average time headway of the first
cyclists seem to have a moderate positive correlation with the maximum queue discharge rate. The
p-value is also low enough to back up this conclusion. There also seems to be a positive correlation
between the average headway and the ratio of constrained cyclists, which indicates that with a higher
average headway of the first cyclists, the total number of constrained cyclists goes up.

The most interesting results from this research is the effect the first cyclists have on the maximum
queue discharge rate. Both the scenarios related with the behaviour and the positions of the first
cyclists gave the most clear results. Both the scenario concerning the density of the first cyclists and
the scenario concerning the discharge time of the first cyclists showed results that seemed counter
intuitive at first.

The results from this research help in understanding the randomness in capacity estimations and
give more insight into the effect of microscopic traffic flow characteristics on the maximum queue dis-
charge rate. It can also give a better idea of the possible traffic conditions that happen on a microscopic
level. This is important because the traffic conditions have an effect on the capacity. This can be used
in further research to help designing better intersections with a higher capacity.

6.2. Recommendations
This Bachelor thesis leaves room for a lot more research. This thesis only briefly looked at several
scenarios that can happen during the queue discharge. For future research, other scenarios could be
identified to get a more complete view of the microscopic traffic flow characteristics during the queue
discharge and to get more insight into the different factors that affect the maximum queue discharge.
This can be done based on this data-set, but it is recommended to also use different data-sets. This
way the presence of the different scenarios and the effect they have on the maximum queue discharge
rate can verified. For this it would be advantageous to use a larger data-set. This way the different
scenarios could be split up into more different groups, where each group still contains a reasonable
number of phases. When the same conclusions can be obtained from a different data-set, the p-value
will be lower and the conclusions will be more reliable.

Some scenarios that were covered in this thesis are also worth researching more in depth, in this
data-set or on a different and larger data-set. Perhaps it is also worth to do a staged experiment.

For example, the estimations for maximum queue discharge rate for the different front densities
showed a strong negative correlation. Because different studies that focused on the total density
showed a positive correlation with the queue discharge, this scenario might be interesting to research
more. Here it is possible to look at how the density in the front affects the queue discharge, instead of
the maximum queue discharge or how different local densities affect the maximum queue discharge
rate, like the density at the middle of the queue. Another interesting focus would be to look at the
difference in densities between the front of the queue and the back of the queue. This research only
looked at the density at the front of the queue (or the back), without taking into account differences of
the density at the rest of same the queue, or the length of the total queue.

Another scenario that might be worth looking more into is the discharge time of the first cyclists
and the average headway. As was concluded earlier, the discharge time and the average headway
was positively correlated with the maximum queue discharge rate, even though the average headway
of the constrained cyclist should become less for the maximum queue discharge rate to get higher. It
would be an interesting focus to look more in depth into how the headway distribution (including the
distribution for the constrained cyclists and the distribution for the cyclists with free flow) changes when
the discharge time of the first cyclists becomes higher.
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Combining the two scenarios mentioned above, another focus for future research would be to look
more generally on the effect the first few cyclists have on the maximum queue discharge rate. Because
both of these scenarios showed that the flow characteristics of the first cyclists can have a big influence
on the maximum queue discharge rate.

The scenario ’overtaking’ is also worth researching more. The results showed a strong positive
correlation with the maximum queue discharge, but the p-value was too high and there were very few
data points to base this correlation on. So more research is needed to establish if there is a real
relation between the scenario and the maximum queue discharge rate, or if the correlation was just a
coincidence.

Finally, a last recommendation for future research is to look how the conclusions from this research
can be used to design a new intersection or to improve the existing intersections.
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A
Coding

Introduction
This appendix will give more information about the programming parts of this thesis. First, the modules
used will be described and after that some parts of the code will be displayed.

Modules
Because the data is initialized in matlab, it has to be converted to python. For this scipy.io.loadmat
is used. This will then be processed using mainly numpy and pandas. The plots were made using
matplotlib.pyplot and scipy was used for some specific functions, like calculating the Pearson
correlation coefficient.The biggest part of the coding is done in the program PyCharm, however at the
beginning some coding was also done in the program Jupyter Lab.

Code
In this section some important part of the code is displayed. The code is further elaborated with com-
ments. A comment is preceded by a #.

Headway distribution
The following code is for converting the matlab code to python, getting the headway distribution and
some other variables, and storing it in a separate file.

