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Summary

Predicting crowd movements in real-time during mass events has been shown to be a com-
plex yet increasingly valuable task. The complexity arises from the nature of human behavior
and the multiple factors known to influence this behavior. The value of a valid prediction ap-
proach has been increasing with the increasing frequency and size of these events observed
in recent years. The risk of overcrowding has the potential to make such events unpleasant for
visitors, who might feel uncomfortable due to experiencing high densities for extensive peri-
ods. Besides, this crowding can potentially threaten the safety of crowd. Crowd management
aims at facilitating the movement and enjoyment of people by planning and preparing strate-
gies to manage these potentially unsafe conditions. However, in order to effectively manage
the crowd and avoid the appearance of too high densities, the decision of whether or not to
implement certain strategies needs to be taken before the adverse conditions occur. This is
where the role of prediction comes in, to provide crowd managers with an estimate of how
soon an area will get overcrowded and assist them in act accordingly as early as possible.

Although technologies have been increasingly used for monitoring the crowd, the usage
of these for prediction are few. Existing model-driven forecasting methods are either not able
to produce real-time predictions with an adequate prediction horizon (e.g. 15 min (Duives et
al., 2019)), or need a large amount of computer resources during the event to validly simulate
and predict the crowd states. This is because models which are more capable of validly repro-
ducing the different motion base cases (e.g. bidirectional movement, bottleneck behavior)
and crowd phenomena observed in real life are disaggregate models (i.e. model individual
pedestrian’s movement) (Duives et al., 2013), which are also far more computationally expen-
sive. Thus, the question of how to make use of these behaviorally valid models for prediction
of crowd movements, which do not require a large amount of computer resources in real-time
remains largely unanswered. This brings us to the objective of this research, which is to "de-
velop and validate a crowd movement forecasting method for mass events in which simulation
is an offline step of the online (real-time) crowd forecast". Hence, the proposed method ad-
dresses the computational burden issues of disaggregate models by assuming that simulation
is a step performed prior the event. This solution is proposed as it avoids the need of su-
per computer-like tools for the real-time prediction, as it is unlikely that any event manager
would be willing to pay for such tools, but still makes use of the more behaviorally valid mod-
els. A set of scenarios is formulated and simulated, generating what is here called a database of
scenarios. The online scenario selection system then searches through this database for the
scenario which most closely matches the real observations and expected future conditions.
This online selection system, in this research, is based on a multi-objective optimization ap-
proach, further explained below. In order to reach this objective, the main research question
to be answered by this research is the following:

How to design and apply a real-time crowd movement forecasting method, which makes
use of a database consisting of pre-simulated scenarios and a multi-objective optimization

approach?

So, the two pillars of the forecasting method proposed in this research are the scenario
database and the scenario selection system, further discussed below.
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Scenario Database

The scenario database is designed with the aim of capturing the crowd dynamics of interest
for prediction. From a literature study in pedestrian traffic and crowd management, it could
be seen that there are specific dynamics for which the chance that the crowd can experience
discomfort and unsafe conditions rise. These dynamics occur when unstable flows start ap-
pearing, as densities rise and speeds drop. Literature has shown that unstable flows are more
likely to appear in specific areas, where for instance there is an obstacle obstructing the path,
and at specific times, for example when there is a demand peak for a specific activity. Thus, in
this thesis, these scenarios of interest are identified based on four benchmark cases for ineffi-
ciency dynamics, shown in Table 1. These four benchmark cases relate to the phenomena that
can be observed which indicate the reduced throughput due to inefficient self-organization
(Hoogendoorn, 2013), and these are seen as the typical dynamics relevant for prediction.

Table 1: Overview of benchmarks for inefficient dynamics

Benchmark Short Description

Physical Bottlenecks Specific areas of the event where the infrastructure ele-
ments can reduce the capacity and create bottlenecks.

Flow Interactions Coexistence of distinct walking directions can hamper
the throughput and create blockades.

Uneven Distribution over Net-
work

Concentration of activities or single / main routes be-
tween specific locations creates unbalanced network by
concentrating a large amount of people in specific areas.

Inefficient Route and Activity
Choice Behavior

Increased attractiveness of certain areas or routes over
others due to herding behavior or crowding, and can led
to uneven distribution over the network or flow interac-
tions.

For developing the scenarios, a framework is propose which consists of three steps: (1)
the analyses of the event dynamics, (2) the identification of the inefficient dynamics and (3)
the scenario development process in the simulation environment. The analyses of the event
dynamics assesses the expected movements of the crowd at different times during the event
on the multiple areas of the infrastructure, as well as the layout of the infrastructure itself. The
output of this analyses is the input to the second step, which is that of identifying which in-
efficiencies from the four benchmarks are likely to occur and where these could appear. For
instance, if a certain event has a number of activities concentrated in the same area, the un-
even distribution of the network can be expected. However, the condition for this inefficiency
to occur is that a high number of visitors go to this area to perform the activities. Thus, the in-
efficient dynamics is the situation for which a high number of visitors go to the location where
the activities are concentrated.

Finally, the third step relates to building the scenarios in the simulation environment. It
is clear that, for prediction, not only the conditions for which the inefficiency occurs should be
predicted. If the observed dynamics are not going to lead to the appearance of the inefficiency,
these insights also provide useful information to crowd managers when deciding whether or
not to apply management strategies. In the process of simulating the scenarios, these con-
ditions are incorporated by the different density levels defined for each inefficient dynamics.
These density levels relate to demand pattern, that is, the total amount of agents generated
per time period, which in turn defines the expected level of service of the infrastructure. While

vi



Summary Forecasting Crowd Movements in Real-Time

the identification of the inefficiency dictates the relative usage of the infrastructure, the den-
sity level indicates the strength of the interactions and thus whether or not the unstable flow
regime occurs. The final scenario database is formed by one scenario for each inefficient dy-
namics identified, and the multiple variations of each of these based on the corresponding
density levels. Hence, in this research, a scenario is a combination of an inefficient dynamics
and a density level.

Scenario Selection System

To perform the forecast in real-time, a system is needed which is responsible for searching
through the scenarios in the database for the scenario that most closely matches real observa-
tions, as well as future expectations. In this research, this system is based on a multi-objective
optimization approach, illustrated in Figure 1. The goal of the multi-objective optimization
part is to search through the database and select the scenario for which the differences be-
tween the outputs of the simulation and the real observations of the crowd are the minimum.
For applying such system, the concept of crowd states is introduced. This concept, commonly
used in system theory, refers to the metrics which contain the key information to describe the
state of the crowd at a certain time instant. Examples of these metrics are flows and densi-
ties. The system proposed takes the trajectory information from the simulated scenarios and
discretizes these in space and time. At each discrete locations, a number of state metrics is
derived per discrete time, forming a time series of crowd state metrics.

Scenario m | t = n

Scenario 1 | t = n

SCENARIO SELECTION SYSTEM

Scenario 1 | t = 1

t=1

Real Input
M1,B1

M2,B2

...

Mk,BpM1...k
Simulated 

Input

M1...k

Proximity 
Measures

?1

?2

?k

E1
1  Is optimal?

Scenario 
SelectedYes

Scenario 1 | t = 2

...

...

No

Boundary 
Conditions

SCENARIO DATABASE

Multi-Objective 
Optimization

Algorithm

E

Figure 1: Multi-objective optimization for crowd movement forecast

The individual objectives which compose the multi-objective problem are then formu-
lated when the real state metrics, derived from observing the real crowd, are compared to the
simulated states in the database. For instance, an objective could be the difference between
the real and simulated density of a specific area of the event terrain, while another objective
could be the difference between the real and simulated travel time of a specific route. The pre-
diction is thus the scenario and time period in the database for which the states most closely
correspond to the real states.
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Frameworks Application & Results

The frameworks for scenario development and scenario selection are applied to a case study
based on SAIL, a nautical event which occurs every 5 years in the city of Amsterdam, The
Netherlands, and attracts millions of visitors. The simulation model used to build the scenario
database is Pedestrian Dynamics ®by INCONTROL Simulation Software. For SAIL, eight inef-
ficient dynamics were identified, shown in Figure 2. The location of these inefficiencies shown
in the figure are determined based on an analysis of the event dynamics, that is, by looking at
the offered infrastructure and services, as well as the factors of the event environment that
can influence pedestrians’ choices. For instance, at the location of inefficiency number 7,
there are not only activities concentrated, but it is also assumed to be an area which attracts
many visitors due to the possibility of enjoying the view of the tall ships docked there.

Figure 2: Inefficient self-organization phenomena and location - SAIL

The physical bottlenecks are locations where the path gets narrower or where there is
an obstacles blocking the path. The flow interactions relate to an intersection (inefficiency 4
in the figure) and a path where flows are bidirectional (inefficiency 5). Following, the uneven
distribution over the network inefficiencies are identified from the concentration of activities
where locations 6 and 7 are shown. Lastly, inefficiency 8 indicates the expected inefficient
route choice from visitors when these attempt to avoid crowding. In this research, for each of
these eight inefficiencies, six density levels are simulated to form the scenario database.

The simulated scenarios are transformed into the time series of state metrics, where
most of these metrics are derived at specific areas in the event terrain. These areas are called
Event Blocks. For describing the current states, four state metrics are chosen, which lie on the
mesoscopic and macroscopic levels. These metrics are the flow, the density, the travel time
and the route shares. While the flow gives insights into the directions of movement, the den-
sity indicates the crowdedness of the different areas of the environment. As these two metrics
are derived locally, the travel time and the route shares are included to give insights into the
global conditions over the routes. For the flow, density and travel time, also the current state
history is of interest to describe the environment conditions. The state history represents the
long term movements of the state metrics, that is, how the metrics are developing over time.
In this research, the state history is defined by the exponential moving average method. All
aforementioned metrics are derived per Event Block, whereby a total of 13 Blocks are used to
discretize the environment.

The final state metric used in this study relates to future disturbances, that is, known
inputs into the system not captured by the sensor at the time of measurement. An example
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of this disturbance is an upcoming train arrival which generates an inflow of people into the
event terrain, and thus can influence the results of the predicted states. For the SAIL case,
this disturbance relates to the arrival of the ferry, or the demand it generates. In total, 8 state
metrics are derived of which 7 are given per Event Block. For the application in a real event, the
real values of the state metrics are derived from the sensors by observing the real crowd. When
these are compared to their corresponding metrics in the database, the individual objectives
are formulated. In this research, there is a total of 92 individual objectives (7×13+1) which
form the multi-objective problem. These multiple objectives are combined by the weighted-
sum method, which assigns a weight to each individual objective and linearly combine these,
resulting in a single objective to be minimized. The single-objective optimization algorithm
is based on the Grid Search method.

To test the performance of the forecasting method, three analyses are performed. The
first relates to the real crowd state data, and how the prediction is affected when this data has
perturbations. The second and the third relate to the sub-selection of individual objectives,
where in the second a sub-selection of areas is studied, while in the third analysis relates to a
sub-selection of state metrics. The results of these analyses showed the following:

• The prediction appears to be more sensitive to an underestimation of the real states
if compared to an overestimation when the densities are high. This is because the sce-
nario selected by the scenario selection system corresponds to a lower density level than
the real scenario. Meanwhile, when the sensor data is overestimated, the boundaries of
the scenario space defined by the high density level scenarios limit the error.

• The increased frequency of similar states in the database can affect the quality of the
prediction when the data is perturbed. This frequency relates to both the density level
and the areas where inefficiencies occur. It can influence the scenario selection process
by decreasing the variance of the objective function values of the scenarios best ranked
by the selection algorithm. This lower variance can in turn mislead the prediction by in-
creasing the chance of choosing a scenario for which the current state and state history
is similar to the real states, but the future developments are not as these can arise from
distinct inefficient dynamics.

• The sub-selection of areas and state metrics can both improve and deteriorate the per-
formance, and the results are dependent on the uniqueness of the scenarios these sub-
selected individual objectives can define. When choosing the Event Blocks, the sub-
selection can most improve the results in the sense of identifying the inefficiency and
density level if the dynamics of the areas selected are specific for a particular scenario.
Similarly, the sub-selection of state metrics can improve the results when metrics which
can be the result of multiple distinct traffic patterns are excluded.

Conclusions & Recommendations

The findings of this research highlight two aspects of the forecasting method proposed. These
relate to the individual choices when designing the database and applying the scenario se-
lection system. The first aspect relates to the choices regarding the scenario database. One
should develop the database for the specific situations and dynamics that can occur on the
different areas of the event environment for which prediction would be desirable. Identify-
ing such situations and corresponding dynamics narrows down the scenario space to a rep-
resentative set. The differentiation between the scenarios for which discomfort and unsafe

ix



Summary Forecasting Crowd Movements in Real-Time

conditions arise from those that such conditions do not occur is then simply done based on
the demand pattern. Regarding the application of the scenario selection system, one should
study the database before applying the method. Understanding the frequency of particular
states in the different areas of the environment, and the scenarios which have similar states,
can assist in adjusting the settings of system to improve the performance. This means reduc-
ing the number of conflicting objectives, by sub-selecting areas or state metrics, to a set that
can be specific for a particular observed behavior on a specific location.

A number of recommendations can be given based on this research. Regarding the
development of the database, not only the validity of the scenarios developed through the
method proposed here could be tested, but also the statistical analysis of the final states in the
database and how the frequency of particular states can affect the prediction. In relation to
the scenario selection system, the state metrics and Event Blocks have large influence on the
results obtained. It would be interesting to study additional or distinct metrics to describe the
state of the Blocks, as well as further assess the effect of distinct combinations of Blocks and
metrics.
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1
Introduction

Predicting crowd movements in real-time during mass events has been shown to be a com-
plex yet increasingly valuable task. The complexity arises from the nature of human behavior
and the multiple demographic, physiological and environmental factors known to influence
this behavior (Duives, 2016). The value of a valid prediction approach has been growing with
the increasing frequency and size of these events observed in recent years. The risk of over-
crowding has the potential to make such events unpleasant for visitors, who might feel un-
comfortable due to experiencing high densities for extensive periods of time. Besides, this
overcrowding can potentially threaten crowd safety (Helbing & Johansson, 2010). Crowd dis-
asters such as the Loveparade in Duisburg (2010) and the Hajj in Mina (2015) illustrate how
mass gatherings can quickly turn into tragedies despite crowd management efforts (Helbing
& Mukerji, 2012). Crowd management here refers to the measures prepared by the event or-
ganizer, which aim at facilitating the movement and enjoyment of people (Berlonghi, 1996).
These measures are designed during the preparation phase of the event, based on expecta-
tions of what is going to happen during the event (Martella, Li, Conrado, & Vermeeren, 2017).
These expectations lead to the creation of ’what-if’ scenarios, based on which crowd man-
agers develop their strategies and accompanying measures. This preparation phase typically
contains 90% of the efforts of crowd management, whereas the other 10% refers to the execu-
tion of the designed measures during the event (Figure 1.1).

Figure 1.1: Crowd management phases (Source: Martella et al. (2017))
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During the preparation phase, multiple scenarios are considered where the crowd man-
agement team takes into account factors such as the profile of visitors, location of the event
and possible weather conditions. Plans are drawn up for distinct situations and correspond-
ing desired behaviors that crowd managers want to obtain from the crowd (Martella et al.,
2017). These plans are then implemented during the event whenever the crowd management
team decides they are necessary. The strategies concentrate on avoiding densities reaching
critical levels (Martella et al., 2017). To this end, the crowd management team evaluates pos-
sible areas where densities might become critical. Observed crowd conditions in these areas,
as well as expected future developments, are then used to aid decision making. This requires
constant monitoring of the crowd states, currently a human-centric task either performed by
stewards in the crowd, or in a control room with the assistance of technologies like video cam-
eras (Martella et al., 2017).

The decision of whether or not to implement management strategies can be either re-
active or proactive. Taking reactive decisions means that crowd managers decide on the im-
plementation of strategies when adverse conditions are already occurring (e.g. higher densi-
ties have been observed by the crowd monitoring systems in place). It is clear that reactive
decisions are not desirable, as these increase the chance that event visitors are already expe-
riencing discomfort, or that the safety of the crowd is at risk. Moreover, it takes time for crowd
managers to deploy their measures. Consequently, means to assist crowd managers to act
proactively are of interest. For proactive decisions to be made, crowd managers currently rely
mostly on their own experience, and the information from crowd monitoring systems, when
used, assists in such decision making by providing insights into the current crowd state. The
need for improved situation awareness to assist crowd managers to act proactively instead of
reactively has been highlighted in the study of Martella et al. (2017). The study shows that
managers would like to have an estimate of how soon an area will get overcrowded in order
to assist them to act accordingly as early as possible. For crowd managers to have time to act,
that is, for them to be able to set up and deploy their strategies, a prediction horizon of at least
15 minutes should be considered (Duives et al., 2019). Although technologies have been in-
creasingly used for monitoring purposes, the usage of these for crowd movement forecasting
remains limited.

Among the attempts that have been made to develop real-time forecasting methods to
be used during large-scale events, one can find both data-driven (Duives et al., 2019; Fan,
Song, Shibasaki, & Adachi, 2015; Goldhammer, Doll, Brunsmann, Gensler, & Sick, 2014) and
model-driven methods (Johansson, Helbing, & Shukla, 2007; Wagoum, Steffen, Seyfried, &
Chraibi, 2013; Matyus, Seer, & Schrom-Feiertag, 2016). However, as will be discussed in Chap-
ter 2, all these methods have their shortcomings. Data-driven refers to methods that use
pedestrian data to design and train models, generally making use of computer vision algo-
rithms and machine learning techniques. Most of these methods perform trajectory predic-
tion, have a limited prediction horizon and require detailed input data. Additionally, when
the objective is to predict destination sequences, most data-driven methods lack memory,
that is, they assume that the future movements of visitors are independent of their previous
movements (Duives et al., 2019). Data-driven methods sometimes also require the usage of
historical data which either does not exist or might mislead the forecast, as for large-scale
events the chances of one-off scenarios occurring are higher than those of finding a recurrent
pattern (Fan et al., 2015).

Advancements in the pedestrian simulation field and developments in computer sci-
ence have facilitated the construction of model-driven methods. Model-driven methods re-
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late to the usage of pedestrian models for prediction. Examples of these models are cel-
lular automata models (Blue & Adler, 1998), force-based models (Helbing & Molnar, 1998)
and velocity-based models (Moussaïd, Perozo, Garnier, Helbing, & Theraulaz, 2010). More
recently, aggregated models such as the model of Hughes (2002) have been also considered
for this usage. Each of these models have their own shortcomings, and adaptations are often
necessary for the purpose of real-time crowd movement prediction. The main disadvantage
of disaggregate models is that they require a lot of computer power, thereby hindering their
capability of performing real-time forecasts of a large crowd. Methods which make use of
these for real-time prediction thus require many computer resources, increasing also mone-
tary costs. Aggregated models, on the other hand, are far less computationally expensive, but
also far less capable of validly reproducing the different motion base cases and crowd phe-
nomena observed in real life (Duives et al., 2013). As stated by the study of Duives et al. (2013),
for an accurate prediction to be made, these different expected situations and phenomena
observed in crowds need to be captured. The reason for this being that distinct flow condi-
tions and the phenomena observed in crowds can both improve or deteriorate the flows of
pedestrians through the environment, as further discussed in Chapter 3.

To conclude, there is a need for improved situation awareness regarding the future
crowd states to assist crowd managers to act proactively to guarantee the comfort and safety
of the crowd. This can be done by forecasting crowd movements in real-time during the event.
Currently, all methods which perform such forecasts have their own shortcomings. In general
these are not able to produce real-time predictions within an adequate prediction horizon,
or need a large amount of computer resources during the event to produce predictions that
validly reproduce crowd behavior. Thus, methods which enable real-time forecast of large-
scale crowd movements, which are capable of validly reproducing crowd behavior and provide
an adequate prediction horizon are sought after.

1.1. Research Objective

The considerations above lead to the central theme of this thesis, which will focus on the real-
time forecast of crowd movements from a model-driven perspective. As discussed, multiple
simulation models are able to model large crowds. Models based on a higher aggregation
level can produce questionable predictions given the fact that these are less capable of validly
reproducing certain crowd behaviors. Meanwhile, models on a lower level of aggregation im-
prove on this validity at the cost of increased computational resources. The question of how to
make use of these behaviorally valid models for prediction of crowd movements, in ways that
do not require a large amount of computer resources in real-time remains largely unanswered.

In this thesis, a method is proposed which addresses the computational burden issues
of behaviorally valid models by assuming that simulation is a step performed offline (i.e. prior
to the event). This solution is proposed as it avoids the need of super computer-like tools
for the real-time prediction, as it is unlikely that any event manager would be willing to pay
for such tools, but still makes use of the more behaviorally valid models. A set of scenarios
is formulated and simulated using existing crowd simulation models, thus generating what
is here called a database of scenarios. The online, real-time forecast then searches through
this database for the scenario that most closely matches the real crowd states, taking into
account also expected future developments. These real crowd states, as in existing methods,
are derived from the real-time input data from the crowd monitoring systems. From these
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considerations, the objective of this research can be summarized as follows:

The objective of this research is to develop and validate a crowd movement forecasting
method for mass events in which simulation is an offline step for the online (real-time)

crowd forecast.

In order to apply the method, it is necessary that the user understands the event dy-
namics and the types of scenarios to be included in the database. Also, the system to select
the appropriate scenario from the database in real-time needs to be designed, considering
the types of scenarios and dynamics that need to be captured. The crowd movement forecast-
ing method proposed in this research is thus formed by both: the scenarios which form the
database, and the real-time scenario selection system. Given the aforementioned considera-
tions regarding the crowd management needs, the objective of the forecasting method can be
summarized as follows:

The objective of the forecasting method is to predict the future states of the crowd, in order
to assist crowd managers in assessing the risk and discomfort of the visitors with sufficient

time to take proactive measures if deemed necessary.

The two pillars of the forecasting method, namely (1) the scenario database and (2) the
real-time scenario selection system are proposed with the aim of capturing the crowd dynam-
ics of interest for prediction. To that end, two frameworks are proposed in this research, the
scenario development framework (Chapter 4) and the scenario selection framework (Chapter
5). The scope considered for each of these pillars is presented below.

1.2. Research Scope

The scope of this research is described in this section. The following aspects are addressed:
the focus of the scenarios which are proposed to be included in the database, the pedestrian
behavior level considered for these scenarios, the focus of the scenario selection system, the
case study used for application of the method (i.e. mass event and simulation model), and
finally the focus of the analyses carried out in this thesis.

1.2.1. Focus of Scenario Development

During a mass event, there are multiple situations that can occur on the event terrain. One can
think of the different conditions expected on the environment when most visitors are drawn
to a specific activity at a specific location if compared to when visitors are performing multiple
activities in different locations. In the first situation, the threat on comfort and safety is clearly
much higher than in the latter, due to the probability that many visitors will accumulate in
the area, increasing the density. Thus, one can use this knowledge and expectations to define
which scenarios are of interest for prediction.

The focus of the development of scenarios is thus on the areas of the environment and
typical behavior of visitors during the event which can lead to the comfort and safety of the
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crowd being at risk. However, it is considered important to highlight that this study concerns
the prediction for no emergency conditions, as crowd management is mostly applied to such
conditions. Beyond this, often crowd control or riot control are necessary which are not in
the scope of this research. Existing knowledge in traffic flow, crowd behavior and crowd man-
agement can assist in the identification of these scenarios. For instance, based on traffic flow
theory, one can identify the bottlenecks on the environment, that is, the specific locations
where flows of visitors can be hampered by the interaction with the infrastructure. Similarly,
there are factors which can influence the behavior of the crowd, that is, how they choose their
routes and activities. These provide key inputs to the formulation of scenarios. In addition,
specific crowd dynamics can provide the indication of the development of the dynamics to-
wards unstable flow conditions and thus higher risk of discomfort and safety issues, as will be
discussed in Section 3.3.

Identifying the aforementioned dynamics and representing these in a simulation en-
vironment are thus main considerations to develop the database of scenarios to be used for
prediction. These dynamics and traffic states of interest are defined from the aggregate be-
havior of the pedestrians. The reason for this is twofold. Firstly, to have the information on
the behavior in aggregate terms to assess the state of the crowd is assumed of greater interest
to crowd managers. Secondly, as mentioned by Campanella et al. (2014), pedestrian models
are mainly applied to assess the comfort and safety based on the aggregated flows, rather than
on the individual behavior of each pedestrian. Therefore, although the simulation model used
represents the behavior on the individual level (microscopic), the outputs of interest lie on the
aggregated behavior obtained from these individual behaviors.

1.2.2. Pedestrian Behavior & Crowd Management Planning Levels

Pedestrians travel behavior theory is commonly defined by pedestrians’ decision making pro-
cess. Three distinct levels of behavior have been identified by Hoogendoorn et al. (2001),
namely strategic, tactical and operational. At the strategic level individuals choose their de-
parture time and the activities they wish to perform, resulting in a collection of activities called
activity set. The schedule of these activities and the global route pedestrians will take to reach
them are part of the tactical level decisions. Lastly, the decisions on the operational level guide
pedestrians walking behavior, including desired velocities and deviations of this in order to
avoid obstacles or other pedestrians. These decisions have in principle two dimensions: time
and space. In relation to time, the decisions on the higher level change less frequently than the
ones on the lower levels. The spatial dimension relates to the area considered by the pedes-
trian when making the decision. To illustrate these, one can think of for instance the choice
of route if compared to the choice of walking speed. The choice of route spans for a longer
time whereas the choice of speed is executed for the immediate next time period. Similarly,
the area considered by the pedestrian when choosing his or her route is much larger than that
considered when choosing the speed he or she will walk at the next time instant.

These behavior levels are linked to the levels of planning of crowd management strate-
gies. Strategic planning focuses on influencing the behavior of pedestrians before arriving at
the event. Tactical planning, on the other hand, focuses on the decisions related to the move-
ment on the event terrain (e.g. where to perform an activity or which route to take), whereas
operational planning looks at the local decisions on movement such as intersection control
(Wieringa, 2015). Ideally, one would be able to consider all three behavior and planning levels
when formulating the scenarios, and the accurate representation of each of these can sig-
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nificantly improve the prediction results and situations for which scenarios are considered
relevant. However, this research will focus on the strategic and tactical levels. As previously
mentioned, this is because the higher level decisions last longer and consider a larger area
than the tactical level ones. Therefore, it is assumed that these decisions have a larger influ-
ence on the prediction results when the aggregate behavior is analysed.

1.2.3. Focus of Scenario Selection System

In this research, it has been defined that the method to perform the selection of a scenario
within the database is by means of a multi-objective optimization approach. The application
of the method for the purpose of this research requires mainly four decisions to be made.
These are: (1) the choice of scenarios, (2) the choice of metrics to be used to describe the
scenarios and the choice of comparison measure to form the individual objectives of these
metrics, (3) the choices related to the location where the real data is derived from and finally
(4) the choices regarding the optimization method, which include the decisions related to
each specific method (e.g. stopping criteria).

The scenarios are developed according to the scenario development framework dis-
cussed in Chapter 4, and the choice of scenarios directly relate to the feasibility of the pro-
posed method for real world applications. The choices of metrics and locations where the
real data is derived from are made based on the capabilities of crowd monitoring systems,
location of sensors in sensor network, as well as the dynamics of interest (considering the ag-
gregate behavior of pedestrians). For the decisions regarding the optimization method, the
most practical solution is considered, taking into account the time and resources available
for this research. Therefore, the choices related to the optimization method are not further
validated.

1.2.4. Mass Event & Simulation Model

The case study to validate the forecasting method in this thesis is defined by both, the mass
event and the simulation model. The mass event chosen as the case study for this research is
the SAIL event, a nautical event which happens every 5 years and attracts millions of visitors
to the city of Amsterdam, The Netherlands. It is the largest public event in The Netherlands,
where several tall ships moor in the IJ-port, and visitors can walk along the event terrain to
watch the ships and perform other activities. One of the reasons why SAIL is the case study for
this research is the crowd monitoring systems in place for the event. Data from these crowd
monitoring systems has been used in previous editions of the event to monitor the state of
crowd and assist crowd management. Thus, the type of event and the possibility of using real-
time data from the crowd monitoring systems in place, make SAIL an interesting case study for
this research. Although the edition of SAIL 2020 was cancelled due to Covid-19, the event and
sensor network are still used as the main reference for the case study of this thesis. However,
the analyses of the forecasting method performed is different, as it will be discussed in the
following subsection.

Regarding the simulation model, the microscopic simulation model used in this thesis
as a tool for modelling the scenarios is Pedestrian Dynamics ®(PD) by INCONTROL Simula-
tion Software. This model is chosen due to the experience of the author with the model, as
well as the cooperation between TU Delft and INCONTROL, which made the software avail-
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able for usage. PD is a microscopic crowd simulation tool which simulates pedestrians in a
continuous space. From the theory presented by Hoogendoorn et al. (2001), one can say that
pedestrian models to be used in practice need to be capable of simulating all three levels, and
the decisions made on higher levels are executed by those on lower levels. In PD, the higher
level decisions are direct inputs, and these are executed by the embedded routing and move-
ment modules which define the operational behavior of agents. Both the mass event and the
characteristics of the model are further discussed in Section 6.1.

1.2.5. Focus of Analyses

As previously mentioned, the SAIL 2020 event was cancelled due to Covid-19 measures. There-
fore, although the event is still used as the case study, it is important to define the focus of the
analyses performed in this research. The analyses performed aim at assessing the sensitivity
of the scenario selection system to particular inputs which could be obtained from monitoring
a real crowd. This means assessing the differences in the forecasting results when for instance
this ’real’ input contains errors due to the detection capabilities of the sensors. Therefore, the
overall goal of the analyses is to assess how the predicted states by the scenario selection sys-
tem change when the real input used as reference for the search changes. Furthermore, the
settings of the selection system can also be adjusted by for instance changing the number of
individual objectives which form the multi-objective problem, which is likely to change the
predicted states. The sensitivity of the prediction to particular settings of the system are also
analysed.

1.3. Research Questions

Following from the research objective, multiple research questions are formulated, for which
the main question is:

How to design and apply a real-time crowd movement forecasting method, which makes
use of a database consisting of pre-simulated scenarios and a multi-objective optimization

approach?

To answer the above main question, the following sub-questions are posed:

1. What is the state-of-the-art regarding real-time crowd movement forecasting methods?

To answer this question a review of the literature on crowd movement forecast is per-
formed. It is known that forecasting crowds in real-time poses many challenges such
as providing behaviorally valid prediction over an adequate prediction horizon while
taking into account the specifics of mass events and crowd behavior. A review of the
literature illustrates how existing methods address these challenges, their main advan-
tages and shortcomings, as well as research gaps. This question is addressed in Chapter
2.

2. Which crowd dynamics are relevant for real-time prediction of crowd movements at mass
events to guarantee the comfort and safety of the crowd?
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It is expected that prediction is necessary when certain specific crowd dynamics occur,
given the crowd management strategies to manage the crowd and the objectives of this
research regarding comfort and safety of event attendees. Thus, to answer this question,
a review of the literature on traffic flow and pedestrian behavior theory, together with
crowd management theory, aims to highlight the key dynamics to be taken into account
in the formulation of scenarios. This question is addressed in Chapter 3.

3. How to identify the scenarios that should be included in the scenario database?

The scenario database is formulated based on real crowd behavior, which in turn needs
to be represented in the simulation environment. To this end, the relation between
aspects of the real behavior of the crowd, based on the theory discussed in Chapter 3, as
well as the representation of this behavior in a simulation environment are discussed in
Chapter 4.

4. How to apply a multi-objective optimization approach for crowd movement forecasting
(i.e. scenario selection)?

In Chapter 5, the proposed scenario selection system is presented to answer the above
research question. The system combines: (1) the elements necessary for real-time pre-
diction, identified based on existing methods in Chapter 2, (2) the database of scenarios
developed according to Chapter 4, and (3) the additional steps and concepts related to
the multi-objective optimization approach.

5. What is the effect of the perturbations of the sensor data on the prediction results of the
forecasting system?

Given that the real-time data obtained from crowd monitoring sensors contains errors
and noise, one can expect that these errors can affect the process of selecting a scenario
from the database. Thus, this question aims to assess these effects in order to provide
an analysis of the applicability of the method for real mass events. This question is
addressed in Chapter 7.

6. How are the predicted states affected by the different choices of state metrics and areas of
the event terrain used for the prediction?

As the system makes use of distinct metrics derived from multiple areas of the event ter-
rain, this question assesses how the prediction is affected when a sub-selection of these
metrics and areas is used. The idea is to focus on the areas considered more relevant
for each particular scenario, and the metrics expected to be more accurate given the
monitoring sensor these are derived from. This question is also addressed in Chapter 7.

1.4. Contributions of this Research

The main contributions of this research to both science and practice are addressed in this
section. A key contribution to both is that this research proposes a new way to apply be-
haviorally valid microscopic models for the purpose of real-time prediction. For science, this
thesis also contributes by providing insights into how to identify the scenarios of mass events
for which prediction would be relevant, with little or no reference data. The scenarios in this
research are proposed based on the traffic flow, pedestrian behavior and crowd management
theory, as well as expectations from experience. These theories are combined to form the sce-
nario development framework, which aims to assist in the identification of the key dynamics
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of interest for prediction. In addition, the scenario selection system proposed, based on a
multi-objective optimization approach, indicates a new way to use optimization techniques
for prediction of crowd movements.

As the method proposed in this thesis focuses on mass events, the contributions to
practice are related to the potential improvements to the comfort and safety of the crowd the
results of the forecast can provide. The prediction results can enhance situation awareness,
which can assist crowd managers in taking informed decisions of whether or not management
strategies are needed in order to avoid potentially hazardous situations. Besides, the frame-
work for scenario development and the corresponding database of simulated scenarios can
improve the understanding of the crowd dynamics, and illustrate certain conditions by the
visualization provided by the simulations of the scenarios. These can also be used for training
personnel for the event. Lastly, this thesis contributes to practice by extending the potential
usage of the data from crowd monitoring systems, as these are currently mainly used for real-
time information about the crowds, and not prediction.

1.5. Research Overview

This thesis is split into three main parts: 1) Literature Review, 2) Framework Development
and 3) Framework Application. Each main part contains two chapters as illustrated in Fig-
ure 1.2. The Literature Review part starts with Chapter 2. In this chapter, a review of the state-
of-the-art of real-time crowd movement forecasting methods is performed, highlighting the
advantages and shortcomings of these methods, as well as identifying the gaps in research.
Following, Chapter 3 presents the theoretical background in traffic flow, pedestrian behavior
and crowd management necessary for the development of the framework to build the sce-
nario database. This framework is the first pillar of the method developed in this research,
and is presented in Chapter 4. The second pillar is the scenario selection system, for which a
framework is proposed is Chapter 5.

In order to validate the method, a case study is defined to which the forecasting method
is applied. The application of the frameworks to the case study is presented in Chapter 6. The
analyses performed on the developed forecasting system are then carried out in Chapter 7. Fi-
nally, Chapter 8 presents the main findings of this research. These findings and the limitations
of the method are discussed, and recommendations for science and practice are made.
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Chapter 2
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Figure 1.2: Schematic overview of this research
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2
State-of-the-Art Forecasting Methods

A review of the literature regarding existing methods for real-time crowd movement forecast
is performed in this chapter, to address the following research question:

• What is the state-of-the-art regarding real-time crowd movement forecasting methods?

The goal of the literature review presented here is twofold. Firstly, to identify which
methods have been proposed so far and what their key properties are, and secondly to define
the knowledge gap in order to place the present research among these. The overview of the
state-of-the-art crowd movement forecasting methods given in the sections below focuses on
approaches for short-term or real-time prediction for large crowds. Data- and model-driven
methods can be found in literature for this real-time forecast. The former is discussed in Sec-
tion 2.1, and the latter presented in Section 2.2.

2.1. Data-Driven Methods

An increasing number of studies can be found which attempt to develop a data-driven pre-
diction scheme for pedestrian movement forecast (Duives et al., 2019; Toto et al., 2016; Asa-
hara, Maruyama, Sato, & Seto, 2011; Goldhammer et al., 2014; Fan et al., 2015; Rudomin, Paz,
& Pérez Valdez, 2016). As presented in the introduction of this thesis, data-driven refers to
methods which use pedestrian movement data to design and train prediction models, gen-
erally making use of computer vision algorithms and neural networks or machine learning
techniques. Meanwhile, the objective of the forecast varies from the operational level with
trajectory prediction (Asahara et al., 2011; Goldhammer et al., 2014; Alahi et al., 2016; Bera,
Kim, Randhavane, Pratapa, & Manocha, 2016), to the tactical level when the objective is to
predict destination sequence (Danalet, Farooq, & Bierlaire, 2014; Gödel et al., 2018).

Methods which aim at predicting pedestrians’ trajectories tend to consist of two main
steps: 1) the derivation of patterns from the data and 2) the extrapolation of these patterns
for the forecast. Consequently, proposed methods mostly predict pedestrians’ short-term tra-
jectories, which is desirable given the purpose they are created for, which include collision
avoidance with autonomous vehicles (Alahi et al., 2016; Bera et al., 2016) and safety strategies
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at urban intersections (Goldhammer et al., 2014). Hence, the prediction horizon is often very
short and scalability is limited to a few agents. This fact prevents these methods from pro-
viding an adequate prediction horizon which enables crowd managers to set up and deploy
their strategies. Besides, some of these methods require historical data from past trajectories
(Asahara et al., 2011). The problem with using historical data is that, for the type of event this
study is concerned with, the chances of a one-off scenario are higher that of a repeated pat-
tern (Fan et al., 2015). The event infrastructure is likely to change between occurrences of the
event, or it might even be the very first time that the event is happening. Among the methods
which use crowd data for trajectory prediction, the work done by Duives et al. (2019) is most
closely related to this research given the forecasting horizon, event type and scale. The study
discretizes the infrastructure network in cells and translates GPS traces into sequences of cells
that have been visited by a pedestrian. These cell sequences are made time dependent and
used to predict the next movement of the crowd with little need for historical information.
The historical information of the study by Duives et al. (2019) is retrieved in real-time during
the course of the event, thus using recent observations of the past few hours instead of days,
months or previous editions of the event.

Destination distribution prediction is also among the data-driven approaches found in
literature, although fewer studies exist on this topic. Commonly seen in these studies is the use
of data from Wi-Fi or bluetooth sensors (Prasad & Agrawal, 2010; Danalet et al., 2014; Danalet,
Tinguely, de Lapparent, & Bierlaire, 2016), while innovative proposals also include the deriva-
tion of heatmaps from video data to predict destinations (Gödel et al., 2018). On a citywide
level, GPS data set from mobile phones were studied for the purpose of short-term prediction.
Fan et al. (2015) proposes a prediction-by-clustering approach, which makes use of multiple
random Markov Chains, each of which is a naive movement predictive model trained with
movement of the subjects that belong to each cluster. Their algorithm learns online, as it is
based on recent movement observations, and consequently has little need of historical infor-
mation and can be run in real-time.

In general, the data requirements and level of detail of data-driven methods make these
challenging for real-world applications. The data-driven models are also often specific to the
event the data was obtained from, as mass events are naturally different (Karbovskii, Karsakov,
Rybokonenko, & Voloshin, 2016). To the author’s knowledge, no generalised data-driven model
exists for crowd movement forecast.

2.2. Model-Driven Methods

From the existing model-driven approaches to perform real-time forecast of crowd move-
ments for mass events, one can identify key elements for the real-time prediction. These are
highlighted in Figure 2.1, based on the studies of Holl et al. (2014) and Matyus et al. (2016). It
can be seen that both supply and demand elements are needed in the process. On the supply
side, the event’s infrastructure layout defines, amongst others, the boundaries of the walkable
space and the location of activities. In real-time, the demand is derived from the data from the
crowd monitoring systems, which are processed in order to indicate the current state of the
crowd (e.g. number of visitors in and moving between the distinct area of the environment).
Together with information about expected future conditions (e.g. given the event’s schedule or
known disturbances), the derived current state forms the input to the simulation core. Hence,
this processing step depends on the model used in the real-time core and what input data it
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requires. The simulation core consists of models such as the ones presented in Chapter 1 (e.g.
Helbing and Molnar (1998); Blue and Adler (1998); Moussaïd et al. (2010)). When a simula-
tion is run combining supply and demand elements, the crowd movements are predicted and
communicated to crowd managers to assist them in taking informed decisions.

Figure 2.1: Elements identified from literature for model-driven crowd movement forecasting methods (Adapted
from Holl et al. (2014))

In this section, two branches of model-driven methods for crowd movement forecast
are discussed. Methods which make use of a single type of operational model are presented
in subsection 2.2.1. Subsequently, subsection 2.2.2 introduces the so-called hybrid methods,
which make use of two or more operational models.

2.2.1. Single Methods

Single methods, as detailed in this section, refer to approaches that make use of only one
type of operational pedestrian model. Among the simulation-based methods that have been
developed for real-time prediction of large crowds, optimization of well-known microscopic
models such as the social-forces model (Johansson et al., 2007; Karbovskii et al., 2016), as well
as algorithms for parallel computation (Wagoum et al., 2013; Holl et al., 2014; Lohner, Baqui,
Haug, & Muhamad, 2016) are more commonly found. In such methods, the computational
cost is dealt with at the expense of higher monetary costs for the hardware (Holl et al., 2014), or
loss of detail due to the optimization processes. The focus of these approaches is to maintain,
as much as possible, the behavior validity of the forecast. However, for applications for mass
events, the higher monetary costs are likely to prevent these models from being considered in
practice, as it is expected that event organizers would not be willing to pay for such resources.
Regarding the loss of detail, the simplifications proposed might render the representation of
self-organized dynamic patterns less valid. For instance, cutting off interaction forces at a cer-
tain maximum distance might mislead the forecasting results. This fact is especially relevant
when the prediction is performed to identify the occurrence of critical conditions (e.g. the
appearance of bottlenecks).

Approaches that propose the use of macroscopic and mesoscopic models for real-time
prediction can also be found in literature. Matyus et al. (2016) presented a method able to
provide a 10-minutes forecast for a crowd of 42,000 pedestrians modelled simultaneously. In
their prediction, the authors used a cellular automata (CA) model and (near) real-time data
from counting and bluetooth sensors. The lower spatial resolution as well as optimized mo-
tion processes of CA models allowed their method to perform 10-times faster than real-time
on a typical laptop. On the macro level, Hänseler et al. (2014) designed a method for real-
time crowd control, which, unlike other macroscopic models (Hughes, 2002, 2000; Treuille,
Cooper, & Popoviundefined, 2006), is able to handle heterogeneous populations and inter-
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acting flows. Aggregation of agents’ behavior and the simplification of the environment to a
graph make macroscopic models efficient for real-time applications. Nonetheless, both CA
and macroscopic models have been shown to be less capable of validly modelling crowd phe-
nomena, thus providing poorer predictions of crowd movements (Duives et al., 2013). The
environment in such models often does not create clear boundary conditions, and the inter-
actions between agents are also simplified. The distinct movement base cases as presented by
Duives (2016) are often poorly or not captured at all, making these not suitable to model every
situation that can occur during mass events.

2.2.2. Hybrid Methods

A specific branch of model-driven methods are the so-called hybrid models. Hybrid approaches
attempt to combine two or more operational pedestrian models with distinct properties into
a single model. For instance, a hybrid model can combine the lower computational needs of
macro modeling (equation-based modeling) with the behavioral validity of micro modeling
(agent-based modeling). This is done by assigning each model to distinct areas of the infras-
tructure. The reasoning behind creating such models is that in large-scale environments, not
all areas have the same importance for the prediction at all times (Ngoc Anh, Zucker, Huu Du,
Drogoul, & Vo, 2011). For instance, the entrance gates during the ingress phase of the event
might be far more important than the areas by stages, as more people are concentrated and
expected at this location. The suitability of each model for each area is dependent on the
necessity to capture valid results at distinct levels of detail in a computationally efficient man-
ner. For instance, in the simulation of a large-scale event ground, it is considered more critical
to accurately capture behavioral differences at possible bottlenecks on the environment than
along an open path. Applications of hybrid models found in literature exist in all possible
combinations of the three different scales: macro-micro (Ngoc Anh et al., 2011; Xiong, Lees,
Cai, Zhou, & Low, 2010), macro-meso (Biedermann & Borrmann, 2016) as well as meso-micro
(Steffen & Chraibi, 2014).

When interfacing the different models to build the new hybrid one, some assumptions
and simplifications are required and certain model specific attributes, which cannot be trans-
formed between the spatial scales, are lost. One example is the social aspect of group behavior
which is dependent on individual agents and, therefore, cannot be captured by the aggregated
parameters of macroscopic models (Biedermann & Borrmann, 2016). Furthermore, most ex-
isting models are static. Being static in this case means that the areas of the environment
which will be covered by each model are defined by the user before the simulation starts, and
remain constant during the simulation. Defining these requires prior assumptions and ex-
pectations about the location of possible bottlenecks. This results in a loss of flexibility for the
validity of the model in capturing different behaviors than the ones expected at each area of
the environment.

In relation to the elements highlighted in Figure 2.1, one can say that the model-driven
methods discussed above focus their efforts on modifying or proposing changes mostly to
the real-time simulation core stage. The goal of these approaches, both single and hybrid
methods, is clearly to improve the capabilities of the simulation core considering the trade-
offs between speed and behavior validity.
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2.3. Conclusions

There is no question that, to date, there is no agreed upon model or approach for performing
forecast of crowd movements in real-time, and that each of the different methods have their
advantages and shortcomings. Two main gaps in research become apparent by the literature
review carried out in this chapter.

Firstly, data-driven models are considered specific for the event from which the data
used for the deriving the model was obtained from, and the forecasting horizon is often too
short for the purpose of crowd management. Some data-driven models also require historical
data which, as previously stated, for large-scale events is likely to mislead the prediction.

Secondly, methods for using microscopic models and their behavioral accuracy for crowds
in large-scale events are either costly, due to the hardware needed, or, in case of existing hy-
brid models, they remain limited to a certain area of the event ground and to the capabilities
of the models connected to it. Hence, the behavior validity of the prediction obtained with
hybrid models is area-dependent and does not change over the course of the event. While a
proposed solution in literature is to use simpler models such as mesoscopic and macroscopic,
as these are less computationally costly, they are shown to be less able to validly predict the
range of distinct situations that can occur during mass events.

One can observe an overall aim among the different model-driven methods: ensuring
a high level of behavioral validity, while maintaining real-time performance by lowering com-
putational time. The reason for this being that, for an accurate prediction to be made, the
different movement base cases and crowd phenomena observed in real life need to be mod-
elled (Duives et al., 2013). Given that most models that validly reproduce such requirements
are microscopic models, which are known for being computationally expensive, methods to
enable implementing these in real-time are sought after.

From the existing model-driven approaches, one can also identify key elements for the
real-time prediction. On the supply side, the event’s infrastructure layout defines the bound-
aries of the walkable space and areas where activities are located, which are necessary infor-
mation to build the simulation model. Meanwhile, on the demand side, the data from the
crowd monitoring systems is used to indicate the current state of the crowd and derive the
model’s inputs. Examples of these are the inflows from the different entrances and the num-
ber of visitors using each route available. When a simulation is run combining supply and
demand inputs, the crowd states are predicted and communicated to crowd managers to as-
sist them in taking informed decisions.
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3
Crowd Dynamics Theory

The goal of this chapter is to provide understanding of the types of scenarios that occur during
a mass event. To that end, the theories discussed illustrate the development of the efficient
dynamics, where pedestrians are walking freely on the environment, towards the appearance
of inefficient phenomena, where unstable flow conditions are expected, and the factors which
can influence this transition. It is considered important to define here that the dynamics of
the crowd, as referred to throughout this chapter, relates to the interplay between supply (i.e.
the event infrastructure and services offered) and demand (i.e. the number of visitors) that
occurs during mass events. To illustrate this interplay, one can think of a situation where the
demand for an activity, for instance a commercial facility, exceeds the number of visitors that
can be served per unit of time, then queues start appearing and waiting times can become
exceedingly long. These theories are key inputs to the identification of scenarios to be in-
cluded in the database, and to the scenario development framework which will be presented
in Chapter 4. The following two research questions will be addressed in this chapter:

• Which factors influence the dynamics of crowd movements at mass events?

• Which crowd dynamics are relevant for real-time prediction of crowd movements at
mass events to guarantee the comfort and safety of the crowd?

Firstly, Section 3.1 introduces the concept of crowd states, as it will be used throughout
this research, which relates to the metrics to describe the aforementioned dynamics. Section
3.2 provides a theoretical background to pedestrian traffic flow theory, and the factors which
influence the crowd dynamics are highlighted. The final section of this chapter (Section 3.3)
discusses crowd management theory, where the focus is on the identification of the dynamics
for which crowd management measures are deemed necessary, given the increased risk and
discomfort these dynamics can lead to.

3.1. Crowd States

The concept of state has been commonly used in literature for describing dynamic systems.
In system theory, state describes the result of all past inputs into the system enough to enable
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predicting the future developments of the system when no disturbances occur (Knoop et al.,
2018). The state vector contains the key information to describe a system at any given time
instant. In this thesis, the concept of crowd states is used with the aim of describing the crowd
dynamics for different traffic conditions.

In traffic studies, the state vector can be formed by multiple distinct combinations of
metrics. While Yuan et al. (2012) denoted the state vector of road segments as a vector of den-
sities, H. Wang et al. (2016) presented an agent-based formulation consisting of the position
and orientation of each individual agent (agent state). In the study of Yuan et al. (2016), the
state vector is defined by multiple variables such as counts, flows, densities, velocities, travel
time and route choices. The variability between metrics for different types of studies occurs
because the state metrics are determined based on the output dynamics of interest. For in-
stance, if the system aims at describing the variation between the sides preferred by pedes-
trians when avoiding collision with obstacles, the dynamics of interest are on a higher level
of detail, and thus the state metrics needed are clearly different from those of a system that
describes the evolution of flow of pedestrians through a bottleneck.

A categorization can be proposed where these dynamics of interest can be classified for
a given combination of the level of aggregation of the metric over the pedestrians (i.e. met-
rics that describe the individual behavior of each pedestrian vs. metrics that describe the
behavior of a group of pedestrians), and the applicability (i.e. metrics which are specific to
a certain infrastructure element vs. metrics which are applicable to any area of the environ-
ment). Macroscopic, mesoscopic and microscopic are the three subcategories under level of
aggregation, and local or global are the subcategories under applicability.

Figure 3.1: Examples of crowd state variables in each category

Examples of state metrics in
each category are illustrated in Fig-
ure 3.1. As presented by Sparnaaij
(2017), microscopic refers to single
variables derived from the perspec-
tive of each individual. Trajectory
is an example of a metric on this
level, where the position of each
pedestrian at each time is consid-
ered. Mesoscopic level metrics are
also derived from a single pedestrian,
but the distribution of the metric
over the pedestrians is of interest. Variables on this level can give insights into how well het-
erogeneity in behavior is captured by the model (Sparnaaij, 2017). The distribution of the
average speeds derived from the individual average speed of a group of pedestrians can be
placed on this level. Aggregate and collective behavior of pedestrians are described by the
macroscopic level metrics, for which classic examples are flows and densities. Regarding the
applicability category, variables are described by local applicability when they are specific to
a certain area or condition of the environment, whereas global applicability refers to variables
that can describe any type of environment or condition. Bottleneck throughput is an example
of the former, as it is only applicable to areas of the environment where a bottleneck exists (e.g.
gates). Density, on the other hand, can describe any area of the environment in any condition.

In this research, the dynamics of interest are described by metrics of the mesoscopic
and macroscopic levels. The reason for this is the purpose of the prediction and the proposed
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method for performing such prediction. As defined in the scope of this research, the purpose
of the prediction is to provide crowd managers with information about the future state of the
crowd to help them assess the comfort and safety of the visitors. Thus, the dynamics resulting
from the collective behavior are considered of far more interest. Furthermore, when repre-
senting the behavior through simulation models of large crowds, as it is done in this research,
aggregate behavior is more representative given that it is more likely that such behavior is
more accurately captured by simulation models. A final remark relates to a practical perspec-
tive regarding the monitoring of the crowd during the event. As will be discussed in Chapter
5, there are distinct types of sensors to monitor the state of a crowd, which collect different
types of information. Most commonly used sensors often only gather data related to the ag-
gregate behavior of pedestrians, and as the prediction method proposed in this research uses
this information from the real crowd, this practical consideration also favors mesoscopic and
macroscopic metrics over the microscopic ones.

3.2. Pedestrian Traffic Theory

Given the considerations made in the previous section regarding the level of aggregation of
the dynamics of interest, the discussions below relate to the collective behavior of pedestrians
based on the theories of traffic flow and pedestrian choice behavior. On the supply side, traffic
flow theory provides a way to assess the areas of the environment and the layout of the event
terrain. This assessment can give insights into the specific locations and conditions where
the crowd is likely to face discomfort, or where unsafe situations might arise. On the demand
side, pedestrian choice behavior theory covers the key factors which influence the choices of
visitors, with the aim of assessing the infrastructure usage by the pedestrians during the event
for distinct conditions. Although the supply influences the demand and vice-versa, for the
purpose of structuring the discussions below, supply and demand factors are discussed sepa-
rately. Figure 3.2 provides a general but not exhaustive overview of the factors that influence
supply and demand in pedestrian traffic which will be further discussed below. These are de-
rived by studying literature on pedestrian traffic and choice behavior, and are further used in
Section 4.2 when a method for identifying the scenarios for a particular event is proposed.
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Flow Direction
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Figure 3.2: General overview of influencing factors on supply and demand
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3.2.1. Supply Analysis

On the supply side, pedestrian traffic can be analysed through the lens of the fundamental
diagram and factors that influence its key parameters. The fundamental relationship between
flow, density and speed, where flow is given by density multiplied by speed, is a key theory
which guides multiple studies in pedestrian literature. However, as one can see in Figure 3.3 by
the multiple fundamental diagrams found in literature, summarized by Daamen (2004), there
is no agreed upon parameters for the fundamental diagram for pedestrian traffic. The main
parameters of the fundamental diagram are the capacity (qcap ), which indicates the maxi-
mum flow, and the critical (kcr i t ) and jam densities (k j am), which represent, respectively, the
densities for which the flow is maximum and that for which the flow is zero (i.e. the maximum
possible density).

Figure 3.3: Fundamental Diagrams found in literature (Source: Daamen
(2004))

The lack of consensus
on the parameters and shapes
of the fundamental diagram
for pedestrians is due to the
influence of multiple factors
on this relationship (Wieringa,
2015). Examples are the flow
directions (i.e. uni- or multi-
directional flows) and infras-
tructure features (e.g. stairs,
flat areas). These factors are
further elaborated upon.

Flow Direction

The movement of the pedestrians during large scale events can occur in multiple configura-
tions. Flows along corridors can be characterized as unidirectional or bidirectional, whereas
at intersections these can have multiple directions. These different configurations influence
the fundamental diagram. Research has shown that for multi-directional movements, due to
the different types of interactions that occur between pedestrians (e.g. face-to-face interac-
tions which appear in multi-directional flows), the capacity of the infrastructure is reduced.
Weidmann (1992) has shown that this reduction is dependent on the share per direction: the
more unbalanced these are, the larger the reduction is. For instance, a 16% decrease of the
capacity was observed for a share of 90%/10%. Regarding the density, while a corridor with
unidirectional flows has been shown to reach densities of 7 P/m2, in bidirectional conditions
studies have generally found densities up to 4 P/m2 (Duives, 2016).

Infrastructure Features

Even in situations where a single flow direction is expected, there are certain features of the
built environment which can influence the crowd states and the development of these states
over time. The distinction made in Section 3.1 between the applicability (i.e. local or global)
category of the metrics to describe the crowd states highlights this fact, as local metrics can
only describe certain areas of the environment. The changes in the path width along a cor-
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ridor, the presence of stairs or even the gradient of the infrastructure are examples of such
features which can affect the capacity.

Regarding the changes in width, several studies have shown that the maximum flow rate
decreases with a decrease in width (Yanagisawa et al., 2009; Daamen & Hoogendoorn, 2012;
Kretz et al., 2006). Thus, densities reach highest values directly upstream from the locations
where the width changes. The presence of stairs also reduces the capacity as pedestrians’ av-
erage speed have been shown to be about 50% lower on this type of infrastructure, both when
ascending and descending (Buchmueller & Weidmann, 2006). Similarly, the average speed of
pedestrians changes as the gradient of the path changes, and so does the capacity. However,
the direction of change depends on the direction of movement in this case. For inclinations
of about 20% (inclinations over this are often replaced by stairs or escalators), when walking
downwards pedestrians’ speed increase, while when moving upwards this speed decreases
(Buchmueller & Weidmann, 2006).

3.2.2. Demand Analysis

Pedestrian choice behavior, as presented in this subsection, aims to provide an understand-
ing of the interplay between the distinct decisions made by pedestrians when travelling, and
it highlights the effect of these on the expected dynamics. For instance, identifying the de-
mand for different routes between an origin and a destination requires understanding of the
effect of certain route attributes on pedestrians’ choice behavior, and thus the demand for the
different routes at distinct times during the event can be assessed. The output of the demand
analysis proposed in this section is thus an assessment of the usages of the infrastructure by
the pedestrians, and the factors that can influence this usage according to literature.
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Figure 3.4: Levels of Pedestrian Choice Behavior (Source:
Hoogendoorn et al. (2001))

Hoogendoorn et al. (2001)
proposed the theoretical frame-
work shown in Figure 3.4, mak-
ing a distinction between three
levels of pedestrian choice be-
havior, namely strategic, tactical
and operational. At the strate-
gic level individuals choose their
departure time and the activities
they wish to perform, resulting
in a collection of activities called
the activity set. The schedule of
these activities and the route they
will take to move between these
are part of the tactical level de-
cisions. These decisions are on
a higher level as they change less
frequently than those at the fol-
lowing level.

The decisions on the operational level are instantaneous decisions, that is, the decision
is executed for the immediate next time period. Examples are the walking speed, the decision
of waiting or continuing to move, as well as the decision to perform an activity. The decisions
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on each level influence one another, where the higher level decisions affect the behavior of
pedestrians more as these guide the following levels.

In their research, Hoogendoorn et al. (2001) used the concept of utility, where the as-
sumption is that pedestrians aim at maximizing their utility by optimizing their choices. Based
on this concepts, one can discuss the influence of distinct factors on the choices made at the
different levels. These factors have been derived from literature and are detailed in Section
A.1. As the section illustrates, many factors have been found to influence the behavior of
pedestrians on the different levels. These can be split into personal and exogenous factors.
The former relates to characteristics of the individuals, whereas the latter relates to charac-
teristics of the event environment and event planning. Overall, it can be said that personal
factors seem to influence pedestrian choice behavior on the lower levels (i.e. operational)
more than on higher levels (i.e. strategic and tactical). Exogenous factors on the other hand
have a greater effect on strategic and tactical choices.

In this subsection, the focus of discussion relates mostly to factors influencing the tac-
tical level decisions. This selection is made due to the considerations that the major decisions
which influence the development of the crowd states over the prediction horizon are made
on this level (e.g. route and activity area choice), and the fact that decisions on this level are
most often influenced by crowd management measures (Wieringa, 2015). The results of the
decisions taken on the other levels are incorporated in the analyses, however less extensively.