# Import modules
import scipy.io as sio
import pandas as pd
import numpy as np
import os

def get_headway():
# Get the right directories for the matlab files.
# This could probably have been done in a less complicated way
absolute_path = os.path.abspath(__file__)
file_directory = os.path.dirname(absolute_path)
path_1 = os.path.join(file_directory, 'Matlab data')
path = os.path.join(path_1, 'Trajectory_data_for_analysis')

database = dict() # Create a dictionary to store the data in
Xsl = 28.7 # X-position of the stop line

# This is the dataframe all the data will be stored in.
headway_database = pd.DataFrame(columns=['Phase', 'Cyclist', 'X', 'Y', 'Time', 'Leader',

'Headway', 'X0', 'Y0'])

# 'Phase' is the number of the phase (they have all been renumbered to get a number form
1 to 59.
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# 'Cyclist' is the number of the cyclist
# 'X', 'Y' and 'Time' are the variables when a cyclist crosses the stop line.
# 'Leader' is the number of the cyclist, the cyclist has been following and 'Headway' is

the time headway.
# 'X0' and 'Y0' are the coordinates at the beginning of the phase.

# Store all the matlab data in a python dictionary
for i in range(1, 60):

path_file = os.path.join(path, f'{i}')
database[i] = sio.loadmat(path_file)

k = 0
x = Xsl

for key in database:

# Loop over every cyclist
for i in range(len(database[key]['Trajectories'][0])):

y = 0
t = 0

# Get the start coordinates
x0 = database[key]['Trajectories'][0][i][0][0]
y0 = database[key]['Trajectories'][0][i][0][1]

# Determine at which points the cyclists crosses the stop line, by looping over
every point in the trajectory.

for j in range(len(database[key]['Trajectories'][0][i])):
if database[key]['Trajectories'][0][i][j][0] >= Xsl:

# Interpolate between point before and after stop line
x1 = database[key]['Trajectories'][0][i][j][0]
x2 = database[key]['Trajectories'][0][i][j - 1][0]

y1 = database[key]['Trajectories'][0][i][j][1]
y2 = database[key]['Trajectories'][0][i][j - 1][1]

t1 = database[key]['Trajectories'][0][i][j][2]
t2 = database[key]['Trajectories'][0][i][j - 1][2]

y = np.interp(Xsl, [x1, x2], [y1, y2])
t = np.interp(Xsl, [x1, x2], [t1, t2])
break

# If a cyclist has never crossed the stop line, its trajectory will be
interpolated up to the stop line,
based on the last two data points

if t == 0 and y == 0:
x1 = database[key]['Trajectories'][0][i][j][0]
x2 = database[key]['Trajectories'][0][i][j - 1][0]

y1 = database[key]['Trajectories'][0][i][j][1]
y2 = database[key]['Trajectories'][0][i][j - 1][1]

t1 = database[key]['Trajectories'][0][i][j][2]
t2 = database[key]['Trajectories'][0][i][j - 1][2]

y = np.interp(Xsl, [x1, x2], [y1, y2])
t = np.interp(Xsl, [x1, x2], [t1, t2])

# Add data to dataframe
headway_database.loc[k] = [key, i + 1, x, y, t, None, None, x0, y0]

k += 1

k = 0

# Determine the leader and the headway of each cyclist. This is done in a separate loop
to take into account that a cyclist can be
overtaken by another cyclist, so the
leader can be a cyclist with a higher
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number.
for key in database:

for i in range(len(database[key]['Trajectories'][0])):

leader = None
headway = None

df = headway_database.loc[headway_database['Phase'] == key]

for m in range(len(database[key]['Trajectories'][0])):
# See equation 3.4
if np.abs(df['Y'].iloc[m] - df['Y'].iloc[i]) <= 0.5 and df['Time'].iloc[i] -

df['Time'].iloc[m] >= 0 and m
!= i:

leader = m + 1
headway = df['Time'].iloc[i] - df['Time'].iloc[m] # See equation 3.5
headway_database['Leader'].loc[k] = leader
headway_database['Headway'].loc[k] = headway

k += 1
# Write dataframe to a file
headway_database.to_csv('database', index=False)

return headway_database

Capacity estimation
The following code was written to estimate the capacity, based on the equations given in 3.3. The
capacity estimation is written in a so called Class, with several functions. This way it makes it easy
to update variables and call functions, when needed. In a later section, it will be made clear how this
class can be used to estimate the capacity.
# Import modules
import matplotlib.pyplot as plt
import numpy as np

class Capacity():

# This is the initializer. It takes as input a dataframe with the headway distribution (
as given by the get_headway() function)
and the amount of bins that will be used.