Event Schedule & Day and Time

The schedule of the activities of the event can provide relevant indications regarding the lo-
cations where visitors are going to be at different times during the event. Furthermore, these
can indicate the type of pattern of demand one can expect to arrive at the event terrain. For
instance, for events that have a clear start time, the demand is expected to increase as the time
gets closer to the set start time. This pattern is also influenced by other factors, such as the day
of the week and time of day the event is planned to happen. These factors are even more im-
portant for events that last for an entire day or multiple days. It can be expected that visitors
arrive closer to the event time for events that occur on weekdays, as they are often departing
directly from their work locations. Also, for events that occur on multiple days, the Friday and
weekend demand is likely to be higher than the weekday demand. This pattern is shown in
the study of Iliadi (2016), where the distributions of trips on Friday, Saturday and Sunday is
higher than on Thursday

Several studies have shown the influence of the day of the week and time of day on the
choices of activities of pedestrians (Seneviratne, 1985; Ton, 2014; Iliadi, 2016). For instance,
people usually have lunch at around midday so visitors are expected to be at locations that
serve food at around that time. In the study of Iliadi (2016), the author statistically proved
that there is a relationship between the time of the day of the event and tactical level choices
such as route choice. In the study, the author stated that more visitors prefer to perform activ-
ities, and thus choose routes where they can perform such activities, during the morning and
afternoon if compared to the evening.
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Weather Conditions

As shown in Figure 3.2, this factor is expected to influence the behavior of pedestrians on
all levels of behavior. On the operational level, pedestrians have been shown to increase
their walking speeds as the weather becomes more uncomfortable (Knoblauch, Pietrucha, &
Nitzburg, 1996). This means that in dry weather, visitors walk slower than in rainy conditions.
Besides the walking speed, the weather condition also changes pedestrians’ route and activity
choices (Daamen, 2004; Ton, 2014; Iliadi, 2016; Bovy & Stern, 1990). Routes with weather pro-
tection, or where the surface of the terrain is safer against slipping or falling, are chosen over
other routes when the weather is rainy.

Activity & Route Attributes

This subsection summarizes the influence of activities and route attributes on the choices of
pedestrians. The aim is to provide an overview of multiple factors one can consider when
assessing the usage of the infrastructure, thus these are combined as they are assumed to
influence one another. Firstly, features of the environment, such as vegetation, presence of
landmarks, canals and rivers, as well as lighting have all been shown to have a positive influ-
ence on pedestrians tactical level choices (Hill, 1982; Korthals & Steffen, 1988; Bovy & Stern,
1990). Due to the pleasantness of the routes where these elements are present, pedestrians
are more likely to choose a route with these elements.

In addition to the environment features, the number of attractions along a route or
within an area of the environment is highly influential on pedestrians route and activity areas
choices (Bovy & Stern, 1990; Guo & Loo, 2013; Hoogendoorn & Bovy, 2004; Ton, 2014; Iliadi,
2016). These attractions can be seen as stimulation of the environment, and especially in mass
events which naturally concentrate multiple attractions in distinct areas, pedestrians’ choices
are both triggered and influenced by such environmental stimulation.

The factors discussed so far have mainly created a positive influence to the pedestri-
ans. However, there are also elements which provide repelling forces. An example is distance.
Pedestrians have been shown to often prefer shorter routes over longer routes (Borgers & Tim-
mermans, 1986; Daamen, 2004). Even if the progress on a shorter route is relatively slow due
to crowding, the choice of a longer route is seldom made (Daamen, 2004). However, based on
a state preference survey, the study of Galama (2016) has shown that crowding has a repellent
influence on pedestrians route choice.

3.2.3. Sub-conclusions

In this section, based on the theories of traffic flow and pedestrian choice behavior, a selec-
tion of factors that influence the supply and the demand sides of the dynamics of mass events
were presented. On the supply side, factors which affect the capacity of the infrastructure
were identified. One example is the number of flow directions allowed to coexist on the en-
vironment. Studies have shown that multi-directional flows negatively affect the throughput
if compared to unidirectional flows. Certain features of the infrastructure also have the same
effect. It has been presented that the maximum flow decreases with the decreasing width of
paths, and where stairs are present or where pedestrians are walking upward on an inclined
path. The identification of the location where multiple flow directions occur, or where the
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infrastructure features have the aforementioned characteristics, are therefore considered im-
portant in the process of developing the scenarios. These observations can indicate the loca-
tions of the environment and under which conditions the pedestrians in the crowd could face
discomfort or unsafe situations.

On the demand side, it was discussed that due to the purpose of this research the fo-
cus of the analyses of the demand relates to the tactical level decisions made by pedestrians.
These relate to activity area and routes choices, and the factors that influence these. For in-
stance, it is clear that pedestrians have preferences for routes and activities where they are
triggered by the surrounding environment. This includes routes where more activities can be
performed, as well as routes where there is vegetation, lighting and water present. Besides,
depending on the weather condition, locations can be chosen where there is shelter, or where
the walking surface is safer against slipping or falling. An implication of the discussions above
for this research is the insights it provides into the demand for certain areas of the environ-
ment over others. These insights assist in identifying the scenarios which can occur during
an event. For instance, one can have expectations regarding the usage of the infrastructure by
simply analysing the features and characteristics of the event terrain. This in turn can indicate
where visitors more visited routes or activities, or areas where can get crowded in bad weather
conditions.

3.3. Crowd Management Theory

Unsafe crowd densities are more likely to occur when the crowd dynamics observed in the
environment transition between efficient self-organization phenomena towards inefficient
phenomena. When inefficient crowd dynamics start appearing, such as when bottlenecks
become active, crowd managers need prediction to assess whether the inefficient phenom-
ena can potentially lead to discomfort or too high densities. Understanding the development
of the efficient crowd dynamics through inefficient phenomena towards turbulent flows can
provide useful insights into the dynamics of interest for prediction, in relation to crowd man-
agement measures. To that end, this section discusses these flow transitions and correspond-
ing phenomena, and their application to this research with regards to the development of
scenarios to be included in the database.

3.3.1. Flow Transitions & Crowd Phenomena

Wieringa (2015) qualitatively distinguished the development of crowd disasters in terms of
flow regimes by analysing Traffic Flow Theory. Five regimes were proposed by the author
namely: free flow regime, unstable regime, crowd turbulence regime, crowd disaster I and
crowd disaster II. The division arises from them being distinct in terms of flow dynamics,
speed range and density range in the fundamental diagram. The ranges of density for each
regime were proposed by Wieringa (2015) and are illustrated in Table 3.1 together with a brief
explanation of each.

The regimes are presented in relation to their corresponding phenomena in the Layered
Crowd Disaster Model proposed by Wieringa (2015) and shown in Figure 3.5. It can be seen in
the model that not only are the phenomena related to the flow regime, but also the manage-
ment of the crowd. It illustrates that preventive management can occur until turbulent flow
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Table 3.1: Density ranges per flow regime and probability of crowd disaster (Derived from Wieringa (2015))

Flow Regime Assumed Density Range

Free Flow 0ped/m2 ≤ k ≤ 1ped/m2 Neat flow patterns, people walk
at their desired speed

Unstable Flow 1ped/m2 < k ≤ 2ped/m2 Decrease in walking speed and
higher density compared to
free flow, dynamic flow pat-
terns start appearing

Turbulent Flow 2ped/m2 < k ≤ 3ped/m2 Dynamic flow patterns, densi-
ties above critical

Crowd Disaster I 3ped/m2 < k ≤ 4ped/m2 Congestion, density accumu-
lates

Crowd Disaster II 4ped/m2 < k ≤ 5.4ped/m2 Flow breakdown, maximum
density

regime, even though this regime already indicates densities are above critical as seen in Ta-
ble 3.1. However, it can be said that comfort and safety start being at risk when unstable flow
regime appear. Beyond this regime, the probability of a disaster rises, and the effectiveness of
preventive management drops.

Figure 3.5: Layered Crowd Disaster Model (Source: Wieringa (2015))

In this thesis, the layer that corresponds to the unstable regime and the transitions from
and to this regime are of interest and are thus further discussed. This is because, as one can
see in Figure 3.5, this layer concerns the appearance of specific dynamics which can indicate
that the efficient self-organization phenomena and neat flow patterns are being replaced by
dynamic patterns and higher densities. Not only the probability of a disaster increases as the
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efficient self-organization in free flow regime starts to be suppressed (Wieringa, 2015), but also
the discomfort of the pedestrians in the crowd. Besides, preventive management is assumed
more effective when the phenomena under the unstable flow regime is predicted. Each of the
phenomena in the figure is discussed in Section A.2. In the remainder of this section, only the
phenomena related to the second layer are further explained.

Faster is Slower Effect In high densities queues by narrow bottleneck locations (e.g. gates,
doors), the faster-is-slower effect occurs due to a large number of pedestrians compet-
ing for a few small gaps through the bottleneck by heading forward while the bottleneck
is clogged (Duives, 2016). This slows down the total crowd motion and thus reduces the
bottleneck throughput.

Grid Lock Indicate network saturation. Bottlenecks on the environment are active and de-
mand is continuously higher than capacity, thus leading to feeder routes and main-
stream routes being congested.

Herding Unclearness causing pedestrians to follow each other instead of taking optimal routes
(Helbing, Buzna, Johansson, & Werner, 2005). This can occur when either only the most
obvious routes or entrances are used, which can cause congestion, or when a few pedes-
trians start taking non-optimal routes to avoid crowding, or because they have more
information to assess their optimal route, and other pedestrians follow.

Inefficient Choice Behavior Describes the phenomenon when pedestrians do not choose the
optimal route between an origin to a destination. This can be caused by herding behav-
ior or an increased interest in a different route, and it can be indicated by pedestrians
taking longer routes or routes where the dominant flow direction is the opposite to the
one they are moving.

Interest & Attraction Peak Refers to a peak in the demand for a certain route or activity due
to an attraction or the arrival or departure of public transport.

Non-Separation This phenomenon refers to the non-separation of pedestrians flows or even
the non-separation between flowing areas and queuing areas.

Slow Moving Bottleneck In pedestrian traffic, this phenomenon refers to a slow moving group
of people which causes other pedestrians to attempt to overtake and can thus lead to
congestion.

Uneven Distribution Over Network Occurs when there is imbalance between demand and
capacity of the network, where certain areas are overcrowded while others still have a
large capacity available.

3.3.2. Pedestrian Traffic Theory & Crowd Management

Crowd management entails managing both the supply and demand of pedestrian spaces. This
requires not only planning the event infrastructure and location of activities and obstacles to
ensure comfort and safety of the crowd, but also influencing pedestrians actions at all behav-
ior levels. Crowd managers often think in terms of plans and scenarios, that is, if a situation
occurs, which management strategy will be applied, and what to do if the strategy does not
help enough. According to Hoogendoorn and Duives (2019), there are four main principles
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for the management of mobility. These form the basis for the principles of crowd manage-
ment presented below. One can see that these are a combination of analysis of the supply (e.g.
infrastructure characteristics) and demand (i.e. pedestrian behavior).

1) Increase throughput → This principle entails identifying the physical bottlenecks of
the environment, its location and the reason why this is a bottleneck to ensure any un-
wanted friction in the direction of flow is removed. Examples of bottlenecks (i.e. cross-
sections where the flow is hampered) are the infrastructure features discussed in sub-
section 3.2.1.

2) Prevent Blockage → As discussed in subsection 3.2.1, when multiple flow directions
share the same infrastructure with non-separation, the throughput is hampered by the
interactions between these. This can eventually result in blockages if the number of
interactions are too high. Thus this principle aims at identifying the locations where
possible interactions occur and assessing which conditions should be avoided to pre-
vent blockages, or at least ensure that the blockages do not spill back to other parts of
the infrastructure.

3) Distribute flows over the available space→This principle relates to avoiding the overuse
of certain routes or activity areas when other routes are available, as these most used
ones can get crowded which might result in discomfort and delays, or eventually lead to
blockades. Optimizing the use of the available capacity by spreading the visitors on the
environment can prevent these potential crowding issues. This is done by influencing
people’s choice behavior by informing them about other routes, or considering the site
design and attributes which have attractive forces on pedestrians.

4) Reduce the inflow of the crowd → This principle aims at limiting the number of pedes-
trians simultaneously moving on the infrastructure by closing gates, routes or only al-
lowing people into the terrain at certain time slots. Reducing the inflow aims at avoiding
inefficient pedestrian behavior of having too many people at the same time on the same
area, which can lead to high delays and congestion (Wieringa, 2015).

3.3.3. Benchmarks for Inefficient Dynamics

According to Hoogendoorn (2013), four cases can be identified which can indicate a reduction
in throughput due to inefficient usage of the infrastructure by the pedestrians. These are (1)
physical bottlenecks, (2) flow interactions, (3) uneven distribution over the network and (4)
inefficient route and activity choice behavior. These dynamics can lead to discomfort and po-
tentially unsafe conditions due to increasing densities, and therefore are considered relevant
for prediction. These benchmarks are presented in Figure 3.6. From the study of the literature
in crowd management presented in the previous subsections, one can see that these cases
relate not only to the crowd phenomena discussed in subsection 3.3.1, but also to the crowd
management principles presented in subsection 3.3.2. For instance, the non-separation of
pedestrian flows relates to the appearance of flow interactions. Also, the crowd management
principle of distributing flows over the available space can be applied when there is an uneven
distribution over the network, as well as when physical bottlenecks appear.

Cases 1 to 3 relate to the supply characteristics. The physical bottlenecks are the infras-
tructure characteristics and locations where the path gets narrow, or where there is an obstacle
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1. Physical Bottlenecks

2. Flow Interactions

3. Uneven Distribution over Network

4. Inefficient Route and 
Activity Choice Behavior

BENCHMARKS REASONING

When demand exceeds capacity, queues start forming which can potentially lead 
to discomfort and unsafe situations. Certain infrastructure characteristics can 
reduce the capacity and make these situations more likely to occur. Visitors might 
start choosing different routes to avoid the queues, and if the queues are not 
solved there might be spillbacks leading to an increased threat on safety.

On areas of the infrastructure where different walking directions coexist, the 
interactions between the pedestrians hampers the throughput. When the flows 
are high and the share per direction is unbalanced, there is often one direction 
which gets priority over the others, increasing delays for certain pedestrians and 
possibly leading to the appearance of blockades.

When activities or specific infrastructure elements (e.g. weather shelter) are 
concentrated in a certain area of the environment, or there are limited options of 
routes to move between certain locations, or even when there is a main entry 
location of the event, the network can become unbalanced and crowdedness can 
lead to discomfort and unsafe situations.  

Inefficient choices might appear even when there are multiple and sparse 
activities and routes on the event terrain as the interest for a particular route or 
activity might increase. In addition to such situation, often due to herding behavior 
or crowding, pedestrians might select unexpected / inefficient routes to reach 
their destinations. For instance longer routes or routes where the opposite flow 
direction is dominant. These choices might lead to undesirable flow interactions 
or uneven distribution over the network, which can lead to or indicate unsafe 
conditions.

Figure 3.6: Benchmarks for Inefficient Dynamics

obstructing the path. Flow interactions refer to the areas where flows interactions are permit-
ted, for instance if bidirectional routes exist, or at intersections. The uneven distribution over
the network occurs when there is a concentration of activities offered in a specific area, or
when there are limited or even a single route between different areas.

Benchmark case 4 relates to the demand, that is, even in the case when activities are
spread on the event terrain, or when there are multiple routes, the interest for a specific route
or activity increases leading to crowding. Because this benchmark relates to the behavior of
visitors, the inefficient route and activity choice behavior can cause or be caused by flow in-
teractions or uneven distribution over the network. For instance, if a high share of visitors
chooses a specific route over other routes, it can lead to an unbalanced network. In such case,
these or the scale of these are not easily identified by simply looking at the planned infrastruc-
ture of the event, hence the distinction from the other two cases.

3.4. Conclusions

The discussion in this chapter are based on literature regarding the different metrics to de-
scribe the dynamics of the crowd, the factors influencing these dynamics, and the principles
behind defining the dynamics of interest for prediction. From literature, it can be seen that
multiple metrics can be used to describe the state of the crowd, and from the categorization
proposed in Section 3.1 it was concluded that the dynamics of interest for this research are
described by mesoscopic and macroscopic metrics. These relate to the aggregate behavior of
pedestrians instead of the individual behavior given by microscopic metrics.

Based on the literature studies regarding pedestrian traffic, Section 3.2 concluded that
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there are multiple factors which influence the supply and demand sides, and thus the dy-
namics of the crowd. Reductions in the capacity, and possible conditions that could cause
discomfort and safety issues, can be expected when multiple flow directions coexist, as well
as when there are infrastructure features which hamper the throughput such as narrowing of
paths or staircases. On the demand side, pedestrians choices and consequently the usage of
the infrastructure is influenced by distinct environmental conditions, which indicate whether
certain routes or activities might be more used over others. For instance, pedestrians tend to
have preference for routes where more activities are located, whereas overcrowding appears
to repel pedestrians.

To determine the dynamics of interest for prediction, crowd phenomena and the flow
transitions between these were studied in Section 3.3. It was identified that the dynamics of
interest lie in the transition between free flow to the identification of unstable flows, as in the
latter case densities start increasing, inefficient phenomena start to occur, and the probability
of discomfort and unsafe conditions rises. Together with the four crowd management princi-
ples, four benchmarks for identifying inefficient dynamics were derived. These are to be used
as a key input for the development of scenarios as proposed in the following chapter.
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4
Framework for Scenario Development

As stated in Chapter 1, this research proposes a forecasting method, where simulation is an
offline step for the online forecast. Unlike the model-driven forecasting methods presented
in Chapter 2, the input for the simulation core is therefore not derived from the crowd mon-
itoring systems in real-time. The implication of this is that the inputs of the simulation core
are mostly unknown, except for the supply elements such as the event infrastructure, which
are planned beforehand by the event organization. In terms of the demand, a range of pos-
sible situations can occur. For instance, many pedestrians might be attracted to a specific
route or activity, or most of them might choose to arrive at a similar time instead of spread
out over time. These situations that can occur during the event for which prediction would
be desirable thus must be simulated prior to the event. As explained in subsection 4.3.2, such
situations are related to the four benchmark cases of inefficient dynamics. A database of sce-
narios is thus created, which is a key input for the selection algorithm proposed in Chapter
5. Hence, this chapter presents the framework for developing such scenario database. The
following research questions are addressed in this chapter:

• What forms a scenario?

• How are the benchmarks for inefficient dynamics used for identifying the scenarios to
be included in the database, that is, for which prediction would be desirable?

• What are the dynamics of each benchmark for building these in a simulation environ-
ment?

• How is the stochastic behavior of pedestrian models taken into account when building
the scenario database?

Firstly, given the scope of this thesis with regards to the usage of simulation model for
the development of the database, the processes that together form the dynamics of simu-
lation models are discussed in Section 4.1. Following, the proposed method to identify the
scenarios of interest are presented in Section 4.2, together with the overall objective of these
scenarios. The formulation of the scenarios’ dynamics in relation to the simulation model are
then discussed Section 4.3. Finally, the framework for scenario development is proposed and
discussed in Section 4.4.

35



4. Framework for Scenario Development Forecasting Crowd Movements in Real-Time

4.1. Model Dynamics

In general, one can identify five modules in a typical microsimulation software as illustrated
in Figure 4.1. When a simulation is run with the necessary information gathered for each of
the modules used as inputs, the trajectory of each agent is obtained. The trajectory is a very
detailed output which shows the location of each pedestrian at each time instant during the
simulation. These are often aggregated over the pedestrians to derive the metrics of interest
for the typical analyses performed (Campanella et al., 2014). These aggregate metrics are for
example flows and densities, from which one can analyse the crowdedness of different areas of
the infrastructure at different times, or the throughput of bottlenecks. Each of these modules,
their corresponding inputs, and the output dynamics are further discussed below.

SIMULATION MODEL DYNAMICS

Model Output Dynamics
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Figure 4.1: Modules, inputs and output dynamics of microsimulation models

4.1.1. Simulation Modules

The first of the five modules, here called infrastructure and services, relates to the supply side,
that is, the built environment and characteristics of the facilities available on the event terrain
(e.g. capacity of public transport facility or commercial activity). The following modules relate
to the demand side, or more specifically the usage of the infrastructure by the agents, and the
different behavior levels as proposed by Hoogendoorn et al. (2001). The first of these modules
relates to the generation of agents, the location where these appear on the environment, and
the assignment of properties such as the radius and maximum speed to these agents given
pre-defined profiles. From their point of origin, agents then start their movement on the en-
vironment based on their assigned activity sequences, from which their next destinations and
the order in which these should be visited are given. All the processes described above are
direct inputs defined by the modeller.

The lower level modules, that is, the ones that are executed later in the sequence, are
the routing and movement modules. These are formed by embedded route choice and op-
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erational movement models, respectively. As discussed in Section 2.2, several models have
been proposed to describe the movement behavior of pedestrians. These processes guide the
choice of route agents will take to move between the activities assigned to it, as well as the
behavior when moving along this route regarding for instance avoiding collision with other
pedestrians or the infrastructure. Because these processes can more easily be generalised,
that is, are not necessarily specific for a given area or event, the routing and movement mod-
ules in simulation tools often contain underlying models to guide their processes. To adjust
these models to specific conditions, if needed, the models’ parameters can be modified.

The arrows in the figure indicate that the modules exchange information with one an-
other. For instance, the infrastructure and services module send the agent generator informa-
tion about the time agents should be generated given the public transport timetable, and also
sends the routing and movement modules information about the boundaries of the geome-
try of the infrastructure. The agent generator sends information about the initial location of
the agents to the activity scheduling so that the next activity in the agent’s route can be de-
fined. The routing module receives the next destination assigned to an agent from the activity
scheduling module and, considering the initial position of this agent and the infrastructure
boundaries, defines the global path the agent will follow. Lastly, when the movement module
receives the information about this global route and starts moving the agent on this path, this
module defines the local velocity deviations necessary to avoid collision due to the interaction
with other agents.

4.1.2. Reflection on Model Dynamics for Prediction

To operationalize each module to build a scenario in the simulation environment, a set of
inputs and parameters are necessary. The inputs related to the demand can be classified in
two: (1) meso and macroscopic characteristics, and (2) microscopic characteristics. This clas-
sification relates to the influence on the different output dynamics. While the inputs of the
meso and macroscopic characteristics have larger effect on the meso and macro dynamics,
the inputs and parameters on the microscopic characteristics can largely influence the exact
shape of the trajectory of each pedestrian. For instance, the sequence of activities can indi-
cate which area of the environment is likely to have higher number of pedestrians due to more
agents being assigned to it at a certain time. Meanwhile, the side preferred by an agent when
passing an obstacle (e.g. left or right), which is a parameter of its movement preferences, can
influence the shape of its trajectory when walking along this route.

In Table B.1, a comprehensive overview of these inputs and parameters is provided. As
it can be seen from the table, microscopic models have multiple degrees of freedom. Each
of the modules can be adjusted to the needs of the modeller at a very high level of detail, for
the scenarios and dynamics one wants to reproduce. The higher the level of the detail of the
behavior one wants to correctly reproduce, the larger the number of inputs and parameters
one needs to get right. The question here is which of these are relevant for prediction of crowd
movements during mass events. As discussed by Campanella et al. (2014), pedestrian models
are mainly applied to assess the comfort and safety of pedestrian facilities based on aggregate
data. Furthermore, in Section 3.1, it was discussed that the state metrics of interest for pre-
diction of crowd states are given by aggregated metrics on the meso and macroscopic level.
Therefore, the formulation of scenarios can reflect this. The aim is to make use of the underly-
ing models on the lower level behavior (e.g. collision avoidance) to better estimate the higher
level dynamics (e.g. evolution of density). As stated by Duives et al. (2013), for an accurate pre-
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diction to be made, the different motion base cases (e.g. bidirectional, merging movements)
and crowd phenomena observed in crowds need to be captured. From the same study, the au-
thors have shown that disaggregate models are often far more capable of reproducing these,
as they better represent the interactions between the agents and the environment. Thus, as
shown in Figure 4.1, from the trajectory data of each scenario, the metrics of interest can be
derived. To that end, a selection of inputs can be made, and these are detailed in the following
subsection.

4.1.3. Inputs for Output Dynamics

The following are the key inputs one needs to consider when building scenarios in a simula-
tion model.

• Geometry of the infrastructure → The geometry of infrastructure defines the physical
boundaries of the distinct spaces found on the event environment. This includes, among
others, the position of fixed and movable obstacles as well as special infrastructure el-
ements such as rain shelters, gates and doors. Besides obstacles, the geometry of the
infrastructure also includes activity spaces, where activities are located, and functional
spaces, which define areas which are not activities but that have particular function on
the environment (e.g. queuing, waiting areas). The infrastructure elements are part of
the factors that differentiate or separate flow directions and also define possible bottle-
necks on the environment (e.g. narrowing of a path).

• Activity time → Activity time defines how much time each agent will spend within the
boundaries of each activity space. This is part of the supply characteristics as it defined
the service time, or the capacity of activities. It is based on the expected time taken by
agents to perform each activities or, in the case of mass events, can also be defined by
the time agents choose to spend watching a performance.

• Demand pattern → This input defines the amount of agents generated per time interval,
as well as the location where these agents are generated. It is also an important factor
due to the densities and distribution of flows on the environment defined by the pattern
of the demand.

• Schedule of Activities / OD Matrices → Once agents are generated, the distribution of
these on the distinct areas of the event environment are defined by the activities they are
assigned to. OD matrices or activity schedules can be static, where the share of pedestri-
ans out of the total number of pedestrians generated per time interval assigned to each
activity does not change, or dynamic, where this share is time dependent. The flows of
agents on the distinct areas of the environment over time are defined by this input.

• Agents’ profiles → The profile of the agents often consist of two key inputs: agent’s pre-
ferred speed and body radius. The former relates to the maximum speed agents will
walk on when not constrained by other agents or obstacles, whereas the latter refers
to the area each agent occupies in the model. As one can expect, agent’s body radius
have a key influence on the capacity of bottlenecks, and thus also affect densities near
bottleneck locations by influencing the bottleneck’s throughput.

These inputs are related to the three initial modules of the simulator namely infras-
tructure and services, agent generator and activity scheduling. Ideally, one would be able to
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define inputs which would lead to the behavior that exactly matches certain desired crowd
states (Toledo & Koutsopoulos, 2004). In order to approximate this simulated states to the real
ones, often a combination of inputs needs to be defined. An example is the combined effect
of the demand pattern and number of agents assigned per route. By knowing the time of the
peak of the demand and the route where the largest amount of agents is assigned to, one can
define where the most crowded area of the environment is likely to be for the following time
instants. Thus, working backwards is also possible, that is, for certain desired crowd state dy-
namics (output dynamics), one can define the inputs needed to create it. This principle is
what defines the construction of different scenarios in simulation.

4.1.4. Sub-conclusions

The discussions made in this section have major implications for this research. A reflection
was done on the dynamics of microscopic models, that is, the processes simulated (i.e. mod-
ules), their key inputs and effect on the different metrics to describe the output dynamics. It
has been argued that, for the purpose of prediction of crowd states in mass events, the output
dynamics related to the aggregate behavior of pedestrians are of interest. Thus, although the
degrees of freedom of microscopic models enables the user to adjust many aspects of the be-
havior of agents at a very high level of detail, a selection of inputs for the considered output
dynamics is made. The selected inputs, such as demand pattern and activity sequences, are
expected to have a larger effect on the aggregate output. The usage of a microscopic model is
thus considered so that the underlying models on the lower level of behavior are used to better
estimate the higher level dynamics. This is because these disaggregate models are considered
far more capable of reproducing the motion base cases and crowd phenomena observed in
real life.

4.2. Identification of Scenarios

From the discussions in subsection 3.3.3, that led to the development of the benchmarks for
inefficient dynamics, the types of scenarios for which crowd management strategies are pre-
pared for can be identified. However, for the purpose of prediction, additional requirements
regarding the scenarios’ objectives need to be addressed, as it is clear that not only the scenar-
ios for which inefficiencies occur should be included in the database. These considerations
regarding the identification of the scenarios, and analyses required to develop the database
are discussed in this section. First a discussion on the general objective of the scenarios is
done. Subsequently, a method to analyse the event in order to capture the relevant informa-
tion for the development of scenarios is proposed. The last subsection links the analyses of the
event dynamics to the benchmark cases, and discusses the application of these when building
the scenario database.

4.2.1. Scenarios’ Objectives

For the purpose of real-time prediction to provide crowd managers with information to assist
them in taking decisions, one needs to be able to predict two types of conditions. Firstly and
of utmost importance, if the state dynamics occurring on the environment are going to lead
to unstable flow conditions and high densities, the predicted states must provide crowd man-
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agers with this information. Secondly, if the state dynamics occurring on the environment are
not going to lead to such conditions, and the densities are to remain under safe levels, the pre-
diction should also indicate such developments. As crowd managers will decide whether or
not to implement certain measures based on the prediction results, these need to be carefully
considered when formulating the scenarios. Besides, crowd managers might want to assess
how the crowd states will likely be if the demand in the next hour is 50% higher and the same
patterns observed in the current hour are maintained.

To formulate the objective of each scenario, these conditions must be taken into ac-
count. However, it is clear that it is neither feasible nor desirable that all possible conditions
are included in the scenario database. The scenarios therefore need to have a defined ob-
jective (i.e. state dynamics of interest), for which one would then use the prediction to get
insights into the development of the states. Due to these considerations, the process of iden-
tifying the scenarios proposed in this research considers that the objective of each scenario, in
terms of the dynamics it must reproduce, is formulated based on the states which can lead to
unstable flow conditions and high densities. These in turn are based on the benchmarks of in-
efficient dynamics proposed in subsection 3.3.3. The condition for which the state dynamics
occurring on the environment are not going to lead to inefficient phenomena and high den-
sities are then defined by lowering the demand while the relative usage of the infrastructure
remains the same. These levels of demand are further discussed in subsection 4.3.1.

An example is given to illustrate the aforementioned considerations. For a specific route
where at a certain point the path gets narrow, thus creating a physical bottleneck, the objective
of the scenario for this situation is to reproduce the dynamics for the case where the bottle-
neck becomes active and queues start forming. For instance by assigning a higher share of
the agents to this route. The inflow into the environment is then changed, but the number
of agents assigned to the route remains the same. Therefore, although the total number of
agents on the environment is different, and so is the density, the usage of the infrastructure in
relation to the number of agents on it remains the same.

4.2.2. Event Dynamics

The first step when identifying the scenarios is to analyse the event dynamics, that is, assess
the layout of the infrastructure and the movement of the crowd between the different areas
at different times during the event. The goal of this analyses is to indicate the locations and
conditions for which the crowd could face discomfort or threats to safety. Two checklists are
proposed to focus the analyses on the relevant aspects of the aforementioned goal: a supply
checklist and demand checklist. The questions of the checklist are drawn based on the theory
in pedestrian traffic, and the factors that influence the supply and demand, which were dis-
cussed in Section 3.2. How these are drawn is further explained below. It is highlighted that the
questions below focus on the analysis of the collective behavior of pedestrians. For instance,
one can think of an analysis to check ’what if’ multiple pedestrians choose the same route or
activity. This is due to the aforementioned considerations regarding the states of interest on
the mesoscopic and macroscopic levels.