# The rest of the variables listed are initialized automatically, by the functions called
in the initializer.

def __init__(self, df, bins, ranges=(0,8)):

self.df = df # Dataframe with total headway distribution
self.bins = bins
self.ranges = ranges
self.tbins = 200
self.T = 2

self.lambda_hat = None
self.A_hat = None
self.ff = None # Dataframe with free flow headway distribution
self.get_A_lambda()

self.bins_count = None
self.sum_count = None
self.pdf = None
self.size = None
self.t = None
self.get_histogram()

self.succeed = None

# This function gives a graph with the survival function, which is needed to estimate T*
def t_graph(self):

count, bins_count = np.histogram(self.df['Headway'].dropna(), bins=self.tbins, range=
(0, 8))
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pdf = count / sum(count)
cdf = np.cumsum(pdf)
surv = 1 - cdf

plt.figure(figsize=(8, 6))
plt.step(bins_count[1:], surv)
plt.yscale('log')

plt.ylim([10 ** -2, 1])
plt.grid()
plt.xlabel('Time headway in seconds')
plt.ylabel('S(h) = 1 - F(h)')
plt.show()

# This function calculated lambda_hat and A_hat
def get_A_lambda(self):

self.ff = self.df.loc[self.df['Headway'] > self.T]
m = len(self.ff)
n = len(self.df['Headway'].dropna())

self.lambda_hat = m / np.sum(self.ff['Headway'] - self.T)
self.A_hat = m / n * np.exp(self.lambda_hat * self.T)

# This function changes the distribution in a histogram
def get_histogram(self):

count, self.bins_count = np.histogram(self.df['Headway'].dropna(), bins=self.bins,
range=self.ranges)

self.size = self.bins_count[2] - self.bins_count[1]
self.bins_count = self.bins_count - 0.5 * self.size
self.t = self.bins_count[1:]
self.sum_count = sum(count)
self.pdf = count / self.sum_count / self.size

# Get a first estimation for the free headway distribution
def r0(self):

r0_est = self.A_hat * self.lambda_hat * np.exp(-self.lambda_hat * self.t) / self.
sum_count / self.size

return r0_est

# Get an estimate for r1. This function will be iterated.
def r1(self, r_est, phi_hat):

# Calculate first part of product
a = self.A_hat * self.lambda_hat * np.exp(-self.lambda_hat * self.t)

# Calculate integrals
f_tot = np.sum(self.pdf)
r_tot = np.sum(r_est)
f_int = np.cumsum(self.pdf)
r_int = np.cumsum(r_est)

# Calculate second part of the product
b = ((f_tot - r_tot) - (f_int - r_int)) * self.size
c = 1 - b / phi_hat

return a * c

# Get an estimation for phi, based on the estimation for r1
def phi_est(self, r_est):

r_est[r_est < 0] = 0 ## Maybe this line not needed??
phi = np.sum(self.pdf - r_est) * self.size
return phi

# This is the function that estimates the capacity
# It uses the functions and variables given above
def get_capacity(self, phi=0.9, max_it=1000, plot=True):

r0_est = self.r0()
r_est = r0_est
text = ”\nIterations failed”
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# Start iterations. The default is a maximum of 1000 iterations
# Stop the iterations when the error gets very small
for i in range(max_it):

r_est = self.r1(r_est, phi)
phi = self.phi_est(r_est)
error = np.sum((r_est - r0_est) ** 2)
r0_est = r_est
if error < 10 ** -8:

text = ”\nIterations are successful”
self.succeed = True
break

print(text) # Says is iterations failed or succeeded

g = self.pdf - r_est # Get constrained headway distribution
g[self.t > self.T] = 0 # Makes sure the the constrained headway distribution is zero

when headway is above T*.
g[g < 0] = 0 # Makes sure the constrained headway distribution does not get below 0.

# Plots the capacity estimation, if wanted
if plot is True:

plt.figure(figsize=(15, 10))
plt.step(self.t, self.pdf, '--', label='Total headway distribution', linewidth=2)
plt.step(self.t, r_est, label='Free flow', linewidth=3, alpha=0.8)
plt.step(self.t, g, label='Constrained', linewidth=3, alpha=0.8)

if text == ”\nIterations failed”:
plt.annotate('FAILED', (3, 0.5), color='red', fontsize=100)

if text == ”\nIterations failed”:
self.succeed = False

# Calculate mean empty zone
k = g * self.size * self.sum_count
g_tot = np.sum(k)
EX = np.sum(k * self.t) / g_tot
capacity = 3600 / EX # Calculate the capacity per hour, by multiplying with 3600
if plot is True:

plt.axvline(x=EX, color='black', linestyle='--', label='Mean empty zone')
plt.legend()
plt.show()

# Print the results
print(f'Results:')
print(f'Mean empty zone: {EX}s')
print(f'Capacity: {capacity} cyclists / hour')
print(f'Ratio constrained: {phi}')
print(f'Lambda: {self.lambda_hat}')
print(f'A: {self.A_hat}')

return EX, capacity, phi

Density at the front and the back of the queue
First, a function was written to determine the density at the front and the back of the queue. Then
said function was used, in combination with the function to estimate the capacity (or in this case, the
maximum queue discharge rate) and code was written to make a plot.
import pandas as pd

# The variables front_c and back_c are for the number of cyclists the density calculation is
done for

# The input is the dataframe with the headway distribution
def density(dataframe, front_c=5, back_c=5):

# Create an empty dataframe to store the data
data = pd.DataFrame(columns=['Phase', 'density', 'front_density', 'back_density', '

traffic flow'])

# Loop over every phase
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for phase in range(1, 60):

# Create for every phase a new dataframe, with only data from that specific phase
dff = dataframe.loc[dataframe['Phase'] == phase]

# Get number of cyclists and discharge time for all cyclists
n = len(dff)
T = dff.iloc[-1]['Time'] - dff.iloc[0]['Time']

# Get density in the front
# Locations of the start positions are used
if dff.iloc[0]['X0'] <= 28.7:

density_t = len(dff) / (2 * (28.7 - dff.iloc[-1]['X0']))
density_f = front_c / (2 * (28.7 - dff.iloc[4]['X0']))

else: # When first cyclist has passed the stop line, calculate the density from that
point, instead of from the stop line

density_t = len(dff) / (2 * (dff.iloc[0]['X0'] - dff.iloc[-1]['X0']))
density_f = front_c / (2 * (dff.iloc[0]['X0'] - dff.iloc[4]['X0']))

# Get the density of the last cyclists
density_b = back_c / (2 * (dff.iloc[-5]['X0'] - dff.iloc[-1]['X0']))

# Store everything in the dataframe
data.loc[phase] = [phase, density_t, density_f, density_b, n / T]

phases = [[], [], [], [], [], [], [], []]
phases_front = [[], [], [], [], [], [], [], [], []]
phases_back = [[], [], [], [], [], [], [], []]

# This loop stores every phase in a group, with an interval of 0.2 cyclists / m2
for i in range(59):

phases[int(data['density'].iloc[i] // 0.2 - 1)].append(i + 1)
phases_front[int(data['front_density'].iloc[i] // 0.2 - 1)].append(i + 1)
phases_back[int(data['back_density'].iloc[i] // 0.2 - 1)].append(i + 1)

return data, phases, phases_front, phases_back

The code below shows the process for the maximum queue discharge estimation and the plotting of
the graphs.
# Import modules, including the function to calculate the density and the Capacity class
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as sst
from Capacity_estimation import Capacity
from Density import density

# Load the headway data from the earlier created file and store it in a dataframe
df = pd.read_csv('database')

xd = [[[], [], []] for i in range(5)]
cap = [[[], [], []] for i in range(5)]

for i in range(2, 7):
# Get the density for the first and last i number of cyclists
dff, dens1, dens2, dens3 = density(df, front_c=i, back_c=i)
dens = [df, dens1, dens2, dens3]

# Loop over total density, front density and back density
for k in [1, 2, 3]:

# This loop merges groups when they have 2 or less phases in them
for l in range(1, len(dens[k]) + 1):

if len(dens[k][-l]) <= 2 and l != len(dens[k]):
dens[k][-l - 1].extend(dens[k][-l])
dens[k][-l] = []

elif len(dens[k][-l]) <= 2 and l == len(dens[k]):
dens[k][-l + 1].extend(dens[k][-l])
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dens[k][-l] = []

# Empty groups are deleted
a = [x for x in dens[k] if x]
dens[k] = a

xd[i - 2][k - 1] = []
cap[i - 2][k - 1] = []