Table 4.1 illustrates the supply checklist and the reasoning behind each question pro-
posed. The supply checklist aims at assisting in the identification of the areas of the envi-
ronment where the infrastructure features or the permitted usages of this infrastructure can
be problematic. From literature, it was identified that areas where for instance bidirectional
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flows are allowed, or where the capacity decreases due to a narrow path, are more critical. This
means that it is more likely that unstable flow regimes appear at these locations. Hence, the
questions below focus on highlighting these.

Table 4.1: Checklist for the supply analysis

Number Question Reasoning

1 Are there locations where the
width of the path gets nar-
rower due to obstacles or sim-
ply the shape of the path, or
where there are infrastructure
elements such as stairs or esca-
lators?

If these locations exist, there is the possibil-
ity that flows of pedestrians get hampered
by these infrastructure elements. There-
fore, these locations need to be further con-
sidered in the formulation of scenarios and
identification of inefficient dynamics.

2 Are there locations where
multi-directional or inter-
secting flows exist given the
planned routes?

If these locations exist, there is the possibil-
ity that capacity is reduced due to the in-
teractions between the pedestrians. There-
fore, these locations need to be further con-
sidered in the formulation of scenarios and
identification of inefficient dynamics.

3 Are there activity locations po-
sitioned very close to one an-
other? Or an area where many
activities are concentrated?

If these locations exist, there is the possi-
bility that a bottleneck might arise due the
combined demand for these activities ex-
ceeding the capacity of the area where they
are located. Therefore, these locations need
to be further considered in the formulation
of scenarios and identification of inefficient
dynamics.

4 Are there areas of the envi-
ronment where visitors can be
sheltered from the weather? Or
are there areas where the walk-
ing infrastructure remains safe
and suitable for use in case of
rain (e.g. asphalt, wooden plat-
forms)?

If these locations exist, there is the possibil-
ity that, in case of bad weather conditions
(e.g. rain), the demand for these areas or
walking spaces can exceed capacity. There-
fore, these locations need to be further con-
sidered in the formulation of scenarios and
identification of inefficient dynamics.

5 Are there alternative routes
from a main route which vis-
itors are likely to take in case
they feel uncomfortable or
unsafe even if these routes are
not optimal?

If these routes exist, they need to be iden-
tified as if there is a problem on the main
route and visitors start using these alterna-
tive routes, it can be an indication that the
something has happened. Besides, the use
of these alternative routes can also cause
unsafe situations if these are not prepared
to receive these flows. Therefore, these lo-
cations need to be further considered in the
formulation of scenarios and identification
of inefficient dynamics.

Table 4.2 presents the demand checklist and the reasoning behind each question pro-
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posed. This checklist aims at assessing not only the usage of the infrastructure given the fac-
tors that influence pedestrians choice behavior, but also the times and areas during the event
where a large amount of visitors can be concentrated at the same time. For instance, when
there is a public transport arrival, or when a performance ends, a high demand of visitors from
these locations to other areas of the event terrain can be expected. Moreover, from literature,
it could be seen that there might specific routes which are more attractive than others, such
as routes with more activities or with specific features such as vegetation or lighting. Hence,
these questions below aim at highlighting these.

Table 4.2: Checklist for the demand analysis

Number Question Reasoning

1 Are there times during the
event when there is a de-
mand peak, that is, where
a large amount of visitors is
expected to arrive in a short
time frame? (e.g. the arrival of
public transport or the end of a
performance)

If these times exist, there is the possibil-
ity that these high demands can quickly in-
crease densities on the environment up to
unsafe levels. Therefore, the locations, times
and expected demand coming from these
sources need to be further considered in the
formulation of scenarios and identification
of inefficient dynamics.

2 Is there a main / most attractive
route to or from areas where ac-
tivities are planned?

If these routes exist, there is the possibil-
ity that most visitors will follow such route
given its high attractiveness (e.g. presence
of water, attractions along the way), and
thus it can get crowded, potentially leading
to discomfort and / or activating bottlenecks
along the way. Therefore, the routes should
be further considered in the identification of
the inefficient dynamics.

3 Are there any routes between
areas of the event for which the
availability of alternative routes
is limited?

If these routes exist, there is the possibil-
ity that if the attractiveness of these routes
increases, many visitors follow them and it
gets crowded, these visitors have nowhere
to escape. Therefore, these routes should
be further considered in the identification of
the inefficient dynamics.

4 Are there any main / more
attractive or popular activities
(i.e. where a larger amount of
visitors are expected to go to)?

If these activities exist, there is the possibil-
ity that the large number of visitors drawn
by these activities lead to long waiting times,
queues or crowding. Therefore, these ac-
tivities should be further considered in the
identification of the inefficient dynamics.

5 Are there any areas where visi-
tors are expected to walk slower
or stop more frequently (e.g. for
taking pictures or observe the
attractions)?

If these areas exist, there is the possibil-
ity that there will be moving bottlenecks,
and it is likely more often crowded, possibly
leading to discomfort and unsafe situations.
Therefore, these activities should be further
considered in the identification of the inef-
ficient dynamics.
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4.2.3. Identification of Inefficient Dynamics

Answering the questions in the checklists above can give insights into the dynamics of the
event, the times and locations for which the crowd can potentially experience discomfort or
unsafe conditions. From these analyses, and together with the benchmarks for inefficient dy-
namics proposed in subsection 3.3.3, the inefficiencies that can occur on the event environ-
ment can be identified. Each of the questions proposed above is connected to the benchmark
cases to indicate the relationships between these, and the results are shown in Figure 4.2.

1. Physical Bottlenecks

2. Flow Interactions

3. Uneven Distribution over Network

4. Inefficient Route and Activity 
Choice Behavior

Supply Checklist

Q1

Q2

Q3

Q4

Demand Checklist

Q1

Q2

Q3

Q4

Q5Q5

BENCHMARKS

Figure 4.2: Checklists for supply and demand and relation to benchmarks of inefficient dynamics

From these links, the multiple scenarios of each benchmark case can be identified. This
classification of the scenarios under each type of benchmark is proposed in order to describe
the expected dynamics. For instance, for the physical bottleneck scenarios, one can expect
that the dynamics of interest relate to the case when the demand for the area where the bottle-
neck is located exceeds the capacity of the bottleneck. When this occurs, queues start forming
and visitors can start experiencing discomfort. On the other hand, for the scenarios under the
uneven distribution over network, the dynamics relate to the over usage of certain areas of the
environment. These can be identified by the concentration of activities at a certain location,
or the availability of a single or a limited amount of routes between distinct locations. As de-
mand for these start rising, so does the likelihood that densities might quickly increase. These
dynamics which relate the key inputs to the expected outputs of each inefficient phenomena
are further illustrated in subsection 4.3.2.

4.2.4. Sub-conclusions

For the purpose of prediction of crowd states, two objectives of the scenarios to be included in
the database could be drawn. The first goal relates to the prediction of the occurrence of the
inefficient phenomena, for which the conditions on the environment relate to unstable flow
and high densities. The second relates to the prediction for which the dynamics observed are
not likely to lead to inefficiencies, and densities remain under safe levels. These objectives
raise the question of how to identify the scenarios for which these two goals are considered,
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but also taking into account that it is neither feasible nor desirable to represent all possible
conditions in the scenario database. To that end, it is defined that the identification of scenar-
ios should focus on the dynamics for which the inefficient phenomena is more likely to occur.
For instance when the usage of a certain route is much larger than that of other routes, which
can cause crowding and discomfort to event visitors. For this dynamics, the demand is then
changed to account for the second goal of the prediction mentioned above.

The remainder of this section discussed the identification of the inefficient dynamics
regarding the aforementioned focus. Based on the checklists proposed in this section, and
the link between these and the benchmarks for inefficient phenomena, the areas of the envi-
ronment, and times during the event to be considered for the scenario development can be
identified. These aim to reduce the number of scenarios to a feasible and representative set.
Also, the classification of the scenarios under each type of benchmark case aims at better de-
scribing the dynamics of interest, that is, the behavior and usage of the infrastructure which
one can identify that can potentially lead to problematic situations regarding the comfort and
safety of the crowd.

4.3. Scenarios’ Dynamics

The processes for the development of scenarios in the simulation environment is discussed in
this section. As mentioned in subsection 4.2.1, in the scenario database one must consider not
only the scenarios for which the identified behavior leads to the appearance of inefficiencies,
but also the ones that do not. Therefore, the concept of density levels is introduced in this sec-
tion, to differentiate the scenarios for which the relative usage of the infrastructure remains
the same, but the densities and consequently the safety and comfort of the crowd are distinct.
Also, the dynamics of each benchmark case in relation to the simulation dynamics are pre-
sented, indicating the key inputs and expected outputs for each case. Finally, the stochastic
behavior of pedestrians models is discussed, where methods to take this stochasticity into
account when developing the scenario database are presented.

4.3.1. Density Levels

Density levels relate to the demand pattern, that is, the total amount of agents generated per
time period. In this research, the density level is what makes the distinction between the sce-
narios for which the relative usage of the infrastructure remains the same, but the inefficiency
does or does not occur, and when it does, how quickly uncomfortable and unsafe conditions
appear. An example is given to illustrate this idea. One can think of a scenario for which
there is uneven distribution of the agents over the network, and thus 80% of the agents are as-
signed to a single activity area. As one can imagine, depending on the total amount of agents
generated per time, this 80% can lead to crowding and unsafe conditions, whereas for a dif-
ferent amount of agents generated this might not be problematic. Both conditions provide
insights to crowd managers into the state of the environment, and thus assist them in decid-
ing whether a strategy is necessary or not.

For each benchmark of inefficient dynamics identified, the density level indicates the
strength of the interactions between agents, and between agents and the infrastructure. For
instance, for higher density levels (i.e. higher number of agents generated), more interac-
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tions are expected, and the interaction forces are more likely to restrict the flows and average
speeds. This concept is similar to the idea of the Levels of Service (LOS) as proposed by Fruin
(1971), illustrated in Figure 4.3 and Table 4.3 for walkways. The lower the LOS (e.g. E, F), the
more uncomfortable and unsafe one can expect the conditions on the environment to be. One
can thus consider that the higher the density level, the lower the LOS of the infrastructure, and
the faster one can expect the conditions to change towards uncomfortable and unsafe levels.

Figure 4.3: Illustration of Fruin’s Level of Service concept (Source: TfL (2012))

Table 4.3: Density ranges of the distinct Levels of Service (Source: Fruin (1971))

LOS Density Level (ped/m2) LOS Density Level (ped/m2)

A < 0.31 D 0.72−1.08
B 0.31−0.43 E 1.08−2.17
C 0.43−0.72 F > 2.17

The consideration of the distinct density levels result in multiple simulations being per-
formed for each identified inefficiency. Between these simulations, only the total demand
changes, while other inputs such as the share of agents per activity remains the same. It is
considered important to highlight that, for the different benchmark cases, distinct levels of
service might be of interest. In the uneven distribution over the network for instance, it might
be of interest to include scenarios for which the density levels reach LOS F, as it can be that the
uneven distribution is caused by many agents standing by a stage to watch a performance. On
the other hand, for the flow interactions, such level of service might indicate a blockade or a
situation that can no longer be resolved. For a given LOS, the density level also indicates how
quickly an area is likely to reach that LOS. For instance, for a physical bottleneck scenario,
if the bottleneck becomes active and a queue starts forming, the higher demand due to the
higher density level can make the queue upstream this bottleneck grow faster.

4.3.2. Benchmarks’ Simulation Dynamics

Each benchmark case has specific dynamics which one can consider for building the scenario
database in a simulation model. These are indicated in Figure 4.4 and will be further discussed
below.

The physical bottleneck scenarios are defined for the cases where the bottleneck be-
comes active, that is, when demand is higher than the capacity of the bottleneck and queues
start forming. These bottlenecks are identified in different locations on the environment, for
instance where there are stairs or obstacles obstructing the flows. Higher densities levels in
these scenarios lead to a significant decrease in throughput of the section of the infrastructure
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Figure 4.4: Benchmarks dynamics for modelling

where the bottleneck exists, and an increase in average travel times and densities. Depending
on the density level, the queues formed can spill back to other areas of the environment.

Interactions of flows can occur due to bidirectional flows along corridors being allowed,
with no separation between the different streams, as well as at intersections where multi-
ple directions can exist. In addition, flow interactions can also occur for a single direction
of movement with distinct movement preferences. For instance, when walking along a route
where attractions exist, some visitors might be walking faster in order to get to their desti-
nation, while others might be entertained by the attractions and thus walk slower or stop to
take pictures. The effect on the output dynamics of these conditions is the same, where the
interactions between these flows decrease throughput and are likely to increase average travel
times and densities.

The uneven distribution over the network arises from multiple possible conditions, as
illustrated by the link between the checklist and phenomena shown in subsection 4.2.3. For
instance, the concentration of activities in one area and the combined demand for these ac-
tivities can lead to this uneven distribution. Similarly, the existence of a single infrastructure
element (e.g. corridor) connecting certain areas of the environment can cause the network to
be unbalanced as visitors move between these areas. The density levels indicate how quickly
these areas are likely to get overcrowded and how densities on these areas are likely to be. The
output for higher density levels is thus increasing flows on a single / main route or the den-
sity of an activity area. Also, regarding the routes, it is expected that the a single route has a
dominant share of the total amount of pedestrians.

Finally, the scenarios for the inefficient route or activity choice behavior relate to the
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higher demand for a certain activity or route even though other options exist. Also, the sce-
narios related to this benchmark consider the usage of inefficient routes (e.g. longer or less
attractive routes) and possibly the appearance of unexpected flow interactions due to the
pedestrians re-routing to avoid crowded areas. Thus, the output dynamics when densities
are higher are illustrated by a decrease in the high flows of main routes and increase in flows
or densities on alternative routes, given by the increase in the share of agents who reroute via
these alternative routes.

4.3.3. Stochasticity

There are different layers of uncertainty when representing pedestrian behavior in simula-
tion. Uncertainty is first considered regarding the actual values of the inputs and parameters,
which then result in the consideration of distinct scenarios for each analyses, and the usage of
distributions in the inputs and parameters. An example is the assignment of a distribution of
preferred speeds to determine the speed of the agents in the simulation. The usage of distri-
butions thus adds another layer of uncertainty, as distinct replications which have the same
inputs and parameters can have different results due to the values drawn from these distribu-
tions. Therefore, pedestrians models can be considered stochastic by nature (Duives, 2016),
and to perform a representative analysis of the simulation results, one has to consider this
stochasticity.

Within simulation models, the parameter that establishes this behavior (e.g. which val-
ues are drawn from the distributions of the inputs and parameters) is called ’random seed’.
Defining the required number of replications per scenario is thus necessary to ensure that
the difference in the outputs of the simulated scenarios come from the difference in the in-
puts and parameters set, and not from the stochasticity. The result of running these multiple
simulations with the same inputs and parameters but different seeds is a distribution, and it
represents the influence of these stochasticities on the model’s results.

Different methods have been proposed in literature for estimating this required num-
ber of replications. A common characteristics of all proposed methods is the requirement
of selecting an appropriate measure of performance, which becomes the first step in defin-
ing the required number of replications. An appropriate measure of performance can indi-
cate the variability between the scenarios and is among the statistics produced as outputs by
the model. Following, the second step is to select the appropriate method given the chosen
measure of performance. Existing methods either follow a sequential approach, where one
replication is done at a time until a certain stopping criteria is met (Toledo & Koutsopoulos,
2004; Ronchi, Kuligowski, Reneke, Peacock, & Nilsson, 2013), or a two-step approach (Toledo
& Koutsopoulos, 2004). The latter is considered when it can be assumed that for the selected
measure of performance the standard deviation does not change significantly as the number
of replications increase. In this case, the minimum number of replications is determined by:

R i =
[

sR0 (Yi )t α
2

di

]2

(4.1)

where,
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sR0 (Yi ) = standard deviation of output sample of the selected measure of
performance based on R0 replications

t α
2

= critical value of the t-distribution at significance level α

di = allowable error

The equation above can be applied to more than one measure of performance. In that
case, the most critical value of R i determines the number of replications, as it is guided by the
measure with most variability.

4.3.4. Sub-conclusions

In this section, key concepts regarding the development of scenarios in the simulation model
to compose the database of scenarios are addressed. The discussions regarding the density
levels primarily aim at describing how the differentiation between the scenarios for which
inefficient phenomena leads to problematic conditions to the ones that it does not. This is
because, as previously stated, both of these provide crowd managers insights into the state
of the crowd to assist them in deciding whether the application of a strategy is necessary or
not. These density levels are related to the demand pattern, that is, the total amount of agents
generated per time period, and not only determine the expected densities on the environment
but also how quickly these densities rise. The decision regarding which density levels are of
interest for each scenario is based on the dynamics of interest and acceptable levels of service
for each situation.

From the simulation dynamics of each benchmarks for inefficient dynamics, the in-
puts for each benchmark and the outputs for higher density levels are highlighted. This is
because it is based on these higher density levels and the expected dynamics for those con-
ditions that the scenarios are formulated. The consideration of multiple density levels then
results in multiple simulations for which only the demand pattern is increased or decreased.
An increased number of simulations is also necessary to account for the stochasticity of the
pedestrian models, as discussed in this section. However, in this case, multiple simulations
are run with exactly the same input set, in order to estimate the required number of repli-
cations to ensure that the difference in the outputs for each scenario and density level come
from the difference in the inputs and parameters, and not from the stochasticity. For these
estimations, a metric or metrics need to be defined, as well as a method and its corresponding
parameters (e.g. allowable error).

4.4. Scenario Development Framework

The discussions presented in the different sections of this chapter are combined in the form
of a framework for developing the database of scenarios for the application of the method.
The framework is shown in Figure 4.5, and it aims at illustrating the steps and concepts to
be addressed when developing the scenario database. The analyses of the event dynamics
is seen as the first step in developing the scenarios, and it concern the supply and demand
checklists presented in subsection 4.2.2, considering the factors that influence supply and
demand as presented in Section 3.2. Some of the output of these analyses are the different
capacities of the distinct areas of the infrastructure, as well as the expected usage of the routes
and activities. These are direct inputs to the identification of inefficient dynamics.
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In order to identify these scenarios, the benchmark cases from crowd management the-
ory as proposed in Section 3.3 are used as reference. The main questions to be answered in
this part are related to: (1) the identification of these phenomena, (2) the areas where these are
likely to occur, (3) the conditions on the environment that lead to the appearance of these and
(4) the likelihood of these occurring. For instance, if a certain event has a number of activities
concentrated in the same area, the uneven distribution of the network can be expected. How-
ever, the condition for this inefficiency to occur is that a high number of visitors go to this area
to perform the activities, and whether this high demand is expected or not. These conditions
define the dynamics of each inefficiency identified, which are the input for the development
of these scenarios in the simulation.

The formulation of scenarios relates to a risk assessment of the different areas of the
event. This risk assessment is performed to analyse the level of risk, measured qualitatively
in terms of exposure to high densities. The idea of this level of risk is based on the study
of Wieringa (2015), where the author proposes that risk could be measured by density times
duration of density. However, for the application in the present research, this is a qualitative
criteria defined as the exposure to high densities. Scenarios are included in the database not
only if high densities are likely to occur, but in case these can be expected to last for prolonged
times. For instance, based on this criteria, an area where there is a bottleneck along a main
route, where all or most visitors are expected to walk on, and is thus expected to be often
crowded, takes priority over an area with a bottleneck along a route where visitors are likely to
use a single time.

Finally, the process to develop the scenarios combines the results of the analyses of the
other two parts of the framework, with the concepts of the density levels and the demonstra-
tion of the benchmarks dynamics presented in Section 4.3. The development of the scenar-
ios first aims at building the dynamics of the inefficient phenomena in the simulation. This
means finding the inputs for which a bottleneck becomes active in a physical bottleneck in-
efficiency, or those for which a blockade arises when bidirectional flows interact. Once this is
achieved, the additional density levels define the demand pattern variations to be simulated
for each scenario. This is an iterative process as the simulation is dynamic, so it is not possible
to predict beforehand its results. As previously mentioned, these define not only how quickly
the high densities appear, but also the overall LOS of the area where the inefficiency occurs.
For instance, one can think of the flows generated from a stage area to the other areas at the
end of a performance during a music event. There is the possibility that all visitors from that
stage area move quickly towards the exit, generating a high demand for the exit gates in a short
period of time. However, it might also be that some visitors stay a little longer or walk slower
to avoid the queues, and so the total demand for the exit gates is not as high. These two con-
ditions represent different density levels, and their corresponding effects at the exit gate (i.e.
longer queues and higher densities vs. shorter queues and lower densities) can be achieved
by changing the total demand generated per time.

In order to illustrate the application of this framework, an example is created of a small-
scale event and presented in Section B.2.
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4.5. Conclusions

In this chapter, the framework for developing the scenario database is presented, which is one
of the pillars of the forecasting method proposed in this research. To develop such frame-
work, the discussions of this chapter focus on three main aspects. Firstly, a reflection is made
regarding the multiple degrees of freedom of microscopic models and how to account for it
based on the focus of the prediction. Secondly, the identification of the inefficient dynamics
when considering the crowd dynamics of interest. Lastly, the formulation of these scenarios
in the simulation environment is presented.

Regarding the model’s degrees of freedom, it was discussed that although microscopic
models can be adjusted to the needs of the modeller at a very high level of detail, for pre-
diction, the effect of the macro/mesoscopic characteristics and corresponding inputs are of
interest. This is because not only pedestrian models are mainly applied to assess the comfort
and safety based on aggregate data, but also the crowd states of interest for the prediction
of crowd movement lie on the aggregate metrics, such as densities. Therefore, a selection of
inputs is made to account for these considerations. The main purpose of using microscopic
models in this case is to make use of the underlying models on the lower level behavior to
better estimate the higher level dynamics.

Following, the identification of the scenarios is discussed, where it is highlighted that
the scenarios are initially formulated for the crowd states which can lead to unstable flow con-
ditions and high densities. This is defined so that the number of scenarios can be reduced to a
representative set, where the conditions that do not lead to inefficiencies are simply derived by
lowering the demand for the same relative usage of the infrastructure. Two checklists are pro-
posed to assist in the identification of the relevant areas of the environment and behavior of
pedestrians which can lead to the aforementioned conditions. From answering the questions
of the checklist, one can identify the inefficient phenomena and corresponding dynamics for
identifying the scenarios from the benchmark of inefficient dynamics for a particular event.

Finally, for the formulation of the scenarios in the simulation environment the concept
of density levels is introduced. Density levels relates to the demand pattern, or total amount
of agents generated per time period, and is defined to make the distinction between the sce-
narios for which the inefficient phenomena occurs, and thus high densities can be expected,
to the ones that it does not. Both conditions are relevant for prediction as these give insights to
crowd managers when making the decision of whether or not it is necessary to apply a man-
agement strategy. For each benchmark case, the dynamics for modelling are presented, and
the expected outputs when high density levels are considered are highlighted. Lastly, meth-
ods to calculate the required number of replications to account for the stochastic behavior of
pedestrian models are presented, whereby the choices related to the metric and method are
discussed.
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5
Framework for Scenario Selection

This chapter elaborates on the real-time scenario selection system which, as stated in Section
1.1, is one of the pillars of the forecasting method proposed in this research, together with the
scenario database as discussed in Chapter 4. Although certain elements from existing model-
driven methods can be identified which also apply for the method proposed in this thesis (e.g.
real-time data from crowd monitoring systems), additional steps and processes are necessary,
which are identified in this chapter. Hence, the following research questions are addressed in
this chapter:

• How to use the concept of crowd states to capture the dynamics of the scenarios for the
scenario selection process?

• What proximity measures can be used to compare the scenarios with the real data and
formulate the individual objectives?

• Which boundary conditions must be taken into account for the scenario selection sys-
tem?

To address these questions in this chapter, an introduction is given in system theory
in Section 5.1, where the elements which form existing model-driven crowd movement fore-
casting methods are highlighted. The scenario selection framework proposed in Section 5.2
then illustrates the components of the scenario selection system proposed in this research,
and how these are connected with the concepts and information identified from the existing
systems. The following sections elaborate upon the modules of the framework and the deci-
sions that need to be made regarding each of these. Section 5.3 discusses the input module,
Section 5.4 presents the search module, and Section 5.5 explains the communication mod-
ule, whereby it is explained which elements are necessary to operationalize each module, and
what to consider regarding the choices that need to be made for these.

5.1. Systems Theory

System theory provides the tools for describing, analysing and comparing the behavior of sys-
tems. As stated in Knoop et al. (2018), generally the considered systems are physical by nature,
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and although some of these systems cannot be described by a set of mathematical equations,
system theory can incentivize the consideration of the relevant aspects of the system as whole
in terms of its sub-systems or operative parts. For instance, the analysis of human behav-
ior can have side effects which can be easily overlooked if only the main effect is considered
(Knoop et al., 2018). For the purpose of this research, the theory of systems is used to identify
the sub-systems of existing forecasting methods (subsection 5.1.2), and also to assist in the
development and explanation of the scenario selection system based on these sub-systems.
Below, an overview of the concepts related to the formulation of systems is provided, followed
by the corresponding application to existing model-driven forecasting methods as the ones
presented in Figure 2.1.

5.1.1. System Formulation

The formulation of a system is often described as a process with inputs and outputs, where the
inputs contain relevant external influences that affect the process. A differentiation is made
with regards to these inputs, based on whether or not these inputs can be influenced by the
user. Inputs that can be influenced are called control inputs, and the ones that cannot be
influenced are called disturbances (Knoop et al., 2018). Although these disturbances cannot
be influenced, they can sometimes be measured. For instance, when predicting the future
states of the crowd at an event, a train arrival which generates flows of pedestrians into the
event terrain can be considered a measurable disturbance, as the train demand and time of
arrival can provide useful information to the prediction of the states.

The outputs of a system contain the measurable components of this system, and these
depend on the properties of the system and quantities that can be measurable. These mea-
surable quantities are defined based on the sensors available and their capabilities. These
outputs are often used for monitoring the system and determining whether control actions
are necessary (Knoop et al., 2018). Regarding the crowd movement prediction system, one
can think of the outputs as the key information crowd managers need to get insights into the
crowd state, and define whether or not it is necessary to deploy a management strategy. For
instance, the values of the density in the different areas of the environment.

These control inputs and outputs can be described by metrics to represent the evolu-
tion of the dynamics described by the system over time. Regarding the dynamics of the crowd,
these metrics can be for example the values of flows, densities and travel times over time, as
presented in Section 3.1. These define the state x(t ) of the crowd at time instant t , as well as
the summary of the history of the system’s state until instant t . The dynamics of the system
can thus be described by a time series of state metrics (discrete-time systems). In the follow-
ing section, these concepts are applied to describe the existing crowd movement forecasting
systems, where it is discussed which parts of the system are of interest for this research.

5.1.2. General Model-Driven Crowd Movement Forecasting Systems

Figure 5.1 illustrates the system of current model-driven crowd movement forecasting meth-
ods, which is further detailed in this section. The crowd monitoring sensors gathers the mea-
surable / observable data from the real pedestrian traffic in the event terrain to describe the
current state of the crowd. Several monitoring sensors have been developed and updated over
the years, which enabled their implementation in the complex task of monitoring crowds.

54



5. Framework for Scenario Selection Forecasting Crowd Movements in Real-Time

However, different types of sensors can obtain different types of measurements, and the ac-
curacy of the measurements also varies between sensor types. An overview of some crowd
monitoring methods is presented in Section C.1, where the focus of discussion is on their
efficiency and capabilities for being used in the derivation of different crowd state metrics
during large-scale events. From the sensors presented, and the different categories of crowd
state metrics shown in Section 3.1, one can see that certain sensors only capture local data
(e.g. video cameras) while others are capable of deriving global metrics (e.g. Wi-Fi sensors).
Furthermore, a common characteristics of most of the existing sensors is the fact that these
mostly capture meso or macroscopic metrics, and that no sensor to date provides 100% accu-
racy for all conditions.
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Figure 5.1: Model-driven methods for crowd prediction in system theory

Often, due to the fact that either the measurements retrieved from these sensors have
errors, or the metrics of interest to describe the states cannot be directly measured by the
sensors, state estimation techniques are applied. The study of Yuan et al. (2016) illustrates
some of these techniques applied to the data from the SAIL event of 2015. From the three
algorithms presented in the study, it can be seen that multiple state metrics can be derived.
In order to derive these, the network of the event is discretized in cell, and Wi-Fi sensors and
video cameras are located at the boundaries of these discrete cells. An analysis of the states
estimated by the different methods, which were described by metrics such as flows, densities,
travel times and speeds, illustrates that these are most often overestimated, where only travel
time and speed appear to be underestimated by one of the methods. Therefore, even when
state estimation techniques are used, it cannot be guaranteed that the derived real states have
100% accuracy.

As presented in the previous section, the system also has disturbances for which exam-
ples in the case of crowd movement forecasting systems are the arrival of a public transport
mode, or the end of a performance which will occur over the prediction horizon. These distur-
bances refer to the inputs into the system which cannot be controlled (e.g. demand from the
public transport vehicle). Together with the estimated states, the input to the real-time simu-
lation core can be derived (e.g. inflows, activity sequences), and the output of the simulation
yields the predicted states for the prediction horizon considered. Based on the information
provided by these, crowd managers define whether management strategies are necessary or
not, and if so, which strategy should be applied to the traffic of pedestrians in the event.

The area highlighted in Figure 5.1, which relates to the derivation of the real states, rep-
resents the shared elements with the scenario selection framework presented below. This is
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because the scenario selection system proposed also makes use of real-time information from
the crowd, measured by the sensors or estimated by the state estimation techniques. How
these are then used for the input of the selection system is further detailed in the following
sections.

5.2. Scenario Selection Framework

The framework for scenario selection proposed in this research is shown in Figure 5.2. The
point of departure of the framework, given by the scope of this research, is the utilization of
a multi-objective optimization approach to select the scenario from the database which most
closely corresponds to the real observations and expected future conditions of the crowd.
From the system theory presented above, applied to model-driven crowd prediction meth-
ods, the real-time inputs and the theoretical concepts related to the operation of the selection
system could be identified. In the scenario selection framework proposed, these relate mostly
to the operationalization of the input module, which has consequences for the other modules
as it will be discussed in the following sections of this chapter.

The scenario selection system proposed considers that all scenarios Si , in the database
(Si ∈ S) are discretized in space, in p sub-areas, and in time, for which n time periods exist
per scenario. For discretizing the trajectory information from the simulated scenarios, the
concept of crowd states as presented in Section 3.1 are used. The current state of the crowd is
determined by a number of state metrics derived at each sub-area for all discrete time periods.
In this research, as previously mentioned, these metrics lie on the meso and macroscopic
aggregation levels. Thus, the trajectory information is transformed into a time series of k state
metrics per sub-area. These sub-areas are here called Event Blocks and are further discussed
in subsection 5.3.1. Besides the current state and metrics which define this state, information
about known disturbances can also be included in the state vector. These can be for example
the demand from a train arrival that occurs over the prediction horizon. Metrics in the state
vector which provide information about these known disturbances can either be linked to a
sub-area or not. The state vector to describe each scenario and time period in the database is
shown according to Equation 5.1:

S t
i = [M j ,Bq , M j+1,Bq , ..., M j ,Bq+1 ..., Mk,Bp ] ∀Si ∈S (5.1)

Where i = 1,2, ...m and t = 1,2, ...n relates to the scenario and time period for which the
values of the state vector relate to, respectively. M j refers to the state metric j = 1,2, ...k, and
Bq refer to the Event Block q = 1,2, ...p, that is, the sub-area of the environment that metric
M j is derived from. Similarly, the real states are formed by a vector of state metrics. These
real states are compared to the state vector of the scenarios and time periods in the database.
The comparison of the individual state metrics, of the current state of each Event Block as
well as disturbances, each corresponds to an individual objective. This is core of the scenario
selection system, as the scenario and time period which most closely matches the real states
used as input should be the selected scenario. The future states of this selected scenario are
therefore the predicted states. As it can be seen in Figure 5.2, three modules are identified to
form the scenario selection system. These are the input, search and communication modules,
which are further detailed in Section 5.3, Section 5.4 and Section 5.5, respectively.
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5.3. Input Module

The input module to the scenario selection framework relates to both, the real crowd states as
well as the simulated states derived from the scenario database. In order to make this module
operational, that is, to prepare the data to be used by the selection system, the concept of
Event Blocks is introduced in subsection 5.3.1 which relate to the spatial discretization of the
environment. Following, a discussion is made regarding the process of the derivation of the
state metrics, as indicated in the framework, and how to account for the different parts of the
system that these need to describe. For instance, the distinction between the metrics to define
the current state of the crowd and the ones to account for the so-called disturbances. These
are presented in subsection 5.3.2 and subsection 5.3.3.

5.3.1. State Metrics & Event Blocks

The study of Toledo and Koutsopoulos (2004) presents a set of considerations one can take
into account to select the appropriate state metrics, for which examples are the context of the
application and traffic dynamics. For the prediction of crowd movements in mass events, from
the theories discussed in Section 3.2, one can say that the statistics that are important to the
context and dynamics relate to both, the fundamental diagram as well as the choice levels of
pedestrian behavior. Density for example, can indicate whether certain areas are congested or
not. Regarding pedestrian choice behavior, average speeds can indicate the operational level
choices, while metrics such as route shares can indicate the tactical level choices.

Another consideration from the study of Toledo and Koutsopoulos (2004) is the error
source, that is, the discrepancy between observed and simulated outputs inherent from the
errors due to the simplification of the behavior for simulating, as well as the capabilities of
existing sensors to capture the "true" states. The errors from the simulation can only be dealt
with by improving models, which is not in the scope of this research. For the errors related
to sensor measurements, Toledo and Koutsopoulos (2004) discusses the decisions regarding
the locations to collect these measurements. According to the authors, these should provide
spatial coverage of all parts of the network. For instance, measurements close to entry loca-
tions can provide indications of errors in the travel demand flows, but not so much on route
choice. Thus, the discretization of the environment based on these locations to collect these
measurements is further discussed below, where the concept of Event Blocks is introduced.

Event Blocks are defined as the areas of the environment at which the state metrics are
derived. Ideally, one would be able to define the location of these areas with the aim of being
able to capture the dynamics of interest for prediction. The relevant locations for these Event
Blocks can be defined based on the scenarios identified for the specific event, as proposed
in Chapter 4, as well as the chosen metrics to define the state vector. The distinct dynamics
expected during the event can also provide indications of where it is most desirable to gather
information about the crowd from. For instance, an area where there are multiple activities
concentrated, and thus where it is possible that many visitors will go to, is considered im-
portant to better identify how densities are developing in that area. Overall, based on the
considerations above and the identified benchmarks for inefficient self-organization (subsec-
tion 3.3.3), it can be said that the following locations are considered relevant: (1) location of
physical bottlenecks, (2) areas where there is constant flow interactions with no separation,
(3) areas with concentration of activities and (4) entry locations.
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Finally, the event area (A) is thus assumed spatially discretized in p Event Blocks. Each
Block is then given an index q (1 ≤ q ≤ p) which is used to identify the metrics that describe
the state of this Block in the crowd state vector.

5.3.2. Observables

As mentioned in subsection 5.1.1, the state of the crowd can be described by the time series
of state metrics. When considering the concept of the Event Blocks, a time series of each
metric considered at each Event Block is thus derived. From these, one can identify both
the current state of the Event Block at time t (i.e. the state at the time of measurement) as
well as the summary of the history of the states until instant t . The state of the crowd on the
environment is then defined when all the metrics of each Event Block and their corresponding
time series are considered. The state metrics to define the current state and the state history
are here called observables. This is because these relate to the inputs retrieved from the crowd
monitoring sensors and state estimation techniques as discussed in subsection 5.1.2.

As previously mentioned, from the time series values of a metric of an Event Block, one
can retrieve the value of the state for that metric at a certain time t , and also estimate the past
variations of this metric to get to the value at time t . Figure 5.3 illustrates the time series of
the average travel time between two locations. In the figure one can see not only the discrete
times when the metric is measured (current state), but also the short term variations (noise)
and long term movements (trend). This past long term movements are here called current
state history, and together with the value of the current state these aim at uniquely define the
observed behavior on the event environment. For instance, for a given value of the travel time
between two locations (i.e. current state), the current state history can indicate the travel time
trend, that is, whether travel times are increasing or decreasing, as well as how rapidly this
value is changing.
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Figure 5.3: Illustration of a time series of travel time

It is clear that the history of these states is thus of interest when differentiating between
the scenarios. The state history aims at describing the pattern of behavior which led to the
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measured values of the current state metrics. In order to define the relevant values for this
trend, it is necessary to filter out the short term variations. For instance, if the travel time
measured between two locations is increasing rapidly, given that a few minutes ago its values
were much lower than now and slope of the trend is positive, it might be an indication that the
route is congested.

Time series analysis provides multiple ways to derive these trends or long term move-
ments from the discrete values of the time series. These refer to the smoothing of the time
series data, by which the noise is filtered out or its contribution is reduced. The methods of
moving average can be used to perform this smoothing (Parzen & Brown, 1964). These in-
clude simple moving averages, where all past observations have the same weight, as well as
exponential moving average methods, which weight more recent observations higher assum-
ing that these are more similar to the current state. In the latter case, the parameter α of the
exponential moving average equation is what defines the degree of weighting decrease, where
higher values discount older observations faster. This effect is illustrated in Figure 5.4.
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5.3.3. Unobservables

Unobservables, as used in this research, relate to the so-called disturbances in system theory.
These refer to known inputs into the system not captured by the sensor at the time of mea-
surement. Examples of these for mass events relate to the prediction horizon of the forecast,
and what disturbances to the current conditions are expected to occur between the time of
measurement and the prediction horizon. For instance, in a music festival, the end of a per-
formance within the prediction horizon will generate flows from the performance’s area to the
other areas of the event. These are not captured by the real-time observations but are consid-
ered relevant for the prediction due the distinct expected states these can generate, and thus
also on the decision of whether or not certain management strategies are necessary.

Below, some examples of these disturbances and their expected effects on crowd states
are presented. These refer to the future disturbances (i.e. between time instants t and t + x,
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where x is the prediction horizon) in relation to the current observations (i.e. at time instant
t ).

• Transport Facilities → As trains, buses, ferries, metros and other public transport modes
carry a large amount of people, arrivals and departures of these within the prediction
horizon, and the location of stops or stations, affect how states are likely to evolve in the
different Event Blocks. If prediction is performed at time instant t and there is a public
transport arrival or departure expected between t and t + x this needs to be considered
for prediction.

• Weather → The way people move through the environment, the routes they choose and
the speed they walk at are all influenced by the weather condition. This factor is in-
cluded under ’unobservables’ for the cases that the weather condition is expected to
change between t and t + x, as these will lead to disturbances to the observations done
by the monitoring systems.

• Event Schedule → The end of a performance at one of the stages of the event, or if a per-
formance is planned to start between t and t + x is determined by the event schedule.
The disturbance caused by this schedule is primarily for the case when the performance
ends, where a large amount of visitors is expected to move from the location of the per-
formance to the other areas of the environment.

Combining the observables and unobservables, the real crowd states to be used by the
scenario selection system when searching thought the scenarios can be defined. Two state
metrics can be used to describe these unobservables: (1) their expected demand and (2) the
time from the current time of measurement these are expected. Besides, these can be linked
to a specific Event Block. For instance, in the case of the disturbances from the event schedule,
each performance location can be linked to the Event Block nearest it, and the demand from
this location then would then be one of the state metrics j to describe the Block Bq at time t
for scenario i (Equation 5.1).

5.3.4. Sub-conclusions

This section introduced the inputs of the scenario selection system, and decisions that need to
be made to derive these for its application. For the state metrics, the decision regarding these
consider the traffic dynamics based on the fundamental diagram and pedestrian choice be-
havior. The goal when defining these metrics is to capture the effect of these dynamics on the
meso and macroscopic level metrics. For instance, density, which can provide information if
the demand for a certain area exceeds capacity, and route shares, as these can indicate tactical
level choices of pedestrians. These metrics are derived at discrete locations on the environ-
ment, which are here called Event Blocks. The choices related to the location of these Blocks
take into account the dynamics of the inefficient self-organization phenomena as proposed
in subsection 3.3.3. For the discretized environment, the discrete-time system to describe the
dynamics of the crowd movement is then formulated by a time series of state metrics.

The metrics to form the state vector are separated into observables and unobservables.
The former relates to the current state and state history of each metric, that is, the state at
time of measurement (t ) as well as the summary of the states until instant t . Considering
both the value of the current state and of the state history in the state vector aims at uniquely

61



5. Framework for Scenario Selection Forecasting Crowd Movements in Real-Time

describe the observed behavior on the environment. For instance, for a measured value of
density, the state history indicates whether the density is following an increasing or decreasing
trend. Smoothing methods were presented with the purpose of indicating how these trends
can be derived. The choice between these methods relates to the consideration of the weight
given to the observations, that is, whether or not weighting more recent observations differ-
ently than older observations, or removing the short term variations to focus on the long term
movements. Methods based on moving average are presented to derive this trends. Together
with the unobservables, that is, the so called ’disturbances’, which refer to the inputs into the
system not captured by the sensors at the time of measurement, the input to the scenario
selection system is defined.

5.4. Search Module

At the core of the scenario selection method is the definition of the search approach, for which
the main task identified is that of comparing real states with the multiple simulated ones
stored in the database. This module has a critical role in enabling the real-time prediction
to occur. For this module, decisions need to be made regarding the proximity measures used
to compare the real and simulated crowd state metrics, the method to perform the multi-
objective optimization, as well as the boundary conditions which must be taken into account
when performing the search. The multi-objective optimization part is then formed by the in-
dividual objectives given by the combination of the different metrics and Event Blocks, which
are compared based on the proximity measures, taking the boundary conditions into account.
These elements identified, and decisions that need to be made, for performing this multi-
objective optimization are further discussed below.

5.4.1. Proximity Measures

The first of the elements for performing the search is the definition of the proximity measures,
which define how similar the simulated states are from the real states, for each scenario and
time period. As shown by Toledo and Koutsopoulos (2004), among the methods to compare
real and simulated values are Goodness-of-Fit (GoF) measures, hypothesis testing and confi-
dence intervals as well as test for underlying structure.

GoF measures indicate the overall error of the simulated values, of which examples
are squared error (SE), mean-squared error (MSE) and root-mean-squared error (RMSE). The
comparison based on these measures relates to the observed and simulated measurements
at each point in space and time. For instance, one can use the squared-error to compare the
real density at a certain Event Block, measured with the crowd monitoring sensors, with the
simulated density values of each scenario and time period in the database. The output is then
an error value which indicates how close the density at that Event Block is to each scenario
and time period. When the squared error of the density of the Event Block is calculated for
each time period of the time series, and averaged over the number of time periods, the mean-
squared error can be calculated.

When using hypothesis testing, one can check the similarity between two distributions
considering a defined confidence level and assumptions dependent on the test used. An ex-
ample of an application is for the case when the travel time distribution between two loca-
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tions is used as one of the state metrics. Classic hypothesis tests include two-sample t-tests
and Kolmogorov-Smirnov tests. The assumption of two-sample tests that both distributions
(real and simulated) are independent draws from identical distributions (IDD) is an example
of assumptions that need to be considered when choosing the hypothesis test to be performed
(Toledo & Koutsopoulos, 2004). This is because some of these assumptions might be unrealis-
tic in the context of pedestrian traffic simulation. For instance, two-sample t-tests assume that
the real and simulated distributions are normal and share a common variance. This variance
equality assumption can be considered unrealistic due to the simplifications of the behavior
that are made when using a model, as these are often derived for the average or most common
conditions (i.e. low variance is expected).

Finally, the test for underlying structure relates to the development of two metamodels,
one for the simulated and other for the real states, which describe the structure of these. These
metamodels are then compared by statistical tests for the equality of their coefficients. For in-
stance, one could use regression models, or ARMA (auto-regressive moving average) models
to describe the real and simulated time series of each metric, and compare the coefficients
of these by an F-test to assess the hypothesis of the equality of these models. The metamod-
els can be chosen based on the nature of the application, as well as the relationship among
variables which can for instance be described by traffic flow theory (Toledo & Koutsopoulos,
2004). However, deriving such models requires additional time and computer resources, as
one would have to derive one metamodel per metric and Event Block, which is much more
complex than using for instance the Goodness-of-Fit measures.

For the application in this research, these proximity measures discussed above deter-
mine how the individual objectives of the multi-objective optimization are formulated. These
can be based on the error between the real and simulated values, in case of GoF measures, the
result of the hypothesis testing to assess the equality of two distributions, or the use of hypoth-
esis tests to assess the equality of metamodels. Each of these requires different assumptions
and describe the time series data of each metric differently. In the literature in pedestrian
studies which use multi-objective optimization algorithms to compare real and simulated
data, only Goodness-of-Fit measures could be found (Duives, 2016; Sparnaaij, 2017).

5.4.2. Multi-Objective Optimization

In the scenario selection process, each simulated metric of each Event Block is compared to its
real value, describing the different between these for each scenario and time period. The goal
of the scenario selection is to select the scenario for which these differences are the minimum,
that is, the scenario that best approximates to the real states. Each metric of each Event Block
and its corresponding proximity measure forms an individual objective. Thus, when these
are considered for the selection of a scenario from the database, a multi-objective problem
arises. The multi-objective problem considers the differences between all the state metrics
when searching through the database of scenarios. The search space (S) of such problem
is determined by the number of metrics in the state vector, the number of scenarios in the
scenario database and the number of time periods each scenario is discretized in.

In order to find the scenario with minimum error across the considered state metrics,
multi-objective optimization approaches are considered. Optimization provides a systematic
way to combine these multiple and sometimes conflicting objectives in order to find the best
possible scenario among the pre-simulated ones. The objectives are in conflict when an im-
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provement in one leads to a deterioration of the other (Zak & Chong, 2013a), which can occur
for instance when the state of a certain Event Block has to be prioritized over another Block
during the search process. A multi-objective optimization problem to minimize the error be-
tween the simulated and real states can be mathematically defined as (Miettinen, 1998):

minimize f = { f1(z), f2(z), ... fk (z)} (5.2)

subject to z ∈Sl

Whereby the vector function of the individual objective of a state metric z is denoted by
f (z), and k (≥ 2) defines the number of objectives / state metrics to be optimized. The mini-
mization goal shows that one wants to minimize all the objectives at once. Furthermore, the
multi-objective function f assigns to each decision variable a multi-objective vector function
value in the objective function space, that is, f :Sl →Sk .

Scalarization Methods

There exist multiple approaches to solve multi-objective optimization problems in literature.
These either use scalarization for transforming the multiple objectives into a single objective,
for which standard optimization methods can be used, or these aim at producing the set of
Pareto optimal solutions (Miettinen, 1998). Three typical examples of scalarization of multi-
objective problem are shown in Table 5.1. All of the methods below require a decision maker
to consider domain knowledge for appropriate scalarization, as a preference or importance is
given for the different vectors in the objective function. The weighted sum method is the only
one that can guarantee that all individual objectives (i.e. state metrics) can be given equal
importance in the selection process, and is thus more useful for the purpose of this research.
This equal important is achieved by a combination of the weight assigned to each objective
and consideration of the normalization of the objectives. The other two methods imply a
preference or hierarchy between the different objectives. For instance, the minmax approach
assumes that the only objective that matters is the one for which its simulated value has a
larger error when compared to its real value. Meanwhile, the ε-Constraint method assumes
that it is sufficient to find the scenario with minimum error for one objective, while the other
objectives are within error bounds considered in the constraints.

Table 5.1: Overview of scalarization methods found in literature (Zak & Chong, 2013b)

Method Problem Re-formulation

Weighted-sum Linear combination of the components of min
∑k

i=1wi fi (z)
the objective function vector with weights w

Minmax Single objective consists of minimizing the min max{ f1(z), ... fk (z)}
maximum of the components

ε-Constraint Minimize one of the components of vector min f j (z)
subject to constraints on the other s . t fi (z) ≤ bi

components for i ∈ {1, ...k}\{ j }
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Optimization Algorithms

Optimization algorithms are responsible not only for finding the optimal scenario within the
database, but also for the real-time performance of the search. Hence, the key properties of
existing algorithms of interest for this study are their ability to find the global optimum and
not get stuck in a local sub-optimal solution, their computational burden, and their ability to
deal with a high-dimensional, discrete problem as the one discussed in this research. In Ta-
ble 5.2, some algorithms found in literature are presented, categorized into single and multi-
objective. The related studies refer to applications of the algorithms for pedestrian behavior
or transportation studies, when these could be found during the literature search.

Table 5.2: Overview of optimization methods found in literature (Extended from Sparnaaij (2017))

Method Studies
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e

Nelder-Mead Rudloff et al. (2014)
Genetic Algorithm (GA) Rudloff et al. (2014); Wolinski et al. (2014)
Greedy Wolinski et al. (2014)
Grid Search Duives (2016); Sparnaaij (2017)
Simulated Annealing Wolinski et al. (2014)
Covariance Matrix Adaptation (CMA) Wolinski et al. (2014)

M
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O
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ct
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e

ε-Domination Multi-objective Deb et al. (2003)
Evolutionary Algorithm (ε-MOEA)
Nondominated Sorting GA (NSGA-II) Deb et al. (2002); Yu et al. (2015)
Niched Pareto GA Horn et al. (1994)
Strength Pareto Evolutionary (SPEA2) Zitzler et al. (2001)

The algorithms included in the table are in principle capable of finding the global min-
imum, as these attempt to search through the entire feasible set for the optimal solution.
Transforming the multi-objectives into a single one adds a layer of abstraction to the algo-
rithm, and is a technique that requires the decision maker to have knowledge about the un-
derlying problem. However, it significantly improves the speed by reducing the computational
complexity. From the single-objective methods, the grid search appears to be the only one
that will certainly find the global optimal for a given discretization of the search space, but it is
also likely to be the slowest (Sparnaaij, 2017). Also, the grid search algorithm is able to handle
the discrete problem discussed in this research, when appropriate scalarization methods are
used. The other algorithms are most often used in continuous problems, although examples
of use of these for mixed-discrete or discrete problems can also be found in literature (Wu &
Chow, 1994; Lin & Hajela, 1992).

Among the multi-objective algorithms, the compromise between the quality of the so-
lution, that is, the ability to find the minimum errors, and the computational time is observed
when comparing these algorithms. However, the main issue regarding the application of these
algorithms to the scenario selection system is the dimensionality of the problem addressed in
this research. When attempting to satisfy multiple objectives, the multiobjective space needs
to be mapped into a single dimension for solutions to be compared, where Pareto Dominance
has been a commonly applied method to establish preferences among the Pareto optimal so-
lutions (Garza-Fabre et al., 2009). When the number of objectives increases, the convergence
ability of these is negatively affected, as the proportion of equally good solutions in the mul-
tiobjective context increases exponentially with the number of objectives. Thus, the search
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process becomes practically random as it is not possible to impose preference among indi-
vidual solutions (Garza-Fabre et al., 2009).

Due to the aforementioned considerations, scalarization of the multi-objectives into
a single-objective, and further application of a single-objective optimization algorithm, is
preferable over applying multi-objective algorithms. Among the previously discussed issues
regarding the dimensionality of the problem, multi-objective algorithms yield a set of Pareto
optimal solutions, or, in the case of this research, a set of optimal scenarios, which can become
very large for high-dimension problems. Given the objective of this thesis to assist crowd man-
agers to have insights into the future developments of the state of the crowd, providing them
with a set of scenarios to be analysed is considered problematic. It is clear that it is unlikely
that there will be time to analyse these multiple scenarios prior to making decisions, and still
be able to proactively manage the crowd.

Stopping Criteria

Performance of the optimization algorithm can be improved by considering an adequate stop-
ping criterion. In this research, the selection of the stopping criterion is done depending on
the optimization method and output structure (i.e. one or multiple scenarios) chosen. For
instance, the stopping criteria for the grid search method of Duives (2016) is simply that all
possible scenarios in the database are explored. For other methods, determining such crite-
rion enables finding solutions deemed optimal without having to search through the entire
database. The stopping criterion can be determined by convergence, whereby a scenario is
selected if within n subsequent iterations of the algorithm no new optimal is found, or by
stopping after a fixed number of iterations. Examples of these are the methods of Rudloff et
al. (2014) and Wolinski et al. (2014). Another possible criterion that does not consider the
number of iterations can be either testing if the solution satisfies some optimality condition
(e.g. the distance between the real and simulated values of a state metric is lower than a cer-
tain value), or if a certain maximum computation time is reached (Sparnaaij, 2017).

5.4.3. Boundary Conditions

The boundary conditions related to the search through the scenario database considers prac-
tical implications regarding both, the state metrics and the location where these metrics are
derived from, here called Event Blocks. In subsection 5.3.1, multiple considerations are made
regarding both, the choice of state metrics and the choice of location to define the Event
Blocks. Ideally, one would be able to have the defined metrics at the chosen locations for
the application of the method in a real event. The problem is that often these metrics are lim-
ited by the capabilities of the monitoring sensors and state estimation techniques available.
Also, the Event Blocks where one can derive the real states from is bounded to the location
where these sensors are mounted on the environment, as mounted sensors are most com-
monly found in event terrains (e.g. video cameras and Wi-Fi sensors). When applying the
method, the state metrics and Event Blocks which are used in the search are therefore limited
by the sensor network.

66



5. Framework for Scenario Selection Forecasting Crowd Movements in Real-Time

5.4.4. Sub-conclusions

The core of the scenario selection system proposed in this research is the use of multi-objective
optimization for finding the scenario in the database which most closely corresponds to the
real state of the crowd. The search module discussed in this chapter illustrates the elements
of this method. These are the proximity measures to formulate the individual objectives, the
multi-objective optimization problem and corresponding algorithms, as well as the boundary
conditions that one needs to consider for performing the search. It is clear that the choice
between the different proximity measures relates to the assumptions that can be made with
regards to the comparison between the simulated and real data, as well as the time available
to derive these measures. For instance, deriving metamodels for each metric and Event Block
is a highly time consuming task, and much more complex than using Goodness-of-Fit mea-
sures. Meanwhile, some hypothesis tests require assumptions that might be unrealistic in the
context of pedestrian simulation.

The choice of the algorithm for the multi-objective optimization first requires the choice
of whether the multi-objectives are going to be combined into a single objective through
scalarization methods. The choice of algorithm is then based on this, as these are separated
into single-objective algorithms and multi-objectives ones. It is argued that, due to the high-
dimensional problem addressed in this research, it is preferable to perform a scalarization of
the multiple objectives into a single one. Finally, the boundary conditions addressed relate
to the sensor network at the event. The state metrics, and locations where these are derived
from, are defined based on the location and capabilities of the sensors available. Thus, the
metrics and Event Blocks used for the search are bounded to the sensor network.

5.5. Communication Module

As each scenario in the database is discretized in time periods, the output from the search
module consists of a scenario at a certain time instant, when the multi-objectives are com-
bined into one. Meanwhile, multi-objective optimization algorithms yield the Pareto optimal
set of scenarios, and their corresponding time instants. The communication to crowd man-
agers is thus given by the scenario for which the error is minimized for the multiple objectives
considered in the optimization. As discussed in Section 4.1, the typical analyses performed re-
late to the crowdedness on the different areas of the environment, or the delays in these areas.
These can be directly obtained from the scenario selected, where one can decide whether to
show the simulation results for the given scenario, or the values of the state metrics of the sce-
nario, considering the prediction horizon. Based on for instance the predicted development
of the density in each Event Block, crowd managers can have insights into where discomfort
or unsafe conditions might arise.

Not only the chosen optimization method can result in more than one scenario deemed
possible, but one can also define that it is of interest to select other scenarios but the one for
which the multiple objectives are minimized. Formulating the criteria for selecting scenar-
ios for which the results should be communicated to crowd managers, means finding a way
to provide the right information at the right time to facilitate decision making. Too much
information might be overwhelming and not add much to the process, while too little infor-
mation might not cover the relevant outcomes. Hence, the two key decisions considered at
this stage are related to how many scenarios should be considered as options, and how dif-
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ferent these should be to cover the dynamics of interest. Dealing with both of these issues
requires planning how to score and rank likely scenarios, and having crowd managers analyse
their outcomes. These processes of score and rank likely scenarios, and the factors that need
to be considered for these are not in the scope of this research, and simply relate to recom-
mendations for future applications of the method.

5.6. Conclusions

In this chapter the scenario selection system based on the multi-objective optimization meth-
ods was addressed. To introduce the elements and processes which are shared between the
proposed system and existing model-driven crowd forecasting methods, an introduction in
system theory was provided. System theory indicates how the crowd forecast system can be
described by a time series of state metrics (discrete-time systems). Existing model-driven fore-
casting systems use these state metrics to derive the input to the simulation core. From these
existing systems, it was highlighted that the real data from the crowd monitoring sensors and
state estimation techniques are also key inputs of the proposed method. However, these are
the used to derive the real-time input to selection system (i.e. real crowd state metrics) instead
of to the simulation model. Based on these considerations, the framework for the scenario
selection system is proposed, from which the point of departure is the multi-objective opti-
mization approach which compares the time series of the real state metrics with that of the
simulated scenarios.

The input to the scenario selection system is thus the real and simulated time series
of state metrics. The choice of metrics and considerations regarding the different parts of
the behavior these describe are part of the decisions related to the input module. These are
separated into two categories which refer to the observability of these metrics. Observables
relate to the metrics to describe the current state and state history, which provide information
about what has happened on the event environment up to the time of measurement t , that is,
the values of current state as well as the trend that led to these values. Smoothing techniques
are introduced to indicate how this trend can be derived. Unobservables relate to the so-called
disturbances, which indicate the inputs relevant for prediction which are not captured by the
sensors at the time of measurement. Examples of these are the arrival of a public transport
mode, or the end of a performance, which occur between the time of measurement and the
prediction horizon, and generate additional flows of pedestrians into the event environment.
From these disturbances, the demand generated by these can be included as a state metric in
the state vector.

Measures to compare each state metric of each Event Block form the individual objec-
tives which together make the search through the database a multi-objective problem. For
formulating these individual objectives one thus need to define which proximity measures
should be used to compare the real and simulated metrics of the crowd state vector. When
considering these individual objectives for the multi-objective optimization, the decision re-
garding the algorithm to be used is dependent on whether or not scalarization of the objec-
tives into a single objective is done. It is preferable to perform this scalarization due to the
high-dimensional problem addressed in this research, as the performance of multi-objective
optimization algorithms decreases with the increasing number of individual objectives that
need to be simultaneously considered.
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6
Application of the Frameworks

This chapter discusses the application of each framework developed in the previous chapters
for a specific case study based on a real mass event. The remainder of this research, and
answer to the outstanding research questions thereof, is set up according to the concepts and
definitions presented in this chapter.

Case Study
(Section 6.1)

FRAMEWORK APPLICATION
(Chapter 6)

Scenario 
Database

(Section 6.2)

Scenario Selection 
System

(Section 6.3)
The Model

The Event

Scenario Development
(Chapter 4)

Scenario Selection
(Chapter 5)

Forecast Analysis

SYSTEM APPLICATION
(Chapter 7)

Figure 6.1: Overview of the connections between the current
chapter and the other chapters of this research

Figure 6.1 illustrates the link
between the current chapter and the
other chapters of this research. Al-
though both the current and the fol-
lowing chapters are under the Frame-
work Application part of this research,
a distinction is made with regards to
this application. The current chap-
ter focuses on applying the frame-
works developed in Chapter 4 and
Chapter 5 to the specific case study.
Its outputs are the scenarios and the
scenario selection system considered
for the prediction analysis. Mean-
while, the specific methodologies for
both, assessing the application of the
forecasting method and correspond-
ing results, and performing the sen-
sitivity analysis of the system are dis-
cussed in more detail in Chapter 7.