# Loop over every (new) group
for m in range(len(dens[k])):

# Calculate the capacity over one group
capacity = Capacity(df.loc[df['Phase'].isin(dens[k][m])], 500)
cap_new = capacity.get_capacity(plot=False)[1]

# If capacity estimation succeeded, add results to a list
if capacity.succeed is True:

xd[i - 2][k - 1].append(dff.loc[dff['Phase'].isin(dens[k][m])]['density'].
mean())

cap[i - 2][k - 1].append(cap_new)

# If estimation failed, try again while merging said group with the group before
it.

elif capacity.succeed is False and m > 0:
new_dens = dens[k][m - 1] + dens[k][m]
x_new = dff.loc[dff['Phase'].isin(new_dens)]['density'].mean()
capacity = Capacity(df.loc[df['Phase'].isin(new_dens)], 500)
cap_new = capacity.get_capacity(plot=False)[1]

# If succeeded, the capacity estimation from the previous group is
overwritten with this new
estimation

# If not, this group will not be taken into account
if capacity.succeed is True:

dens[k][m - 1] = new_dens
xd[i - 2][k - 1][m - 1] = x_new
cap[i - 2][k - 1][m - 1] = cap_new

# The following code creates the plot
# Note: also a plot of the total density is made, but this one will not be used.
# However, the plots for the front and back density also include a line with the total

density
densities = ['Total', 'Front', 'Back']
x_tot = np.array([0.35, 0.65])

data_color = plt.cm.inferno(np.linspace(0.8, 0.3, 5))
fit_color = plt.cm.inferno(np.linspace(0.8, 0.3, 5))
print('color', data_color)

for d in range(3):
plt.figure(figsize=(10, 8))
plt.xlabel('Density in cyclists/m^2')
plt.ylabel('Capacity in cyclist/hour')
plt.title(f'{densities[d]} density')

plt.plot(xd[0][0], cap[0][0], 'o', color='black', label=f'Data: {densities[0]} density')

p = np.polyfit(xd[0][0], cap[0][0], 1)
cap_fit = p[0] * x_tot + p[1]
plt.plot(x_tot, cap_fit, '--', color='black', alpha=0.7, label=f'Fitted line: {densities[

0]} density')

x_all = []
cap_all = []

for i in range(5):

plt.plot(xd[i][d], cap[i][d], 'o', color=data_color[i], label=f'Data points, density,
c={i + 2}')
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p = np.polyfit(xd[i][d], cap[i][d], 1)
cap_fit = p[0] * x_tot + p[1]
plt.plot(x_tot, cap_fit, '--', color=fit_color[i], alpha=0.8, label=f'Fitted line, c=

{i + 2}')

x_all += xd[i][d]
cap_all += cap[i][d]

# Create correlation coefficient and p-value for front and back density and print those
values

cor, p = sst.pearsonr(x_all, cap_all)
print(f'Correlation {densities[d]}: {cor}')
print(f'p-value {densities[d]}: {p}')

plt.legend()

plt.show()

Cyclists standing behind each other or next to each other while waiting
The following code was used to determine if there was enough space next to a cyclist for another cyclist
to stand. The code that was used for grouping the data, to estimate the maximum queue discharge
rate and to make the plots is almost the same as the code used for the scenario about the density at
the front and the back of the queue, so it will not be displayed again.

def row(df, width=1):

# Create an empty dataframe to store the data in
data = pd.DataFrame(columns=['Phase', 'space', 'cyclist'])

# Loop over every phase
for phase in range(1, 60):

dff = df.loc[df['Phase'] == phase]

count = 0
front = False
back = False
space = True
cyclist = '-'
groups = [[], [], [], [], [], [], [], [], []]

# This loops checks for every cyclist if there is enough space next to it.
# If there is not enough space: the paramter ”space” will be set to False
for i in range(len(dff)):

if ((dff.iloc[i]['Y0'] >= 8 + width or dff.iloc[i]['Y0'] >= 10 - width)
and i + 1 < len(dff)):

for j in range(len(dff)):
if (np.abs(dff.iloc[i]['X0'] - dff.iloc[j]['X0']) < 1

and np.abs(dff.iloc[i]['Y0'] - dff.iloc[j]['Y0']) < 2 and i != j)
:

space = False

elif np.abs(dff.iloc[j]['X0'] - dff.iloc[i]['X0'] < 2
and np.abs(dff.iloc[i]['Y0'] - dff.iloc[j]['Y0']) < 2 and i !