This chapter is built-up as follows. Firstly, Section 6.1 introduces the case study used in
this research, including both the mass event and the simulation model. Following, Section 6.2
presents the application of the scenario development framework for the case study. The out-
put of this section is the set of scenarios which forms the database used as input for validating
the selection algorithm. The application of the scenario selection framework in carried out in
Section 6.3, which thus presents the scenario selection system developed for this research.
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6.1. Introduction to Case Study

As stated in Chapter 1, the forecasting method proposed in this research uses a microscopic
model for the prediction of crowd movements during mass events. Hence, in order to apply
the frameworks and test the forecasting method, these two elements need to be defined: the
simulation model and the mass event. In this section, both of these elements are discussed in
detail, where the key components of each for the proposed application are highlighted.

6.1.1. The Event

Mass events which take place in urban areas are increasingly frequent in many European
cities. An example of such events is SAIL, Europe’s largest nautical event which occurs every 5
years in August in the city center of Amsterdam, The Netherlands. More than 600 ships moor
in the IJ-port, attracting millions of visitors to the SAIL terrain to watch the ships and enjoy the
atmosphere. In its previous edition in 2015, SAIL received more than 2 million national and
international visitors, spread over the 5 days in which the event took place (Daamen, Yuan,
Duives, & Hoogendoorn, 2016). The municipality of Amsterdam has developed a crowd mon-
itoring dashboard which supports crowd management during the event. Information regard-
ing the state of the crowd is derived from the data captured by the different kinds of sensors
in place, namely counting cameras and Wi-Fi. These characteristics make SAIL an interesting
case study for this research.

Study Area & Crowd Monitoring Network

The study area of the SAIL terrain considered for the application of the forecasting method
is shown in Figure 6.2, where the location of the mounted crowd monitoring sensors are pin-
pointed. This study area is a sub-part of the total event area. Selecting a sub-area to test the
method is necessary to limit the amount of scenarios for the application of the scenario devel-
opment framework, given the time constraints of this research. The selected area is part of the
so-called orange route, a walking route along the tall ships on the south bank of the IJ-port.
The reason for selecting this area for application of the method is two fold. Firstly, this is ex-
pected to be the area with highest demand, as it is were most tall ships are docked, and given
the fact that visitors coming from the city center of Amsterdam or from Amsterdam Central
station (i.e. a main entry area of the event) use at least a part of this route to access the event
terrain. Secondly, this area is where most crowd monitoring sensors are located, which makes
it interesting for the proposed application.

Overview of event

This subsection presents an overview of the entry and exit points of the study area, as well as
routes and activities planned for the event. There are six locations where visitors can enter and
exit the study area. The main ones are located on both ends, west and east. On the west-end
is not only Amsterdam Central station, but also the most used route towards the city center
of Amsterdam. On the east-end is the continuation of the orange route on the Java-eiland,
where more tall ships are docked, and also the connection with Amsterdam-Oost. Besides
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Figure 6.2: SAIL - Study area and crowd monitoring systems

these locations, visitors can also access the study area through the ferries, which arrive near
the station entrance on the west-end, or from the Kattenburgstraat.

Figure 6.2 illustrates the main flow directions expected for each main street in the study
area. Bidirectional flows are most often expected at De Ruijterkade, whereas on the other
streets it is pre-defined that there is always a dominant flow direction. This is because the
main entry location during the day is at the west-end, where visitors then continue along the
orange route through the Veemkade to watch the ships, or wait for a ferry at De Ruijterkade.
Besides watching the ships, visitors can also buy food or drinks at three main activity loca-
tions: (1) at the Ruijterkade, by the queue for the ferry to the purple route, and (2) (3) on both
ends of the Veemkade. Every evening, a firework show is held at the Java-eiland, thus flows of
visitors can be expected from east to west through the Piet Heinkade at the end of the show.

Unlike mass events which have a clear distinction between ingress, movement and
egress behavior (e.g. sports events), for SAIL visitors are expected to behave differently in
two situations. Firstly, when visiting the event and walking along the route to watch the
tall ships, visitors’ behavior can be considered more multi-purposed, typical of leisure trips,
where pedestrians have lower walking speeds and perform more activities (Zomer, 2014). Sec-
ondly, at the end of the firework show in the evening, egress behavior is assumed, with higher
walking speeds and more targeted goal to reach their final destination. The event occurs in
August, thus during summer, so the weather conditions are expected to be good.

6.1.2. The Model

This section introduces the microscopic pedestrian simulation model Pedestrian Dynam-
ics ®(PD) by INCONTROL Simulation Software. All three levels of behavior as proposed by
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Hoogendoorn and Bovy (2004) (strategic, tactical and operational) can be modelled in PD.
The higher level behavior processes (demand, activity scheduling) are direct inputs imple-
mented by the user, whereas the behavior of the operational level (route following, collision
avoidance and route choice) are based on algorithms embedded in the software, influenced
by the model’s parameters. In the context of this research, the inputs for the higher level pro-
cesses are further discussed in Section 6.2, as these are defined by the scenarios developed for
SAIL. In this section, the embedded operational models are introduced.

Overview of model

The first algorithm implemented in PD discussed in this section is the route choice algorithm.
It uses the concept of an Explicit Corridor Map (ECM) (Geraerts, 2010), in combination with
the A* algorithm, to determine the global route for a pedestrian. The ECM is a navigation
network that defines the walkable space of an environment. There are two approaches for
computing the global route: (1) shortest path and (2) least-effort. The former simply considers
the path with the shortest distance between each origin and destination pair, whereas the
latter takes into account a cost function based on the estimated travel time.

Figure 6.3: Example of the cone-shaped field of view and
parameters used to determine the desired velocity (Fig. 1

(A) from (Moussaïd et al., 2011)

While following the chosen route
between an origin and a destination,
agents in the model need to go through
the process of avoiding collisions with
obstacles and other agents. Each agent
uses vision to detect which obstacles,
both dynamic and static, it has to avoid.
The vision is modeled as a cone-shaped
field of view (FoV) as illustrated in Fig-
ure 6.3. The collision-avoidance algo-
rithm lets each agent choose a velocity
that is close to its desired velocity, but that
prevents them from colliding with oth-
ers. The collision avoidance algorithm is
based on the vision-based model devel-
oped by Moussaïd et al. (2011). fig:FOVPD
also illustrates which obstacles are taken
into account when determining the de-
sired direction. These are defined by the
viewing angle (φ) of the agent together with the viewing distance (dmax). For more detailed
information about the simulation model the reader is referred to Sparnaaij et al. (2019).

Section D.1 presents a discussion regarding the behavior validity of the embedded mod-
els of PD based on literature. From the discussions it is highlighted that attention needs to be
paid to the validity of the prediction of bottlenecks and bidirectional flows. The throughput
of the locations where these occur is expected to be lower than those in reality. This indicates
that the inefficiencies related to these conditions might arise for a lower density level. This
lower throughput is expected for most existing models, due to the simplification of the pedes-
trian movement regarding for instance rotational behavior when interacting with others and
with the infrastructure. Thus, despite this lower throughput for those conditions, PD is seen
as an appropriate model for the application of this research.
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6.1.3. Conclusion

This section introduced SAIL and Pedestrian Dynamics ®, respectively, the mass event and the
microscopic model used as case study in this research. Based on the overview of the dynam-
ics of the event, the main access and attraction (activities and destinations) points, routes and
flow directions were presented. Besides, a discussion on the expected behavior of visitors for
two situations was made. The first situation is when visitors are at the event terrain watching
the tall ships, where they can be expected to have lower walking speed and perform more ac-
tivities. Egress behavior, where walking speeds and assumed to be higher as visitors have the
main purpose of getting to their final destination, is expected for the second situation: the end
of the firework show in the evening. The main routes also change between these two situa-
tions, where for the former the most popular route is from west to east through the Veemkade,
and for the egress higher flows are assumed on the route through the Piet Heinkade.

Regarding the microscopic simulation model, the focus on this section was in intro-
ducing the model and discussing the capabilities of the implemented routing and operational
models in representing high density crowd movements. It has been defined that, in line with
research in pedestrians’ route following behavior, the least-effort approach of the route choice
algorithm is going to be used. Regarding the collision avoidance, the movement dynamics in
multi-directional flows is selected as the main point of attention regarding the validity of the
behavior. It has been discussed that the throughput expected before congestion starts appear-
ing for the sections where flows are bidirectional is often lower than in reality. Hence, special
attention needs to be paid to those sections when simulating the scenarios.

6.2. Scenario Database

Based on the overview of the event dynamics provided in the previous section, this section
aims at deriving the specific scenarios to be included in the database for SAIL. These scenar-
ios are derived by applying the steps of the Scenario Development Framework proposed in
Chapter 4. Hence, subsection 6.2.1 analyses the dynamics of the study area from both per-
spectives, supply and demand. Following, subsection 6.2.2 identifies the types of inefficient
dynamics expected in the study area, considering the benchmark cases introduced in sub-
section 3.3.3. The output of this subsection is the set of inefficient dynamics which, together
with the corresponding density levels as presented in subsection 6.2.3, are to form the sce-
nario database. The inefficient dynamics of each scenario are the input of subsection 6.2.4,
where the simulation of the scenarios and development of the database are discussed. Finally,
subsection 6.2.7 presents a discussion on the simulation process and results from Pedestrian
Dynamics.

6.2.1. Analyses of Event Dynamics - SAIL

For the analyses of the event for the purpose of identifying the scenarios, as discussed in sub-
section 4.2.2, both the supply and the demand sides are considered, as well as the elements
which can influence these. These analyses are performed based on the checklists presented
in subsection 4.2.2, and they result in an overview of the areas of the environment and corre-
sponding dynamics considered relevant for prediction. This means assessing the interaction
between the supply and demand sides which can potentially lead to discomfort or unsafe con-
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ditions to the event visitors. The reason for this being that, as stated in subsection 4.2.1, the
purpose of real-time prediction is to provide crowd managers with information to assist them
in taking decisions. However, as it is neither feasible nor desirable that all possible conditions
are included in the scenario database, the focus lies on the dynamics that can potentially lead
to problematic conditions.

Supply Checklist

In order the carry out the supply analysis, information needs to be gathered regarding the
the walking infrastructure, obstacles and characteristics of activities (e.g. type, size, location).
The analysis is carried out based on the supply checklist (Table 6.1) for the environment of
SAIL. The answer to these questions highlights the areas of the environment where inefficient
dynamics are more likely to occur, or that can trigger such inefficiencies to occur.

Table 6.1: Checklist for the supply analysis of SAIL

Number Question

1 Are there locations where the width of the path gets narrower due to ob-
stacles or simply the shape of the path, or where there are infrastructure
elements such as stairs or escalators?

2 Are there locations where multi-directional or intersecting flows exist given
the planned routes?

3 Are there activity locations positioned very close to one another? Or an area
where many activities are concentrated?

4 Are there areas of the environment where visitors can be sheltered from the
weather? Or are there areas where the walking infrastructure remains safe
and suitable for use in case of rain (e.g. asphalt, wooden platforms)?

5 Are there alternative routes from a main route which visitors are likely to
take in case they feel uncomfortable or unsafe even if these routes are not
optimal?

For the study area of SAIL, questions 1, 2, 3 and 5 were answered with yes, which il-
lustrate the likely critical areas of the environment. Question 4 is not considered as there are
no areas with weather protection on the SAIL route, and the walking infrastructure has the
same characteristics over the entire terrain. Four key bottleneck locations are highlighted by
the supply analysis and are illustrated in Figure 6.4. Location 1 presents the intersection at
De Ruijterkade. This location is considered important because of the interactions between
flows from multiple directions (Question 2), and also due to the proximity between the visi-
tors waiting for the ferry and the ones watching the ships or using the commercial facility in
that area (Question 3). Location 2 highlights a very narrow path at the Piet Heinkade, with an
obstacle splitting the flow in two. Also, bidirectional flows are expected upstream of this bot-
tleneck (considering the west to east movement) (Questions 1 & 2). Along the Veemkade, two
locations are considered. Location 3 pinpoints the area where several tall ships are located,
which is also near the main commercial activity of that route (Question 3). Hence, demand
for the tall ships and for the activities can lead to inefficiencies arising there due to queuing.
Besides, at that location the platform over the water which added an extra width to the path
ends, so the path is narrowed. To exit the platform, visitors have two options. They either
follow the route through the street, exiting the platform before it ends, or they go all the way
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to the end of the platform, and access the street through a gate. Both of these are narrow
cross-sections. The fourth location is further down the Veemkade, where also the width of the
path gets narrower (Question 1). Finally, number 5 in the figure indicates the lanes connecting
the Veemkade to the Piet Heinkade, which can be used by visitors to move between these two
main streets (Question 5). The average width of these lanes is about 9 meters.

Figure 6.4: Bottleneck locations identified

Demand Checklist

The analysis of the demand has three focuses: the arrival of visitors per entry point, the route
demand and the demand for activities (commercial, tall ships). The analysis is carried out
based on the demand checklist (Table 6.2) applied to SAIL. Similar to the supply analysis, the
answers to these questions highlight the times during the event and the areas where inefficient
dynamics are likely to appear.

For the study area of SAIL, the answer to all questions in the checklist is yes. A large
number of visitors is expected into the study area from the Java-eiland when the firework show
ends (Question 1), and most of these visitors are expected to go towards Amsterdam Central
Station. Also, as discussed in the overview of the event dynamics, there is a ferry arrival at De
Ruijterkade which brings visitors from the north bank of the IJ-Port. The ferry capacity is 3300
passengers per hour, thus a single ferry arrival can bring 1100 pedestrians into the study area
in a very short time window (Question 1). In relation to the routes, the study area has two main
routes: (1) along the Veemkade and (2) along the Piet Heinkade. However, the route along the
Veemkade is much more attractive to visitors who are going to watch the ships, as it is where
most of them are docked, and also where more commercial activities are located (Question
2). At the end of the firework show, the route along the Piet Heinkade from the Java-eiland
towards the Central Station is assumed to be more attractive as it is shorter and the path is
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Table 6.2: Checklist for the demand analysis of SAIL

Number Question

1 Are there times during the event when there is a demand peak, that is, where
a large amount of visitors is expected to arrive in a short time frame? (e.g.
the arrival of public transport or the end of a performance)

2 Is there a main / most attractive route to or from areas where activities are
planned?

3 Are there any routes between areas of the event for which the availability of
alternative routes is limited?

4 Are there any main / more attractive or popular activities (i.e. where a larger
amount of visitors are expected to go to)?

5 Are there any areas where visitors are expected to walk slower or stop more
frequently (e.g. for taking pictures or observe the attractions)?

wider. Regarding the alternative routes, although the Veemkade and the Piet Heinkade can be
considered alternatives from one another as they connect the same origins and destinations,
these have distinct dominant flow direction. Alternative routes connecting the west-end and
east-end, with the same dominant flow conditions, is thus considered limited (Question 3).

Regarding the activity locations (e.g. tall ships and commercial), the ones along the
Veemkade, especially the one at the far west, are expected to be the main activities as visitors
can buy food and drinks while watching the tall ships docked there (Question 4). At the activity
location near the intersection at De Ruijterkade, the demand is expected to be lower, but as
highlighted in the supply analysis, there are interactions between the visitors from that activity
with the demand for the ferry. The combined demand for these activities makes that area
be included in the analyses of the inefficient dynamics. Lastly, the areas where visitors are
expected to walk slower and stop more frequently are along the Veemkade (Question 5), as
they can watch and take pictures of the tall ships.

6.2.2. Identification of Inefficient Dynamics - SAIL

From the discussions presented above, the dynamics for the SAIL event which can lead to the
appearance of each type of inefficiency can be identified. As indicated in subsection 4.2.3, the
questions of the checklists can be linked to the different benchmark cases. For instance, from
the answer to the second question of the supply checklist, the intersection at De Ruijterkade
is highlighted as an area where distinct flow directions coexist. Hence, the dynamics expected
can be placed under the flow interactions inefficiency. Also, from the answer to the fourth
question of the demand checklist, the route from the west-end along the Veemkade towards
the east-end is highlighted as the main route of the event. As the answer to the third ques-
tion of the supply checklist pinpointed a concentration of activities on the west-end of this
route, the dynamics expected can be placed under the uneven distribution over the network
inefficiency.

The level of risk is analysed for the different areas of the environment. From the answers
to the questions of the checklist, four areas are highlighted in the study area of SAIL. Firstly,
the area at the west-end of the Veemkade. This area is highlighted as high risk area due to the
concentration of activities, the bottleneck and the fact that visitors are likely to walk slower
and stop more frequently along this route to take pictures of the tall ships. It is thus expected
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that this area is likely to experience high densities for prolonged periods.

Secondly, the east-end of the Veemkade is also highlighted. The reason for including
this area is due to the high demand expected for the route along the Veemkade, and how the
bottleneck at the end of this route, which is its narrowest point, can obstruct the flows and
often cause high densities to appear. Besides, when congestion appears along this route, vis-
itors can start moving to the Piet Heinkade to avoid it. This in turn creates undesirable flow
interactions.

Thirdly, the area at De Ruijterkade, from the intersection to the area by the ferry and
activity are also highlighted. Similar to the Veemkade, the demand for that area is expected
to be high as all visitors coming from the main entrance at Amsterdam Central Station walk
there. This leads to the expectation of high flows constantly interacting at the intersection at
De Ruijterkade. Besides, the combined demand for the ferry and the commercial activity on
that area are also likely to lead to high densities for prolonged periods.

Finally, the corridor between the intersection at De Ruijterkade and the Piet Heinkade is
the fourth area highlighted as a high risk area. Not only does that corridor have the narrowest
bottleneck of the entire event terrain by the east-end of it, as highlighted in Figure 6.4, but also
the throughput is likely to be reduce along the corridor due to the coexistence of different flow
directions.

The inefficient dynamics identified for the study area of SAIL, and the location where
these are expected to happen are shown in Figure 6.5. These are explained in detail in Section
D.2, and summarized in Table 6.3.
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Figure 6.5: Inefficient dynamics and location - SAIL

Table 6.3: Inefficient dynamics description - SAIL

Physical Bottlenecks

1. Piet Heinkade Demand exceeds capacity of narrowest cross-section
leading to a bottleneck becoming active and the appear-
ance of queues upstream this bottleneck

2. Veemkade - West (1) Demand exceeds capacity as most visitors exit plat-
form over the water in the first exit or (2) demand exceeds
capacity as most visitors exit platform through the gate.
Both can lead to the activation of a bottleneck

3. Veemkade - East Demand exceeds capacity of the narrowest cross-section
leading to a bottleneck becoming active

Flow Interactions

4. Intersection - Multi-
direct

Flows at the intersection at the De Ruijterkade from a
dominant direction hamper the other direction(s) and
interactions reduce total throughput of intersection,
leading to a blockade

5. Route - Bidirect Interactions between dominant flow direction, either
coming from De Ruijtekade or from the Piet Heinkade,
and secondary direction hamper the throughput of the
section of the route, leading to a blockade.

Uneven Distribution over Network

6. Activity - De Rui-
jterkade

Increase demand for the activities at De Ruijterkade and
for the ferry lead to rising densities as visitors concen-
trate on that area, leading to a blockade

7. Activity - Veemkade
West

Increase demand for the activity at the Veemkade - West
and for the tall ships lead to rising densities as visitors
concentrate on that area, leading to a blockade
Inefficient Choice Behavior

8. Inefficient Route
Choice

As densities rise along the Veemkade, higher shares of
visitors going from west to east move through the con-
necting lanes to walk along the Piet Heinkade. This is
considered inefficient as no attractions exist there and
the dominant flow direction is the opposite flow. Besides,
this leads to undesirable flow interactions.
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6.2.3. SAIL Scenarios

This subsection discusses the implementation of the inefficient dynamics identified to for-
mulate the scenarios to be simulated. As discussed in subsection 4.2.1, in the database of
scenarios, one does not only want to include the scenarios for which inefficient dynamics oc-
curs, but also the ones for which the dynamics that can lead to the inefficiency do not trigger
its occurrence. Thus, although the identification of the phenomena described in the previous
subsection focuses on the case when the dynamics lead to the the appearance of the inef-
ficiency, variations in the demand are taken into account, for the same patterns (e.g. route
usages, activity shares), by the density levels.

Density Level

As discussed in subsection 4.3.1, the concept of the distinct density levels relates to the num-
ber of interactions between agents and between agents and the infrastructure. The density
level of a scenario indicates whether the inefficient dynamics described in the previous sub-
section occurs or not, thus also whether or not crowding and unsafe conditions might appear.
Besides, it indicates how quickly densities can rise. In the scenarios developed in this research,
this concept is implemented as follows. For each inefficient dynamics identified as presented
in Table 6.3, 6 distinct density levels are defined for the areas each scenario focuses on. This
means that for each inefficient dynamics, 6 scenarios exist where only the demand pattern is
different between these. As proposed in the scenario development framework, the dynam-
ics of reference come from the case when the inefficient phenomena leads to crowding and
unsafe conditions. This is calculated based on an estimated capacity value. For instance, for
a physical bottleneck, this capacity value is estimated based on the width of the narrowest
cross-section. Meanwhile, for an uneven distribution over the network, this capacity can be
calculated based on the service time of the activity. Variations based on this capacity are then
created, for which the relative usage of the infrastructure is maintained, but the total number
of agents generated is changed and thereby the density level. However, as mentioned in sub-
section 4.3.1, for the different benchmark cases, distinct LOS are of interest, and consequently
distinct density levels. Thus, for each of the benchmark cases, the minimum and maximum
density levels are defined based on the LOS of interest as presented in Table 6.4.

Table 6.4: Density level per benchmark for SAIL considering the LOS of interest

Benchmark Case
Density Level
Low High

Physical Bottleneck LOS B LOS F
Flow Interaction LOS B LOS E
Uneven Distribution over Network LOS B LOS F
Inefficient Choice Behavior LOS B LOS E

These levels are chosen for two reasons. The lower level is defined as LOS B because it
is where conflicts start appearing due to the interactions. The higher level of each scenario
is chosen based on when traffic is expected to breakdown. For the inefficiencies which have
bidirectional flow conditions, the highest density level is lower as traffic is expected to break-
down earlier.
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Scenarios

From the inefficient dynamics identified in subsection 6.2.2, and the density levels defined
above, the total amount of scenarios simulated to form the scenario database are shown in
Table 6.5. The inputs to build these scenarios in the simulation are shown in the following
subsections.

Table 6.5: Scenarios SAIL

Scenario Density Levels Benchmark Case

1. Piet Heinkade DL 1 to DL 6 Physical Bottleneck
2. Veemkade - West DL 1 to DL 6 Physical Bottleneck
3. Veemkade - East DL 1 to DL 6 Physical Bottleneck
4. Intersection - Multi-direct DL 1 to DL 6 Flow Interaction
5. Route - Bidirect DL 1 to DL 6 Flow Interaction
6. Activity - De Ruijterkade DL 1 to DL 6 Uneven Distribution over Network
7. Activity - Veemkade West DL 1 to DL 6 Uneven Distribution over Network
8. Inefficient Route Choice DL 1 to DL 6 Inefficient Choice Behavior
Total Scenarios 48

6.2.4. Input Definition

As discussed in Section 4.3, the inputs to the model are defined in order to obtain the dynamic
behavior which corresponds to the appearance of the inefficiency. For a detailed description
of each scenario’s inputs, the reader is referred to Section D.3. In the remainder of this sub-
section, the focus is to illustrate which and how the inputs are defined to obtain the desired
dynamics of each scenario.

Geometry of the infrastructure

The geometry of the infrastructure is based on a CAD drawing of the study area, where
the widths of the paths and main obstacles on the environment are derived from. These are
illustrated in Figure 6.6. The white areas correspond to the areas available for walking, and
the pink areas are near the activity locations. As correctly modelling queuing behavior can
cause issues to the overall dynamics of the simulations, and it is not of interest to this research
to capture such behavior realistically, only the effect on density and delay that high demand
for activities can cause, queues are not modelled. Instead, the entrance to the activities are
modelled by adding obstacles around the boundaries of the activity, and opening a space with
a certain width through these boundaries for agents to access the activity, as if these were the
locations where pedestrians would queue.

For the different scenarios, the only changes regarding the infrastructure were the move-
ments permitted on the Veemkade, Piet Heinkade and the lanes connecting these two main
streets. As mentioned in subsection 6.1.2, when modelling bidirectional flows, the interac-
tions between the agents can reduce the throughput of cross-sections. Although in reality the
appearance of blockades in such conditions can occur, in the model, these occur for lower
flows than in reality. If blockades appear, the model can stop completely, and the inefficient
dynamics which focus on conditions which are not even related to bidirectional flows can
no be achieved. As the only scenario for which it is necessary to simulate bidirectional flows
on these streets given its inefficient dynamics is the Inefficient Route Choice scenario, for all
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Figure 6.6: Study area in Pedestrian Dynamics ®

the other scenarios, only unidirectional movements are allowed on the Veemkade and Piet
Heinkade. The lanes connecting these streets are thus excluded from the network (Figure 6.7),
to avoid agents moving between these two main streets and creating bidirectional flows.

Figure 6.7: Lanes connecting the Veemkade to the Piet Heinkade

Demand Pattern

The variations of the demand pattern are derived for each conceptual scenario, as well
as for the corresponding density levels considered. The inflows per scenario are summarized
in Table 6.6, and the distribution of these flows per entry location are shown in Table 6.7.
For all scenarios, from the minimum to the maximum inflows assumed, a step size of 10%
is considered to differentiate the density levels. Two aspects are highlighted here from the
aforementioned tables. Firstly, the inflows are higher on the scenarios where the focus is on
the dynamics along the Veemkade, when this is unidirectional, if compared to the other lo-
cations. Also, the share per entrance changes for the scenarios for which the flows along the
Veemkade have to be higher. This is because the bottleneck at the Piet Heinkade is activated
when higher flows are assigned there, and so the desired states along the Veemkade do not
occur if the pedestrians are generated in a location where they have to pass that bottleneck to
reach the Veemkade. However, higher flows can reach the Veemkade without blocking the Piet
Heinkade if pedestrians come from the different entrances. As these lead to higher densities

83



6. Application of the Frameworks Forecasting Crowd Movements in Real-Time

on the Veemkade, such distribution over the entrances are used.

Table 6.6: Scenarios’ demand pattern

Scenario Max Inflow (ped/h) Min Inflow (ped/h) Step Size

1. Piet Heinkade 51000 34000 10%
2. Veemkade - West 57800 44200 10%
3. Veemkade - East 47600 30600 10%
4. Intersection - Multi-direct 51000 34000 10%
5. Route - Bidirect 44200 27200 10%
6. Activity - De Ruijterkade 51000 34000 10%
7. Activity - Veemkade West 47600 30600 10%
8. Inefficient Route Choice 51000 34000 10%

Table 6.7: Scenarios’ share per entrance

Scenario
Share per Entrance

West-end Ferry Kattenburgstraat East-end

1. Piet Heinkade 65% 8% 11% 16%
2. Veemkade - West 40% 6% 32% 22%
3. Veemkade - East 40% 6% 32% 22%
4. Intersection - Multi-direct 39% 6% 23% 32%
5. Route - Bidirect 65% 8% 11% 16%
6. Activity - De Ruijterkade 46% 7% 17% 30%
7. Activity - Veemkade West 40% 6% 32% 22%
8. Inefficient Route Choice 40% 6% 32% 22%

Regarding the distinct density levels, to illustrate the differences between the effect of
these for a single scenario, Figure 6.8 presents the densities and flows over time at the area
by the activity location on the west-end of the Veemkade. These are derived from the simula-
tions of the different density levels for the scenario ’Activity - Veemkade West’. One can see the
different density levels cover different levels of service. As the density level rises, the levels of
service gets worse and the states move closer to capacity. When capacity is reached, it is pos-
sible to see the breakdown in the flow diagram for density levels 5 and 6, where, as expected,
in level 6 the breakdown happens earlier than in 5.

Activity Schedules & Activity Demand

For most of the scenarios, the schedule of activities remains the same. Agents who are
generated at the West-end and at the Kattenburgstraat mostly move towards the Veemkade
to follow the orange route, or go to De Ruijterkade to take the ferry. The agents who arrive
from the Ferry either go to the Veemkade or to the West-end. Meanwhile, the agents that
are generated at the East-end mostly move towards the West-end. These routes are shown in
Figure 6.9, and the share per route per scenario is presented in Table 6.8.

The main distinction between the scenarios with regards to the activities relates to the
demand, that is, the share of agents from the total amount of agents generated who are as-
signed to an activity. In the inefficient dynamics of scenarios 6 and 7, related to the uneven
distribution over the network, the share of agents from the total amount of agents assigned to
an activity is higher if compared to the other scenarios. In this research, for both scenarios,
this share is 80% of the total, whereas in the other scenarios it is 50%. This higher share is
derived from the capacity value estimated from the average activity time assigned.
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Figure 6.8: Distinct states for each density level of scenario Activity - Veemkade West

Figure 6.9: Routes of SAIL event

Routing Preferences

Regarding the routing preferences, visitors are assumed to choose their route based
on the least-effort approach. This is in line with research that affirms that the least-effort
approach is more representative of real pedestrian behavior (Shepherd, Clegg, & Robinson,
2010). In this approach, agents consider a cost function based on the estimated travel time,
which is based on, among others, the distance and the delay caused by the density. This cost
function has a parameter called ’Density delay weight’ which indicates the sensitivity of the
agents to delays caused by the density. For instance, if this parameter is set to zero, agents
do not use the density information at all. Setting it to larger values, means that agents are
more likely to choose routes or take detours to avoid the extra delay caused by densities. For
scenario 8, where agents are assumed to take detours or choose distinct routes to avoid the
high densities, this parameter is thus increased from its default to force agents to be more
’impatient’ and more eager to change their routes.