= j):

front = True

elif np.abs(dff.iloc[i]['X0'] - dff.iloc[j]['X0'] < 2
and np.abs(dff.iloc[i]['Y0'] - dff.iloc[j]['Y0']) < 2 and i !

= j):

back = False

if front is True and back is True:
space = False
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# If there is enough space, it will be counted
# The number of the cyclist is also stored in the parameter ”cyclist”
# This is to make it easy to manually check the correctness of the function
if space is True:

count += 1
cyclist += f'{i + 1}-'

else:
space = True

# The results are stored in the empty dataframe
data.loc[phase] = [phase, count, cyclist]

# Every phase is stored in the corresponding group
for i in range(59):

groups[int(data.iloc[i]['space'])].append(i + 1)

return data, groups

Cyclists overtaking each other
The following code shows how the number of cyclists that were overtaking each other was counted.
The code used to sort the groups, to estimate the maximum queue discharge rate and to make the
plots will not be included. To get an idea of how this is done, see the code for the density at the front
and the density at the back of the queue.

df = pd.read_csv('database')
phase_count = 0
groups = dict()

# Loop over every phase
for phase in range(1, 60):

phase_count = 0
dff = df.loc[df['Phase'] == phase]

# Loop over every cyclist
for i in range(1, len(dff) + 1):

# Check for every other cyclist if cyclist i has overtaken cyclist j
# This is done by checking the time stamp when each cyclist crossed the stop line
for j in range(1, i):

a = dff.loc[dff['Cyclist'] == i]['Time']
b = dff.loc[dff['Cyclist'] == j]['Time']
if float(a) < float(b):

overtaken = True
text = f'Phase: {phase}. Cyclist {i} has overtaken cyclist {j}'
phase_count += 1

# Add the results to a dictionary
if phase_count in groups:

groups[phase_count] = groups[phase_count] + [phase]
else:

groups[phase_count] = [phase]

The first cyclists take a long time before leaving
The following code shows the function that is used to determine the discharge time of the first cyclists.
The code used to sort the groups, estimate the maximum queue discharge and to make the plots is not
included. To get an idea of how this is done, see the code for the density at the front and the density at
the back of the queue.

# The parameter ”c” is the number of cyclists to do the calculation for
def get_time(df, c=1):

# This code creates an absolute path to the original matlab file
# This could probably have been done easier
absolute_path = os.path.abspath(__file__)
file_directory = os.path.dirname(absolute_path)
path_1 = os.path.join(file_directory, 'Matlab data')
path = os.path.join(path_1, 'Trajectory_data_for_analysis')
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# Create an empty dictionary to store the matlab data in
database = dict()
# Create an empty dataframe to store the data
time_database = pd.DataFrame(columns=['Phase', 'Green_time', 'Leave_time', '

Discharge_time'])
# Yes, this list of lists could have also been created in an easier way
groups = [[], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [], [],

[], [], [], [], [], [], [], [], [], [], [
], [], []]

# Loop over every phase
for phase in range(1, 60):

# Load the matlab data
path_file = os.path.join(path, f'{phase}')
database[phase] = sio.loadmat(path_file)

dff = df.loc[df['Phase'] == phase]

# Store the timestamp the light goes green
green = database[phase]['greenPhaseStartTime'][0][0]

# Check if the first cyclist crosses the stop line after the light went green
# If not, count the second cyclist as the first cyclist
if dff.iloc[0]['Time'] - green > 0:

leave = dff.iloc[c - 1]['Time']
else:

leave = dff.iloc[c]['Time']

if leave - green <= 0:
leave = dff.iloc[c + 1]['Time']

# Calculate the discharge time
discharge = leave - green

# Store the data in the empty dataframe
time_database.loc[phase - 1] = [phase, green, leave, discharge]

# Sort all the phases in a group, corresponding to the the discharge time
for i in range(59):

groups[int(time_database.iloc[i]['Discharge_time'] // 0.3)].append(i + 1)

return time_database, groups

Later on in the code, when all the groups are sorted the discharge time of each group will be calcu-
lated. The average headway can be easily calculated after that by dividing the discharge time by the
number of cyclists.
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Results: Tables

In this appendix the numeric results of the calculations for the maximum queue discharge rate are
shown. Here 𝑛 is the size of the group, so the number of phases in that specific group, 𝐶 the maximum
queue discharge rate in cyclists/hour, �̂� the ratio of constrained cyclists.