This inefficient route choice behavior is achieved when combining the higher values of
the ’Density delay weight’ with another parameter called ’Viewing distance’. The latter refers
to the distance from itself that agents take into account when estimating the delay caused by
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Table 6.8: Origin-Destination shares per scenario

(a) 1. Piet Heinkade and 5. Route - Bidirect

O/D West-
End

Ferry East-
End

West-end - 20% 80%
Ferry 50% - 50%
Kattenburgstraat 30% - 70%
East-end 60% - 40%

(b) 2. Veemkade - West, 3. Veemkade - East, 7. Activity -
Veemkade West and 8. Inefficient Route Choice

O/D West-
End

Ferry East-
End

West-end - 30% 70%
Ferry 50% - 50%
Kattenburgstraat 0 - 100%
East-end 40% - 60%

(c) 4. Intersection - Multi-direct

O/D West-
End

Ferry East-
End

West-end - 40% 60%
Ferry 80% - 20%
Kattenburgstraat 30% - 70%
East-end 60% - 40%

(d) 6. Activity - De Ruijterkade

O/D West-
End

Ferry East-
End

West-end - 20% 80%
Ferry 60% - 40%
Kattenburgstraat 10% - 90%
East-end 40% - 60%

the density. For instance, for its default value of 60 meters, agents use the density informa-
tion in the first 60 meters of the route to calculated the expected delay. Thus, to make agents
more eager to avoid densities, this parameter is also increased for scenario 8. Agents are then
forced to reconsider their route at certain locations when walking along the Veemkade, so that
the current densities ahead of them is taken into account. The result of these considerations
are illustrated in Figure 6.10. The figure shows the densities over time for the area by the bot-
tleneck at the east-end of the Veemkade, where each line represents distinct density levels for
the same scenario. Next to the densities over time is the share of agents that reroutes via the
Piet Heinkade for the same density levels. It can be seen that, for the results of the simulation
of the higher density level (Level 6), where the densities over time increase at the bottleneck,
more agents choose to take the route via the Piet Heinkade. Also, the higher the density be-
comes, the larger the share of agents who reroute.
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Figure 6.10: Inefficient route choice due to avoidance of high density areas

86



6. Application of the Frameworks Forecasting Crowd Movements in Real-Time

Movement Preferences

The movement preferences parameters are not modified from their default values. Also,
the default preferred speed distribution of Pedestrian Dynamics ®is used. This is chosen be-
cause it is a single triangular distribution with no distinction between agent’s properties such
as age or gender, and the average of the distribution is 1.35 m/s which is representative of a
value derived by Daamen (2004) from an average of multiple studies. The preferred speed of
the agents is only modified when walking along the Veemkade. Due to the expected behavior
of the visitors when walking along that route, that is, walking slower to watch the ships or to
take pictures, each agent’s assigned preferred speed is reduced by half of its value when walk-
ing along the Veemkade. This is chosen to maintain the initial shape of the distribution, and
the distinct preferences with regards to the speed due to that, but at the same time account
for the behavior of walking slower to watch the tall ships. Besides, in three locations where
the most visited tall ships are expected to be, and thus were visitors are expected to stop to
take pictures and walk even slower to watch the ship, the speeds are further reduced to 20%
of its initial value. The value of 20% is assumed so that agents do not completely stop, as this
could cause the simulated traffic to breakdown. However, this reduction only occurs while
visitors walk over these locations, to simulate their behavior while taking pictures or admiring
the ships. These aim to create interactions between flows with different ’purposes’ along the
Veemkade, as not all agents who walk over these areas are slowed down.

6.2.5. Stochasticity

Many pedestrian models are stochastic by nature (Duives, 2016). This is also the case for
Pedestrian Dynamics, making it necessary to calculate the required number of replications
per scenario to guarantee that the distinct states obtained arise from changes in the input
instead of being caused by this stochastic nature, as state in subsection 4.3.3. In order to esti-
mate the required number of replications, a method and a metric need to be selected. Regard-
less of the choice of method or metric, the underlying principle that guides the estimation of
the number of replications relates to the approximation to the actual probability distribution
of the metric (Sparnaaij, 2017). This means testings whether the probability distribution of
the output of the n number of replications, would be considered to be a sample drawn from
the same distribution of the probability distribution of the output if an infinite amount of
replications would be considered.

Choice of Metric

The choice of the metric used for estimating the number of replications is based on
two considerations. The first relates to the distinction between the density levels of each spe-
cific scenario, and the dynamics of the distinct conceptual scenarios. As a single conceptual
scenario can lead to multiple simulated scenarios given the distinction between the density
levels, it can be expected that the overall throughput of the network is also distinct. Hence,
it is important that the metric used for the calculations captures both, the dynamics between
the distinct scenarios and that of the distinct density levels of each scenario. Such metrics
are derived based on the output dynamics for which examples are flow, mean speed or travel
time.

The second consideration relates to the practicality in deriving the metric from the sce-
narios’ output files. In that sense, metrics which are less computationally heavy to derive con-
sidering the amount of agents in the each scenario are preferred. Hence, the choice is made to
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use the travel time distribution as the metric to calculate the required number of replications.
This metric is calculated based each agent’s travel time, agents that did and did not complete
their route, and is derived from their trajectories. The travel times of all agents simulated in
one replication of one scenario form the distribution. This metric gives insights into both, the
flow condition for distinct density levels, as higher travel times indicate that flow is less effi-
cient, and also the distinct dynamics of distinct scenarios (e.g. scenarios where higher share
of visitors performs activities, travel times can also expect to be higher).

Choice of Method

From the two methods presented in subsection 4.3.3, the sequential method is chosen
for the application in this research. The reason for this is two-fold. Firstly, it it expected that it
reduces the amount of simulations that need to be run, as additional replications are only per-
formed if the estimated number of replications exceed the initially defined one. Secondly, due
to the large number of pedestrians simulated in the scenarios of SAIL, and the number of ob-
servations to derive the distribution of the travel time from the output thereof, it is considered
likely that the scenario’s distribution will be a good approximation to the actual probability
distribution of the travel times. Therefore, the necessary number of replications per scenario
is anticipated to be low. To calculate the number of replications, Equation 4.1 is used, which
was shown in subsection 4.3.3. The parameters used in the application of this equation and
of the method are presented in Table 6.9.

Table 6.9: Parameters for calculating the required number of replications

Parameter Value

Initial number of replications (R) 5
t α

2
1.96

di 0.02

Five replications are used as the initial number of replications in order to calculated the
standard deviation of the distribution of the metric. For all scenarios, using the parameters
presented in Table 6.9, the number of replications obtained was smaller than 1. Therefore, a
single replication per scenario and density level is considered for the analyses performed in
the remainder of this research.

6.2.6. Simulation Process

From the discussions presented above, one can see that for each of the 8 scenarios, 6 varia-
tions are considered for the distinct density levels. For each of these variations, 5 replications
are run to estimate the required number of replications. As the results of the stochasticity cal-
culations for all scenarios was below 1, no additional replications had to be run. Therefore,
a total of 240 simulations were run. Each scenario is simulated for 2.5 hours, where the first
hour loads the environment, and the other one a half hours corresponds to the measurement
time. The average number of agents simulated per scenario is 75000 agents. The trajectory
information of each of these scenarios is then used for the derivation of the metrics and for-
mulation of the individual objectives, as it will be discussed in the following section.

A remark is made regarding the simulation process for the scale of the model and num-
ber of agents per scenario developed in this research. As the demand is increased to account
for the different density levels, the interaction between the agents and between these with the
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infrastructure can lead to the appearance of unexpected issues. For instance, some agents
might get stuck at a location due to being ’pushed’ by other agents or infrastructure elements
when avoiding collision with these. In such cases, these agents might accumulate and end
up creating a bottleneck where in reality there wouldn’t be one, and result in an unrealistic
scenario.

The creation of small-scale models of the different areas of the event is expected to
positively contribute to resolving these issues. As the scale of the model is reduced, it then
becomes easier to have more control over the scenarios and inefficiencies that appear, and
shorten the simulation process. However, for the application of the method in this way, addi-
tional requirements are necessary. For instance one needs to address the question of how to
sub-divide the environment to build these multiple models. Hence, the usage of the method
when the scenarios are built based on multiple small-scale simulation models is posed as a
question for future research.

6.2.7. Assessment of Simulated Behavior

As mentioned in Chapter 1, the choice to develop a set of scenarios offline for the real-time
forecast is proposed to address the computational burden issues of models considered behav-
iorally valid. Hence, the behavior validity of the model used in this research is assessed in this
subsection based on crowd phenomena to be represented in the model for the SAIL scenarios.
For instance, for the flow interaction scenarios, the behavior can be assessed in terms of lane
formation in bidirectional flows through corridors. The study of Duives (2016) shows from
the analysis of empirical data that the occurrence of crowd phenomena is dependent on the
movement base case. Hence, this subsection assesses the behavior of three movement base
cases, namely:

• Uni-directional bottleneck flow: this movement base case relates to the physical bottle-
neck inefficiency, and is focused on bottlenecks which appear from the narrowing of a
path or obstacles which reduce the capacity of cross-sections.

• Bidirectional flow in straight corridor: this movement base case relates to the flow inter-
actions inefficiency, and is focused on the situation where only two flows interact when
these share the same corridor, thus creating face-to-face interactions.

• Intersecting flow: this movement base case also relates to the flow interactions ineffi-
ciency, and is focused on the situation where two or more flow interact while the angle
of the interaction can be any angle between 10◦ and 170◦.

For the above cases, a qualitative analyses of the behavior simulated by PD is per-
formed. This is because, from a study of the literature, it could be seen that no clear quantita-
tive rules could be determined to identify crowd phenomena (Duives et al., 2014c; Moussaïd
et al., 2012). However, qualitative criteria to assess the realism of the behavior can be deter-
mined. To assess the behavior validity of the model for the three selected cases, scenarios
from the database are manually reviewed through face validation of the trajectories and sim-
ulations. For all scenarios, the criteria is developed on the basis of the comparison between
the development of the inefficiency when the density level is increased, that is, the develop-
ment of high-density regions, as well as the appearance of the specific phenomena related to
each case. These are further explained per case below.
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Uni-directional bottleneck flow

In uni-directional bottleneck situations, the assessment of the behavior can be discussed sep-
arately between the entering and exiting flows through the bottleneck. This is because re-
search has given indications that the behavior in these two conditions is distinct (Daamen
& Hoogendoorn, 2010; Duives, Daamen, & Hoogendoorn, 2014a). The high density and low
velocity regions appear upstream the bottleneck, where the interactions between the pedes-
trians cause small sideways movements to avoid collision. These can be observed through
the trajectories, which transition from smooth to irregular when densities rise (Duives, 2016;
Duives et al., 2014a). Downstream the bottleneck, high density and high velocities are ob-
served due to pedestrians fanning out and occupying the larger width available. The lack of
this behavior upstream and downstream of the bottleneck location is considered unrealistic
and so the trajectories are assessed based on these expected behavior.

Figure 6.11 illustrates 100 trajectories just upstream the physical bottleneck scenario
Veemkade - East. From these trajectories, it can be seen that when the densities are higher in
the busy period the trajectories become more irregular. This irregularity appears from the in-
teractions between the agents, which combined with the goal to move forward seem to make
these agents have lateral movement more often in an attempt to overtake. These are also ob-
served in trajectories obtained from observing real pedestrians.

Figure 6.11: Visualization of trajectories of the Veemkade - East scenario for a quiet (left) and busy (right) period

The bottleneck in the Veemkade - East scenario is distinct from the bottleneck in the
Piet Heinkade scenario. The Veemkade - East bottleneck corresponds to the entrance to a
narrow corridor and thus the fanning out behavior after that bottleneck is not observed in this
scenario, but it can be seen in the Piet Heinkade bottleneck. Figure 6.12a and Figure 6.12b il-
lustrate the trajectories upstream and downstream the Piet Heinkade bottleneck, respectively,
in a quiet and busy period. While the busy and quiet periods upstream can be easily distin-
guished due to the irregularity of the trajectories, downstream the bottleneck this does not
happen. This is expected to be because downstream the bottleneck the flows are steady. One
can say that these two locations capture distinct areas of the FD, where only upstream the
bottleneck the congested branch is reached, as it is illustrated in Figure 6.13. The flow and
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the density downstream appear to stay near capacity for most of the time, while upstream the
flows decrease as the density rises beyond capacity.

(a) Upstream Bottleneck in quiet (left) and busy (right) periods

(b) Downstream Bottleneck in quiet (left) and busy (right) periods

Figure 6.12: Visualization of trajectories of the Piet Heinkade scenario

From the discussion above, one can say that PD reproduces the behavior at bottlenecks
for the criteria presented regarding the interactions and areas of the FD covered at each side
of the bottleneck. Hence, the model is considered adequate for the purpose of the application
in this research. It is however important to highlight that based on the criteria used the model
is not quantitatively validated. For instance, it is not possible to say whether the flow through
the bottleneck or the densities reached at the bottleneck locations are representative.
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Figure 6.13: FD’s derived upstream (left) and downstream (right) of Piet Heinkade bottleneck

Bidirectional flow in straight corridor

In the case bidirectional flows in straight corridors, the development of the lane formations
to blockades when densities increase is analysed. This formation of lanes appears to arise
from some leader-follower behavior when bidirectional streams exist (Sparnaaij, 2017), which
makes the pedestrians walking in the same direction follow one another. In the study of
(Duives, 2016), the author mentions that pedestrians in low density bidirectional situations
are observed to have mainly front-to-back interactions, and that this might be due to the idea
of a reduced effort in following rather than finding a new path through the crowd. However, as
densities rise in bidirectional streams with a dominant flow direction, pedestrians are faced
with more interactions, and to avoid collision these move sideways. These lanes are then ex-
pected to be shorter or even fully dissolved, as in such conditions, pedestrians are forced to
finding their path through the crowd. One can think of a situation where the first pedestrian
in a lane moves to one side, and the following pedestrian is not be able to follow as this pedes-
trian might be interacting with other due to the high densities and be pushed to a different
side. Avoiding collision with the opposite flow is thus assumed more important than follow-
ing its leader. When such conditions occur, it is more likely that a blockade occurs. The lack
of this formation of lanes in low density bidirectional streams, and the break up of these lanes
when densities rise, is thus considered unrealistic and so the analysis is done based on these
expected behavior.

The behavior in bidirectional streams is better visualized in snapshots of the simulation
in the model, so these are shown below. Figure 6.14 illustrates the behavior of agents in the
model in low and high density when bidirectional flows interact in a straight corridor. The
formation of lanes can be seen in Figure 6.14a, where these lanes appear to be stable as long
as the densities are low, and thus there is space for pedestrians to avoid collision while still
following their respective leaders. In high densities these lanes break up as the interactions
force pedestrians in the same lane to move sideways or reduce their speeds at different rates.
This behavior can in turn separate the leaders and followers, as illustrated in Figure 6.14b.
Given these simulation results, one can say that PD reproduces the behavior of bidirectional
flow in straight corridors adequately for the given criteria.
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(a) Bidirectional streams in low density

(b) Bidirectional streams in high density

Figure 6.14: Visualization of the simulations of bidirectional flows

Intersecting flow

Intersecting flow appear to be less understood than the other two movement base cases dis-
cussed above. From literature, qualitative criteria can be derived from the studies of Versluis
(2010), S. Wang et al. (2010) and Duives (2016). Versluis (2010) discusses that for intersecting
flows crossing at 90◦ angle, pedestrians tend to stop and wait to avoid collision, rather than
moving laterally. S. Wang et al. (2010) has shown that the major stream of the intersecting
flows has higher walking velocities if compared to the minor stream. From the results of these
two studies, it can be expected that agents in intersecting situations stop more frequently, es-
pecially the ones in the minor stream. The lack of this behavior is thus considered unrealistic.

The simulated behavior in PD of intersecting flows does indicate that pedestrians tend
to stop, or significantly reduce their speeds, and wait to avoid collision, especially the ones
on the minor stream. These form temporary clogs at the intersection, and reduce the total
throughput. The lateral movement is rarely noticed at the intersection at De Ruijterkade in
all simulations assessed for the pedestrians on the minor stream. However, the pedestrians
in the major stream do move laterally. This seems to occur when pedestrians follow others
on their same direction of movement. Because of that, the pedestrians of the major stream
do not stop as often, which can lead to higher average speeds for this stream if compared to
the minor stream. Based on these results, it can be said that PD reproduces the behavior of
intersecting flows adequately for the given criteria.

6.3. Scenario Selection System

In this section, the scenario selection system based on the multi-objective optimization ap-
proach of this research is developed. Based on the Scenario Selection Framework proposed in
Chapter 5, the elements which form the system are presented. First the choice of state met-
rics is discussed in subsection 6.3.1, followed by the formulation of the individual objectives
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based on the selected proximity measures (subsection 6.3.2). The optimization method and
the considered boundary conditions are also discussed in this section in subsection 6.3.3 and
subsection 6.3.4, respectively.

6.3.1. State Metrics

The multi-objective optimization is formed by the usage of multiple metrics to describe each
scenario’s dynamics. The choice of the metrics is based on both theoretical and practical im-
plications. Firstly, as stated in Section 3.1, the preferred metrics are on the meso and macro-
scopic aggregation level due to the fact that the dynamics of the crowd considered relevant
for prediction in the development of scenarios are also based on these levels. For instance,
it is of far more interest given the scope of this research to capture the development of the
density rather than the exact trajectories of each pedestrian in the crowd. From a practical
perspective, metrics on the meso and macroscopic level are also more commonly obtained
from the sensor data of crowd monitoring systems such as video cameras and Wi-Fi sensors.
Given these considerations, the selected metrics are at the meso and macroscopic level of ag-
gregation.

For each scenario in the database, the discrete locations (i.e. Event Blocks) where each
of the selected metrics is derived at are presented in subsection 6.3.4. In this section, only the
general formulation of the metrics are described. Below, the metrics chosen to describe the
current state, the state history and the disturbances are further explained.

Current State

Four metrics are chosen as the baseline to describe the current state of the crowd. On the
macroscopic level, the flow and the density are chosen, whereas on the mesoscopic level the
travel time distribution and the route shares are used. The flow, the density are included as
these are commonly used indicators given their direct link to the dimensions of the funda-
mental equation. Although presuming a certain FD, one could argue that the density can
already describe the conditions on the environment, both metrics are included as the value
of the density along does not provide any indication about the flow directions occurring. The
travel time distribution aims at capturing the conditions on the route, in between sensors.
Route shares are also added as these provide insights the tactical level choices of pedestrians
with regards to the usage of the infrastructure, which is important given the scale of the envi-
ronment of mass events. Furthermore, according to the study of Daamen et al. (2016), these
metrics were retrieved from the crowd monitoring dashboard of the SAIL event in 2015, thus
it is assumed that these can be obtained from sensors and state estimation techniques. Each
scenario in the database is discretized based on an aggregation period of 1 minute, converting
the trajectory database into multiple time series of crowd state metrics.

Flow

The flow describes the number of people per direction of movement that crossed a cer-
tain measurement line, located in the center of each Event Block, during a defined aggregation
period. It is calculated by Equation 6.1.
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−→q di ,Bx =
Ndi

∆t × lBx

[ped/s/m] (6.1)

Where Ndi is the total number of pedestrians with travel direction di that crossed the
measurement line of Event Block Bx during the aggregation period ∆t . As the Event Blocks
have different widths and lengths, the flow is normalized to a flow per meter by the length of
the measurement line of each Event Block (lBx ). This metric provides insights into the main
direction of movement of the pedestrians along the different routes of the event terrain, as
well as the magnitude of the values.

Density

Density is an instantaneous metric (i.e. which does not have a time component) de-
scribing the number of pedestrians in an Event Block per unit area according to Equation 6.2.

kBx =
NBx

ABx

[ped/m2] (6.2)

Where NBx is the number of pedestrians inside Event Block Bx , normalized by the area
of the corresponding block (ABx ). This metric provides insights into the crowdedness of the
areas in the environment, and is a key indicator of the comfort and safety of visitors in the
event. Thus, it is not only considered relevant for the application in the multi-objective opti-
mization, but also in the analysis of the forecasting results. Since this metric is instantaneous,
it is a snapshot of the last instant of the measurement period.

Travel Time (1st & 3r d Quartiles)

In order to explain the decision to use the 1st and the 3r d quartiles of the travel time
distribution, the derivation of the travel time of each pedestrian is explained first. The travel
time as used in this research is the time taken for each pedestrian to move between each pair
of Event Blocks. The value of each pedestrian’s travel time is derived when the pedestrian
is identified at a certain Event Block By , where only its last visited Event Block (Bx ) is then
considered for the travel time calculations, according to Equation 6.3.

t ti ,By→Bx = ti ,Bx − ti ,By [s] (6.3)

Where t ti ,By→Bx is the travel time of pedestrian i between By and Bx , calculated by sub-
tracting from the time pedestrian i is identified at Event Block Bx , the time it left Event Block
By . The same measurement line used to derive the flow is considered for the estimation of the
travel time, that is, a pedestrian is identified at a certain Event Block when it crosses the re-
ferred measurement line. Unlike the previous measures, this metric is not normalized at this
stage, this is only done when deriving the individual objectives for the optimization algorithm
as it is discussed in subsection 6.3.2. For a detailed explanation of this metric and the decision
not to normalize it the reader is referred to Section D.4.

Considering the travel time of each individual pedestrian who arrived at Bx coming
from By , between the current and the previous time aggregation period, a travel time distri-
bution can be drawn. The purpose of including the statistical measures of the travel time
distribution as a metric is two-fold. Firstly, to get insights into the crowdedness of the route
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between each pair By → Bx . Secondly, to get insights into the demand for activities along this
route. Given these purposes, a choice is made to use the 1st and the 3r d quartiles of the travel
time distribution. This choice is further explained in the following paragraph. The 1st and the
3r d quartiles of the travel time distribution are defined in this research as stated below, based
on the method of Siegel and Morgan (1996):

Q1 The 1st quartile is the median of the bottom half of the dataset, derived after the
dataset is ordered in ascending order and divided into two halves by the median,
which results in a value which at least 25% of the data will be less than or equal to.

Q3 The 3r d quartile is the median of the top half of the dataset, derived after the dataset is
ordered in ascending order and divided into two halves by the median, which results
in a value which at least 25% of the data will be larger than.

An example is given to illustrate the reason for choosing the quartiles to describe the
travel time distribution given the aforementioned purposes. One can think of two situations
that can occur on a route between a pair By → Bx . The first is the demand for this route ex-
ceeding capacity, which results in congestion. The second situation is that there is an activity
location along this route, which is not congested, where most pedestrians walking along the
route stop for some time to perform the activity. Both situations result is higher expected
travel times if compared to free-flow, low activity demand conditions. Congestion is likely to
shift the distribution to the right and make it more narrow. Meanwhile, the demand for activi-
ties is also likely to skew the distribution to the right, but the lower values of travel time are not
as affected as in the first situation, as visitors who are not performing activities are able to walk
freely on the environment. The distribution in this case is not only expected to be skewed but
also more spread. Given these considerations, the quartiles are considered a better statistical
measure to capture the difference between these two dynamics than the mean or the standard
deviation, as these takes into account the extremes of the distribution.

The travel time distribution is also affected by the locations between which the travel
time of a pedestrian is measured. As stated above, the measurement lines used to derive the
flow is also considered for estimating the travel time, and this measurement line is positioned
in the center of the Block. Thus, the travel time of a pedestrian from By to Bx encompasses the
condition along the route between these two locations, and also part of the conditions within
the Event Blocks. This can be problematic if the Event Block covers an area where an activity
is located. For instance, taking as an example the case when a destination Block Bx covers the
area of an activity location. If a pedestrians crosses the center line of By at time tBy , moving
towards Bx , and it stops at the activity in Bx before crossing the center line, based on its travel
time this pedestrian has not yet ’arrived’ in Bx , where actually it has arrived. If this happens
for many pedestrians, the travel time distribution between By → Bx can indicate larger travel
times which might lead to the idea that the route is congested. Thus, two options are given to
deal with this consideration. First, one can define two lines to derive the travel time based on
the boundaries of the Event Block. Secondly, one can simply ensure that the location of the
Event Blocks only covers areas where people are expected to be moving. In the first case, an
additional state metric would then have to be defined which would be the time spent in the
Block. Thus, the second option is chosen in this research. As it is shown in subsection 6.3.4,
the location of the Event Blocks are all where pedestrians are expected to be moving.

Route Shares

Similar to the travel time, the route shares considers the sequence of Event Blocks vis-
ited by each pedestrian, and is derived per pair of Event Blocks. From the total number of
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pedestrians that arrive in an Event Block Bx , the share that departed from By is estimated
according to Equation 6.4.

sBy→Bx =
NBy→Bx

NBx

[-] (6.4)

Where sBy→Bx is the share of pedestrians who travelled from By to Bx , NBy→Bx is the
total amount of pedestrians who were identified at Bx coming from By , and NBx is the total
amount of pedestrians who were identified at Bx . This metric provides insights into both, the
routes used by the pedestrians and the direction of movement along these routes.

Current State History

As stated in subsection 5.3.2, not only the current states are of interest for describing the con-
ditions in the environment but also the state history. The state history represents the long
term movements of the state metrics, that is, how the metrics are developing over time. For a
certain value of the density in an Event Block (i.e. current state), the state history can indicate
the trend of this density, that is, whether it is increasing or decreasing, as well as how rapidly
this value is changing.

Three of the four baseline state metrics presented above are considered for the deriva-
tion of the state history: the flow, the density and the travel time. As the objective of the
history metrics are to indicate the trend of the metrics, the short term fluctuations have to be
smoothed out. In this research, the time series are smoothed using the exponential moving
average. This method is chosen over simple moving averages because it can account for the
fact that more recent observations have higher weight than older observations. It is desirable
to have such behavior in order to identify the most critical conditions, which are when the
state metrics are increasing rapidly (e.g. densities quickly moving to beyond critical indicat-
ing unsafe conditions). The exponential moving average is calculated recursively according to
Equation 6.5.

St =
x1 t = 1

α×xt + (1−α)×St−1 t > 1
(6.5)

Where St is the value of the exponential moving average at any time t , xt is the value of
the observed metric at time t , andα is the smoothing factor coefficient which ranges from 0 to
1. As discussed in subsection 5.3.2, the higher the value of α, the faster older observations are
discounted. Given the objective of smoothing the data, which is exactly to reduce the effect
of the ’peaks’ or noise, a smoothing factor of 0.25 is chosen for the derivation of the state
history. Figure 6.15 illustrates the effect of this smoothing for the flow and density metrics of
a scenario.

Disturbances

Finally, the last metrics to compose the crowd states vector relate to the known disturbances.
As stated in subsection 5.3.3, these metrics refer to known inputs into the system not cap-
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Figure 6.15: State history results

tured by the sensor at the time of measurement. In the study area of SAIL, the main distur-
bance source considered is the arrival of the ferry from the purple route, and the additional
demand into the environment it generates over the prediction horizon. The ferry load (i.e.
ferry demand divided by the capacity) is added as a metric to state vector. This metric relates
to the future demand, that is, the demand generated by the next ferry from the current time
of measurement. Thus, in each scenario, the ferry load is included in the state vector of the
time instants prior to its arrival time. That is, if the next ferry arrives at 1:20h, and the ferry
frequency is 20 minutes, the load value of this ferry is added to the state vector of all time in-
stants between 1:01h and 1:20h. This metric is the only metric which is not bounded to any
Event Blocks, as there is only one location where ferries arrive in the study area.

Overview of Crowd State Vector

An overview of the metrics presented above, and how these compose the crowd state vector is
given in Table 6.10. The trajectory data retrieved from the simulation of the scenarios is trans-
formed in the time series of the metrics presented in this table. The resulting database is thus
formed by the values of the metrics for each scenario i at time period t , and the state vector
is thus formed by all metrics m of scenario i at time t . The combination of the metrics and
the Event Blocks is also illustrated in the table. One can see that while there is a single value
of density to describe an Event Block Bx , there are two values of flow due to the consideration
of the distinct directions of this metric. For the travel time and route splits, there are n values
to describe each Event Block, where n is the total amount of Event Blocks which are the origin
of pedestrians whose destination is Event Block Bx . For instance, if an Event Block Bx is the
destination of 3 origin-Blocks, n = 3 and the route shares are derived from total amount of
pedestrians who arrive at Event Block Bx between [t −1, t ], coming from each B1,2,3.
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Table 6.10: Overview of Crowd State Vector Metrics - SAIL

Metric (Scenariot
i ) Event Block(s)

1 Density B x
2 Density History B x
3 Flow [Bx

−→
d , Bx

←−
d ]

4 Flow History [Bx
−→
d , Bx

←−
d ]

5 Travel Time (Q1 & Q3) [B(1...n) → Bx ]
6 Travel Time History (Q1 & Q3) [B(1...n) → Bx ]
7 Route Shares [B(1...n) → Bx ]
8 Ferry Load [Demandnext f er r y ÷C apaci t y f er r y ]

6.3.2. Individual Objectives & Proximity Measures

In this study, each objective consists of a combination of a scenario i , at time period t , and
a metric of an Event Block mBx . Only the ferry load is given per scenario, time period and
metric as it is not linked to a specific Block. Thus, two questions need to be answered: (1)
for the metrics which have multiple values per Event Block, how to combine these in order
to have one value per Block so that these are normalized across the metrics and (2) how to
formulate the objective function of each of these metrics.

In order to obtain a single metric per Event Block, the metrics for which multiple val-
ues per Block exist need to be combined in a meaningful way. For instance, one can define
whether the flow of an Event Block is an equally weighted combination of the two directions,
or if the direction with highest flow should be weighted higher. Similarly, combining the values
of the travel time of all origins to destination-Block Bx can be done by considering all the ori-
gins with the same importance, or origins with highest route share (i.e. where most visitors are
coming from) with higher weight. As considering different weights for combining these val-
ues requires additional assumptions regarding the relative importance of the values of each
direction (flow) or pair of Blocks (travel time & route splits), in this research it is decided to
combine the values considering equal weights.

The question regarding the formulation of the individual objective functions of each
metric requires two additional decisions. Firstly, the proximity measure to compare the real
and simulated values of each metric needs to be chosen, and secondly, if necessary, a way
to normalize the objectives which have different units and orders of magnitude needs to be
defined. Regarding the proximity measure, in line with other studies which compare real and
simulated pedestrian behavior through multiple metrics (e.g. Duives (2016); Sparnaaij (2017),
and due to practical reasons regarding the time available for this research, the objective func-
tion of each metric and scenario is defined by the Square Error (SE), according to Equation 6.6,
where mscen is the simulated value of metric m, and mr eal is the real value of the same metric.
These are then normalized for the metrics that require normalization, as discussed below.