The front or the back of the queue is very dense
Table B.1 shows the results of the maximum queue discharge rate of the density at the front. Here 𝑐 is
the number of cyclists the calculations has been done for and ”density” was the average density of a
group in cyclists / square meter. The results for the density at the back can be found in table B.2

𝑐 𝑛 density 𝐶 �̂�

2 32 0.502 2769 0.307
27 0.442 2974 0.297

3 47 0.461 2958 0.287
12 0.525 2735 0.354

4 27 0.442 2974 0.297
27 0.493 2725 0.315
5 0.550 2931 0.251

5 9 0.403 3039 0.461
32 0.461 2896 0.274
18 0.535 2739 0.272

6 27 0.442 2974 0.297
22 0.480 2796 0.298
10 0.550 2724 0.324

Table B.1: The exact results of the maximum queue discharge estimation for the density at the front

Cyclists standing behind each other while waiting
The results from this scenario can be found in table B.3. Here 𝑤 is the width in meters of the cyclist
and ”space” is the average number of free spaces in the group.

Cyclists overtaking each other
The results from this scenario can be found in table B.4. Here 𝑜 is the average number of cyclists that
was overtaken in one phase.
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𝑐 𝑛 density 𝐶 �̂�

2 33 0.513 2957 0.217
26 0.426 2767 0.428

3 55 0.482 2914 0.300
4 0.376 2767 0.333

4 54 0.463 2916 0.303
5 0.595 2821 0.306

5 14 0.399 2857 0.400
41 0.488 2881 0.289
4 0.598 2718 0.279

6 4 0.376 2767 0.333
22 0.435 2743 0.442
29 0.501 3004 0.203
4 0.598 2718 0.279

Table B.2: The exact results of the maximum queue discharge estimation for the density at the back

𝑤 𝑛 space 𝐶 �̂�

0.6 9 0 2711 0.386
39 1.36 2943 0.234
6 3 2746 0.404
5 4 2783 0.465

0.75 9 0 2711 0.386
40 1.35 2971 0.222
5 3 2633 0.451
5 4 2783 0.465

0.8 9 0 2711 0.386
40 1.35 2971 0.222
5 3 2633 0.451
5 4 2783 0.465

1.0 10 0 2704 0.418
42 1.31 2959 0.219
7 3.29 2697 0.578

Table B.3: The exact results of the maximum queue discharge estimation for the number of spaces in the queue

𝑛 𝑜 𝐶 �̂�

7 0 2656 0.581
24 0.71 2822 0.340
13 2 2754 0.444
9 3 2810 0.454
22 4.27 2982 0.206

Table B.4: The exact results of the maximum queue discharge estimation for the number of times a cyclist was overtaken.
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The first cyclists are taking a long time before leaving
The results from the discharge time of the first cyclists can be found in table B.5. Here 𝑐 is the number
of cyclist the calculation has been done for, 𝑑 is the discharge time in seconds and ℎ the average time
headway.

𝑐 𝑛 𝑑 ℎ 𝐶 �̂�

1 6 1.39 1.39 2689 0.529
13 1.62 1.62 2780 0.346
7 2.27 2.27 2702 0.447
9 2.81 2.81 2720 0.731
5 3.61 3.61 2948 0.583

2 5 1.40 0.70 2675 0.371
3 2.52 1.26 2571 0.502
9 2.84 1.42 2888 0.306
7 3.12 1.56 2739 0.612
5 3.51 1.75 2871 0.673

3 4 1.79 0.60 2580 0.290
3 2.53 0.85 2427 0.403
8 2.86 0.95 2830 0.245
6 3.20 1.07 2687 0.381
8 3.71 1.24 2790 0.267
5 4.30 1.43 3095 0.773
7 4.74 1.48 2695 0.485
3 5.69 1.90 3113 0.233

4 7 3.41 0.85 2589 0.402
13 4.33 1.08 2864 0.339
5 4.90 1.23 2798 0.847
5 5.26 1.32 2933 0.308
4 5.97 1.49 2770 0.578
3 7.60 1.90 3074 0.434

5 4 3.59 0.71 2547 0.418
8 4.37 0.87 2551 0.295
9 5.59 1.12 3018 0.574
4 6.53 1.31 2674 0.622
4 7.56 1.51 2970 0.433

Table B.5: The exact results of the maximum queue discharge estimation for discharge time and the average headway for the
first cyclists
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