SE t
i = (mscen −mr eal )2 (6.6)

From the metrics presented in Table 6.10, the only metrics which are already normal-
ized are the route shares and the ferry load, which vary from 0 to 1. Therefore, a normalization
method needs to be defined for the other metrics. In this research, this normalization is de-
fined based on the maximum possible variation of each metric, so that, similarly to the route
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shares and ferry load, the other metrics also vary between 0 and 1. For a detailed explanation
of this method and the reasoning behind the choice of using it, the reader is referred to Sec-
tion D.5. The normalization values are summarized in Table 6.11. The maximum value of the
density and the flow are derived from the critical density and capacity of the FD proposed by
Weidmann (1992), as these are the maximum value of these metrics on the FD. The travel time
is the maximum travel time in the scenario database between each pair of Event Blocks. A
more detailed explanation of how the squared error and the normalization values are applied
to each metric is presented below.

Table 6.11: Normalization of State Metrics

Metric Norm

1 Density kNor m = 5.4 [ped/m2]
2 Density History kNor m = 5.4 [ped/m2]
3 Flow qNor m = 1.225 [ped/s/m]
4 Flow History qNor m = 1.225 [ped/s/m]
5 Travel Time (Q1 & Q3) t tQ1,By→Bx ,Nor m = max

s∈S
By → Bx [s]

6 Travel Time History (Q1 & Q3) t tQ1,By→Bx ,Nor m = max
s∈S

By → Bx [s]

Flow - Current & History

The objectives of the current state and state history of the flow are all derived according
to Equation 6.7:

SEq,Bx =
1

2

(
qd1,scen −qd1,r eal

qNor m

)2

+ 1

2

(
qd2,scen −qd2,r eal

qNor m

)2

(6.7)

Where qd1 and qd2 are the flows in the two directions measured. It is considered im-
portant to highlight that not all Event Blocks are bidirectional at all times. As mentioned in
the scenario development, certain types of scenario have bidirectional flows in different areas
of the infrastructure while others do not. Nevertheless, Equation 6.7 is applied in all cases
as it provides an additional way to differentiate between these two situations. For instance,
if the real scenario has bidirectional flows in a certain Event Block, then qd j ,r eal is different
then zero in both directions j . When compared to two different scenarios, where in one only
qd1,scen is different than zero, and in the other both qd1,scen and qd2,scen are different than zero,
there is a higher chance that the error is larger in the first case, as the deviation computed by
the second term of the equation (i.e. qd2,scen −qd2,r eal ) is maximum.

Density - Current & History

The objectives of the current state and state history of the density are defined according
to Equation 6.8:

SEk,Bx =
(

kscen −kr eal

kNor m

)2

(6.8)

As each Event Block already has a single value of density, the squared error is simply
given by the density of the scenario for Event Block Bx (kscen) and the real density of the same
Event Block (kr eal ).
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Travel Time (1st & 3r d Quartiles) - Current & History

The travel time objective is a combination of both travel time metrics from the travel
time distribution, that is, the 1st (Q1) and 3r d (Q3) quartiles. The objectives of the current
state and state history of the travel time are all derived based on the same equation, and this
equation is described for each destination-Block Bx based on all n pairs By → Bx , where y =
[1,n] according to Equation 6.9:

SEt t ,→Bx =
1

n

n∑
y=1

1

2

(
t tQ1,By→Bx ,scen − t tQ1,By→Bx ,r eal

t tQ1,By→Bx ,Nor m

)2

+ 1

2

(
t tQ3,By→Bx ,scen − t tQ3,By→Bx ,,r eal

t tQ3,By→Bx ,Nor m

)2


(6.9)

Where SEt t ,→Bx is the square error of the travel time towards Event Block Bx . The first
term of the equation refers to t tQ1,By→Bx ,scen and t tQ1,By→Bx ,r eal , which are the scenario and
real values of the first quartile of the travel time of pair By → Bx , respectively, divided by the
normalization term of first quartile of the travel time for the same pair. This is combined with
the second term of the equation that refers to t tQ3,By→Bx ,scen and t tQ3,By→Bx ,r eal , which are the
scenario and real values of the third quartile of the travel time of pair By → Bx , respectively,
divided by the normalization term of the third quartile of the travel time for the same pair. In
order to obtain a single error value per Event Block, the average over all the origin-Blocks to
Block Bx is calculated.

Route Shares

Similarly to the travel time objective, the route shares objective is derived based on each
destination-Block Bx , given all n pairs By → Bx , where y = [1,n] according to Equation 6.10:

SEs,→Bx =
1

n

n∑
y=1

(
sBy→Bx ,scen − sBy→Bx ,r eal

)2
(6.10)

As the route share values of each pair By → Bx are already on a scale of zero to 1, no
normalization is necessary and thus the squared error is simply given by the scenario value
of the route share By → Bx (sBy→Bx ,scen) and the real value of the route share of the same pair
(sBy→Bx ,r eal ). In order to obtain a single error value per Event Block, the average over all the
origin-Blocks to Block Bx is calculated.

Ferry Load

The last metric included in the state vector is the ferry load, for which the objective is
formulated according to Equation 6.11:

SEload f er r y = (loadscen − loadr eal )2 (6.11)

As this metric is not bounded to an Event Block, the objective is given only by the com-
parison of the scenario load of the next ferry (loadscen) and the real load of the next ferry
(loadscen).
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6.3.3. Combined Objectives & Optimization Method

The choice of the optimization method to be used in this research is guided by the tasks it
needs to be capable of performing. For instance, the method needs to be able to find the
scenario which mostly closely approximates to the real conditions observed. Also, the di-
mensionality of the problem, that is, the number of individual objectives given the number
of metrics and Event Block is taken into account. Furthermore, practical considerations for
the purpose of this research are also taken into account in the selection of the method. This
includes how easy it is to implement the method within the time available for this research.

The individual objectives formulated in the previous section all add a piece of infor-
mation to describe the scenarios and the real crowd states. From these, the question to be
answered in this subsection relates to how to combine these individual pieces of information
in order to select the scenario from the database which most closely matches the real one.
As discussed in subsection 5.4.2, scalarization of the multi-objectives into a single-objective,
and further application of a single-objective optimization algorithm, is preferable over ap-
plying multi-objective algorithms, given the dimensionality of the problem addressed in this
research. Therefore, the first choice that needs to be made relates to the scalarization method.

The scalarization method used in this research is the weighted sum method (Marler &
Arora, 2010). The choice is made due to the practicality of the method, the considerations
made in subsection 5.4.2 regarding the application of the other methods and the implicit
weight those give to certain objectives over others. Given this choice, the following decision is
how to define the weights. As the individual objectives of each metric as proposed in the previ-
ous section are normalized, and apart from the ferry load all individual objectives correspond
to a combination of a single metric and a single Event Block, equal weights are assigned to
these when combining them to form the single-objective function. Although one could make
choices to prioritize certain Event Blocks (e.g. where densities are higher), and also certain
metrics over others (e.g. flows over travel time), in this research it has been decided that all
Blocks and metrics have equal weights. The objective function for comparing the state met-
rics of a scenario i at time t with the real crowd states for all metrics m and Event Blocks B
combined is given by Equation 6.12:

O = 1

Nm ×NB +1

(∑
m

∑
B

SEm,B +SEl oad f er r y

)
(6.12)

The value of the objective function O is thus given by the summation of the objective
functions of all metrics m and Event Blocks B , and the ferry load, divided by the total number
of metrics which are given per Event Block (Nm) in the state vector, multiplied by the total
number of Event Blocks (NB ) on the environment, plus 1 for the ferry load. As the proximity
measure used is the Squared Error, no negative values for the objectives exist, and these can
thus be summed over with no concerns about one cancelling the other out. Also due to the
choice of using the Squared Error, which is a dissimilarity measure, the objective function is
minimized as smaller values of O mean a closer match of the scenario to the real data.

Following the definition of the objective function is the decision regarding which algo-
rithm to use to search through the database. In this research, the Grid Search is used to find
the scenario. As presented by Sparnaaij (2017), when using the grid search algorithm, one can
guarantee that the global minimum is found as the entire set of possible options is considered.
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Furthermore, from the algorithms presented in Table 5.2, this is the most straightforward al-
gorithm to be applied to a discrete problem as the one addressed in this research. The grid is
defined by each metric of each Event Block of each scenario and time instant, so no lower or
upper bounds are manually determined. This method is more flexible as it does not require
prior definition of the metrics and objective functions to be considered in the search, and no
stopping criteria is needed. A drawback of this algorithm is that it is potentially slower as it
searches over the entire database.

6.3.4. Boundary Conditions

As previously mentioned, most of the objectives which form the optimization are composed
by a combination of a metric and an Event Block. The Event Blocks used for the prediction, as
discussed in subsection 5.4.3, are the locations where the real crowd states are derived from.
These are discussed under the boundary conditions as these locations and types of sensors
at each location are often defined by the event organization. For the study area of SAIL, the
location of the crowd monitoring systems were shown in Figure 6.2.

In this research, as the application of the method is for a case study based on the SAIL
event instead of the event itself, there is flexibility in the choice of Event Blocks for testing
the method. Thus, the boundary conditions defined by the sensor network of the event are
adjusted to consider an optimized sensor network based on the inefficiencies identified. The
purpose of this is to take the considerations made in subsection 5.3.1 into account for decid-
ing the locations where more sensors are needed. Although the original sensor network is still
used, this is theoretically extended to cover certain areas deemed relevant given the scenar-
ios presented in subsection 6.2.2. Besides, it is assumed that all sensor locations have both,
counting cameras and Wi-Fi sensors. Therefore, all state metrics which are defined per Event
Block can be captured at all locations.

In total, five sensors are added to the existing network, and the proposed network is
shown in Figure 6.16. The reason for adding sensors B1, B8 and B13 is so that the main en-
try and exit locations which were not yet covered by the existing sensor network are now in-
cluded. Adding sensors to this locations aims at identifying the demand into the event ter-
rain, rather than having a large inflow of visitors coming from for instance the east-end (B13),
which would then only be identified by the sensors once these arrive in B10. Regarding sensor
B4, as shown in subsection 6.2.1, this is the narrowest bottleneck on the event terrain, thus
monitoring the trend of the density over this location is considered relevant to identify rapidly
increasing trends earlier and thus take proactive measures. Lastly, sensor B6 is included due
to the already mentioned importance of that area along the Veemkade for the scenarios. The
concentration of activities (tall ships, commercial) and the expected high demand along that
route were the reasons for adding sensor B6, as in the original network there is a large gap
between B5 and B9.

The locations are represented by a circle due to the detection range of these sensors,
which can vary between different manufacturers and types of sensors. In this thesis, a radius
of 25 meter is assumed for all sensors. As it can be seen in the figure, there are in total 13
Event Blocks defined by sensors, for which all 7 Block-dependent metrics given in Table 6.10
are derived. The final set of metrics is the total number of metrics per Block and the ferry load.
The final crowd state vector thus has 92 metrics, and thus there are 92 individual objectives
which form the multi-objective optimization problem for the study case used in this research.
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Figure 6.16: SAIL - Proposed sensor network

6.4. Conclusions

This chapter introduced the mass event and simulation model used as tools for validating
the method proposed in this research. The selected mass event is based on the SAIL event,
and the microscopic model used for developing the scenario database is Pedestrian Dynam-
ics by INCONTROL Simulation Software. Based on the analysis of the event dynamics of SAIL,
considering the checklist for supply and demand analysis proposed in subsection 4.2.2, the
scenarios for which the inefficient dynamics can be identified were derived. These scenarios
form the main conceptual scenarios to be included in the database, that is, the scenarios for
which the usage of the infrastructure can potentially lead to discomfort and unsafe conditions
for the crowd. Eight scenarios were identified, and for each of these, six density levels are con-
sidered to differentiate between the scenarios for which the dynamics result in the appearance
of inefficient phenomena to the ones that do not.

To take the stochastic behavior of the simulation model into account when developing
these scenarios, the required number of replications is calculated for each scenario and den-
sity level. The sequential method proposed by Toledo and Koutsopoulos (2004) is chosen and
the metric used as reference for the calculations is the average travel time, as it takes the dy-
namics of the simulation into account given that it is derived from the trajectory information
of each agent. For all scenarios and density levels considered, the resulting required num-
ber of replications was smaller than 1, and therefore a single replication of each scenario and
density level is considered for the database.

Regarding the scenario selection system, the eight scenarios and corresponding six den-
sity levels are discretized in space in 13 Event Blocks, for which 7 metrics per Block exist to
describe its state. Each of the metrics of each Event Block, as well as the ferry load metric
which is not linked to any Blocks, forms a single objective for the multi-objective optimiza-
tion problem. Thus, 92 objective spaces exist, 1 for each metric of each Block, which are scaled
per scenario and time period into a single objective by the weighted sum method. A single-
objective optimization algorithm is thus chosen, which in this research the choice is made to
use the Grid Search approach. The analyses performed in Chapter 7 to validate the method
make use of the system developed according to the discussions presented in this chapter, and
the scenarios developed for the SAIL event.
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7
Forecasting Analysis

The main goal of this chapter is to get insights into the sensitivity of the forecasting results to
particular inputs from the real crowd states, and settings of the selection system. Three dif-
ferent objectives are used for the analyses. The research questions presented below illustrate
these objectives, which are further explained in the following paragraph.

• How are the predicted states affected by changes to the accuracy of the sensor data and
state estimation techniques?

• How are the predicted states affected by the choice of Event Blocks used for the search
process?

• How are the predicted states affected by the choice of state metric used for the search
process?

As presented in subsection 5.1.2, no sensor to date provides 100% accuracy for all con-
ditions. Thus, the first analysis performed in this chapter relates to the changes in the forecast-
ing results when the input data from the sensors contain errors. The second analysis relates to
the selection of the areas of the environment used by the selection algorithm when searching
through the database. The idea in this analysis is to assess whether all areas are needed for the
forecast, or if with a limited set of areas one can also perform the prediction.

As discussed in subsection 5.4.2, within the multiple objectives used by the optimiza-
tion algorithm, there might be conflicting individual objectives. Thus, trade-offs are often
necessary between the optimal solution for each individual objective, and so with larger num-
ber of objectives it is more likely that the individual errors of each objective are less optimal.
The idea of having a sub-selection of Event Blocks aims at reducing the number of conflict-
ing individual objectives, where the focus is then on the areas considered of relevance for a
particular scenario.

Finally, an analysis related to the selection of the metrics of the state vector used by
the selection system is performed. The reason for including this analysis relates to the con-
siderations made regarding the two aforementioned analyses. Given that some metrics are
likely to be more accurate than others, and the expectation that reducing the number of con-
flicting objectives can improve the prediction, it is decided to also assess the effect of using a
sub-selection of metrics.
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This chapter is build-up as follows. Firstly, the methodology for performing the afore-
mentioned analyses is presented in Section 7.1, where the scenarios and the measure to com-
pare the results are introduced. Following, the first analysis performed in this chapter, in Sec-
tion 7.2, relates to the changes in the forecasting results when the input data from the sensors
contains errors. Section 7.3 discusses the results of the second analysis, which relates to the
sub-selection of the Event Blocks used by the selection algorithm. Section 7.4 presents the
analysis which relates to the sub-selection of the state metrics used by selection system. Fi-
nally, a discussion on the findings of the analyses is carried out in Section 7.5, where practical
considerations regarding the resources for the application of the method are also presented.

7.1. Methodology

This section introduces the general methodology for performing the analyses of the sensitivity
of the system to each of the presented objectives. For performing the analyses, three choices
need to be made. Firstly, one needs to define the set up of the analysis, that is, the partic-
ular inputs, settings and variations of these which are going to be tested. These are distinct
for each of the three analysis objectives, and are thus further discussed in the section which
concerns the objective’s results. Secondly, a metric needs to be defined to quantitatively com-
pare the predicted states for the different inputs and settings tested. Lastly, the indicators to
qualitatively describe the prediction, that is, to assess whether the predicted behavior is rep-
resentative of the real behavior (i.e. of the real scenario) also need to be determined. As the
latter two are applicable to all the three analyses objectives, these are further detailed in this
section.

7.1.1. Test Scenarios

Due to time constraints of this research, a selection of the scenarios included in the database
is used for the analyses. From the 8 scenarios presented in Table 6.3, one of each benchmark of
inefficient dynamics is chosen. These are listed in Table 7.1. It is decided to use one scenario
of each benchmark because it is expected that these have different sensitivities to the objec-
tives analysed in this research. For instance, regarding the state metrics, in order to identify
whether a physical bottleneck is becoming active, the density and density history of the area
where the bottleneck is located are key indicators. On the other hand, for identifying the flow
interaction scenarios correctly, the density alone does not provide the required information as
a high density on an area might arise independently of the flow direction. Two density levels
of each scenario are used in the analyses, a high and an intermediate level, where the high
level relates to the appearance of the inefficiency.

7.1.2. Methodology Overview

Figure 7.1 illustrates the methodology used for the analyses. The steps and decisions regarding
the development of this method are detailed below.
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Table 7.1: Overview of test scenarios used for validating the algorithm

Test Scenario Density Level Inefficient Benchmark Case

1 Veemkade - East High - LOS F Physical Bottleneck
2 Veemkade - East Inter - LOS D Physical Bottleneck
3 Route - Bidirect High - LOS E Flow Interaction
4 Route - Bidirect Inter - LOS D Flow Interaction
5 Activity - Veemkade West High - LOS F Uneven Distribution over Network
6 Activity - Veemkade West Inter - LOS D Uneven Distribution over Network
7 Inefficient Route Choice High - LOS E Inefficient Choice Behavior
8 Inefficient Route Choice Inter - LOS D Inefficient Choice Behavior
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Perturbation    
(Section 7.2)                

(var 1...r)

ANALYSIS OBJECTIVES

Network 
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Figure 7.1: Overview of the Analyses Methodology

The first step of the analysis relates to the derivation of the ’real’ crowd state vector.
In this research, this ’real’ state vector is derived from the test scenario being analysed, at
a certain time instant. This time instant is chosen based on the time when the inefficiency
starts occurring for each scenario of the high density level (i.e. DL 6). For instance, in the
physical bottleneck scenario, this time instant is the time when queues start forming at the
bottleneck location. The same time instant is then used for the intermediate density level.
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Each simulation has in total 150 time instants (2.5 hours discretized in minutes), and the time
instant of each scenario are presented in Table 7.2.

Table 7.2: Time instant of each test scenario

Test Scenario Time (min)

1 & 2 Veemkade - East 105
3 & 4 Route - Bidirect 70
5 & 6 Activity - Veemkade West 90
7 & 8 Inefficient Route Choice 110

The scenario selection system is run for each real state vector, where the real states
are compared to each state vector of all scenarios and time instants in the scenario database.
These correspond to all scenarios presented in Table 6.3 and their corresponding six density
levels. For the scenario selection process, the sensor network used is the one shown in Fig-
ure 6.16, which consists of 13 Event Blocks, except for the sub-selection of Event Blocks ob-
jectives, where the number of Blocks used is reduced as further explained in subsection 7.3.1.
It has been decided in this research that the 5 optimal scenarios and corresponding time in-
stants (i.e. the 5 scenarios with lowest objective function value) are used in the analyses. This
is because, since the ’real’ crowd states are retrieved from a time instant of the scenario be-
ing analysed, there is a scenario in the database for which the objective function value can be
zero. Thus, only analysing the sensitivity of the selection system based on the optimal sce-
nario might falsely indicate low sensitivity, as it might often select the correct scenario. On the
other hand, analysing the results of the 5 scenarios most likely to be chosen can provide better
insights into the sensitivity of the system to changes in the ’real’ input and choices regarding
the settings of the method (e.g. number of individual objectives used).

In the remainder of this section, the discussion is on the choice of metric to compare
the real and predicted states, as well as the indicators to qualitatively assess the predicted
dynamics.

7.1.3. Qualitative & Quantitative Analysis

The prediction analysis is performed both qualitatively and quantitatively. In the qualitative
analysis, the real scenario’s dynamics are compared to the dynamics of the selected scenarios.
Two indicators are used in this comparison: (1) the route and activity demand and (2) the flow
regime.

The first indicator assesses whether or not the areas and routes that have higher de-
mand in the real scenario are the same areas as the ones in the selected scenarios. This is con-
sidered important as one can then identify whether the relative usage of the infrastructure is
comparable between the real and selected scenarios. The second indicator assesses whether
or not the scenarios selected correctly represent the condition of the real scenario in relation
to the appearance of inefficiency. As discussed in subsection 3.3.1, when the flow conditions
are at the unstable regime, or when these are transitioning to this regime, it is more likely that
the crowd is or starts experiencing discomfort, or that their safety is at risk. This unstable flow
regime is characterized by increasing densities, and reduced throughput.

For the quantitative analysis, the chosen metric to compare the real and predicted states
is the density. Unlike the flow, for which low values can indicate both free-flow conditions as
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well as congestion, each value of the density provides unique insights into the crowd state.
Thus, this metric is considered appropriate to compare the realized and predicted states of
each Event Block. This comparison relates to the states over the prediction horizon, that is,
whether or not the realized time series of the density are comparable to the predicted time
series for the next 15 minutes. Hence, a method to compare these density time series needs to
be defined.

There are multiple ways to compare two time series. As discussed in subsection 5.4.1,
not only Goodness-of-Fit measures such as the MAE (mean absolute error) and RMSE (root-
mean-squared error) can be used, but also test for underlying structure through the develop-
ment of metamodels such as ARMA (auto-regressive moving average). Deriving such models
requires additional time and computer resources, as one would have to derive one metamodel
per Event Block for the realized and predicted densities, and only then compare these for as-
sessing the prediction. Therefore, it is decided to use a GoF measure, more specifically the
mean absolute error to compare the real and predicted time series of the density of each Event
Block. The MAE is calculated based on Equation 7.1:

M AEi ;kB x,s =
1

n

n∑
j=1

∣∣∣k j − k̂ j

∣∣∣ (7.1)

Where M AEi ;kB x,s is the mean absolute error of test scenario i , derived from the time
series of the density of Event Block Bx and scenario selected s, over the prediction horizon, n
is the number of data points being compared, and k j and k̂ j are the densities of the selected
scenario and the real density at time period j , respectively. The MAE is chosen over the RMSE
because it has a clearer interpretation of its values for the purpose of comparison between the
prediction results, given that it doesn’t assign higher weight to possible outliers. As discussed
in subsection 7.1.2, the 5 optimal scenarios selected by the system are used for the analyses.
Therefore, the final value of the mean absolute error of Event Block Bx is given by Equation 7.2,
where ns = 5.

M AEi ;kB x =
ns∑

i=1

M AEi ;kB x,s

ns
(7.2)

In order to analyse the prediction validity of the system for the entire study area, includ-
ing the areas not used for the prediction step (i.e. in between sensors), an extended network
of Event Blocks is used. A total of 20 Event Blocks are defined, seven more than those used
for prediction, and these are spread on the event environment. Thus, for each test scenario i ,
a total of 20 M AEi ;kB x values exist. In order to have a single metric of comparison per analy-
sis objective and variation (ob jq , varr ), the average error of the density over all Event Blocks
(εi ;k,ob j q,var r ) is estimated according to Equation 7.3, where nB = 20.

εi ;k,ob j q,var r =
nB∑

x=1

M AEi ;kB x

nB
(7.3)

In the following sections, the results of the different objectives and variations are anal-
ysed for each test scenario. For these analyses, the εi ;k,ob j q,var r of each test scenario is com-
pared to a reference value based on the corresponding test scenario and analysis objective.
This reference is presented in the set up subsections of each analysis objective. The reason
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for comparing against this reference is to assess the extent to which an improvement or a de-
crease in the performance of the prediction from the reference are observed for each variation.
The change is determined according to Equation 7.4.

∆εi ;var r ;r e f =−(εi ;k,ob j q,var r −εi ;k,ob j q,r e f ) (7.4)

Where εi ;k,ob j q,var r is the error of the density of test scenario i over all Event Blocks for
analysis objective q and variation r , and εi ;k,ob j q,r e f is the reference error of the density of test
scenario i over all Event Blocks for analysis objective q . As the values of ε represent an error,
an increase in ε means a decrease in performance. Therefore, a negative sign in front of the
equation is applied.

7.2. Analysis of Sensor Data Perturbations

In this section, the results of the different analysis objectives related to the accuracy of the
sensor data and state estimation techniques are discussed. The main goal is to assess how
an overestimation or underestimation of the state metrics of the real state vector affect the
predicted states. Firstly, the set up of the analysis is defined, where the variations of the real
input to be tested are presented. Secondly, the results are shown and discussed.

7.2.1. Set up of sensor data perturbation analysis

From the eight metrics that form the state vector, presented in Table 6.10, a selection is made
for testing the sensitivity to the sensor data accuracy. The selected metrics are the density,
the flow and travel time, and their corresponding state history. Route shares are not tested
because of the complexity of applying under or overestimation errors to these given the way
they are defined. That is, one needs to determine which OD pairs would be the ones for which
the under or overestimation would be applied, and how the other OD pairs would be reduced
accordingly. As the results are dependent on these choices, route shares data remains un-
changed. Below, the assumptions to derive the perturbations of each metric are presented.

Regarding the sensors, as both macroscopic metrics (i.e. flows and densities) are de-
rived locally, that is, for a specific area or cross-section, the type of sensor commonly used
to derive these are video cameras. These sensors are one of the most accurate methods for
counting pedestrians, as discussed in Section C.1. However, tracking is not possible with video
cameras. Most commonly used sensors for tracking pedestrians, and thus deriving travel
times and route shares, are Wi-Fi and bluetooth. These are less accurate as they detect a low
share of the total amount of pedestrians.

In this research, it is of interest to assess the sensitivity of the prediction to an over and
underestimation of the selected state metrics for the different test scenarios. While the under-
estimation might be caused by the detection of less pedestrians than there actually are on the
environment, the overestimation can be the result of the state estimation techniques applied.
In the case of the travel time, the under or overestimation might be caused by the identifi-
cation of a non-representative set of the population. This can occur when for instance most
pedestrians identified are performing activities (thus having longer travel times), while in re-
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ality most pedestrians of the total amount in the crowd are not performing activities. Hence,
also due to the aforementioned considerations regarding the type of sensor each metric is de-
rived from, the travel time estimation errors are assumed to be higher than those of the flows
and densities. The input variations of each state metric to be tested are shown in Table 7.3.
The percentage of under or overestimation are applied to the time series of the current state
metrics (i.e. flow, density and travel time), then the corresponding state history metrics are
estimated from these time series.

Table 7.3: Input variations for sensor data analysis

Variation
Percentage of estimation variation

Direction & Metrics Level
Travel Time Flow & Density

Reference All metrics correctly estimated
Sensor Var 1 +25% +10% Over | All Low
Sensor Var 2 +50% +20% Over | All High
Sensor Var 3 -25% -10% Under | All Low
Sensor Var 4 -50% -20% Under | All High
Sensor Var 5 -25% +10% Over | Macro Low
Sensor Var 6 -50% +20% Over | Macro High
Sensor Var 7 +25% -10% Under | Macro Low
Sensor Var 8 +50% -20% Under | Macro High

The reference values of each scenario for this analysis are the εi ;k,ob j q,r e f when all met-
rics are 100% accurate (i.e. neither over nor under estimated). To exclude the possibility
that the differences analysed are caused by a reduction in the number of objectives, the se-
lection algorithm is set to use all state metrics and Event Blocks during the search through
the database. Regarding the variations shown in Table 7.3, variations 1 to 4 aim at assessing
whether there is a difference between the estimation directions (i.e. over or underestimation)
of the metrics for the different test scenarios. The two variations between the percentage of
each direction are included to analyse if even low under/over estimations (i.e. 25% and 10%)
can result in significant errors in the output. Following, variations 5 to 8 aim at analysing
whether distinct directions of variation for the different metrics can have distinct effects on
the prediction. For instance, when all metrics are under or overestimated (as in variations
1 to 4), it is expected that the selected scenarios are simply distinct density levels of the test
scenario used as input. However, when there is a difference between the estimation errors of
the different metrics, that is, when travel times are higher and densities lower, the dynamics
of a distinct scenario might be identified instead. This can be exemplified for the case where
travel times are overestimated and densities underestimated, from a physical bottleneck sce-
nario. The state vector might be then become more similar to the scenarios where a higher
share of visitors is performing activities, over the real scenarios where there is congestion due
to bottlenecks.

7.2.2. Results & Analysis

Table 7.4 and Table 7.5 present the ∆εi ;var r ;r e f for each test scenario i , and input variation r
of the sensor data perturbations’ objectives, derived according to the methodology described
in subsection 7.1.2. The values in the table indicate how much the error of each test scenario
i changes from its reference for each variation. The larger the increase in the error (i.e. the
more negative it is), the darker the shade of red of the cell, while the darker shades of green
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represent larger decrease in the error (i.e. positive values). These results are discussed below.

Table 7.4: Results of Sensor Data Perturbation Analysis - Sensor Var 1 to 4. The combinations are shown by their
variation number, direction, metric and level as shown in Table 7.3. Every column of each row represents the

change in the error from the reference. The more negative the value (the darker the shade of red), the higher the
decrease in the performance when compared to its reference.

Test Scenario
∆εi ;var r ;r e f

Over | All Under | All
1 - Low 2 - High 3 - Low 4 - High

1 Veemkade - East | High 0.00 0.00 -0.01 -0.11
2 Veemkade - East | Inter -0.01 -0.07 -0.04 -0.10
3 Route - Bidirect | High -0.03 -0.05 -0.04 -0.09
4 Route - Bidirect | Inter -0.02 -0.06 -0.02 -0.06
5 Activity - Veemkade West | High -0.03 -0.15 -0.06 -0.11
6 Activity - Veemkade West | Inter -0.03 -0.09 -0.04 -0.07
7 Inefficient Route Choice | High -0.01 -0.01 0.00 -0.11
8 Inefficient Route Choice | Inter 0.00 -0.03 -0.03 -0.10

Table 7.5: Results of Sensor Data Perturbation Analysis - Sensor Var 5 to 8. The combinations are shown by their
variation number, direction, metric and level as shown in Table 7.3. Every column of each row represents the

change in the error from the reference. The more negative the value (the darker the shade of red), the higher the
decrease in the performance when compared to its reference.

Test Scenario
∆εi ;var r ;r e f

Over | Macro Under | Macro
5 - Low 6 - High 7 - Low 8 - High

1 Veemkade - East | High 0.01 0.00 -0.02 -0.13
2 Veemkade - East | Inter 0.01 0.00 -0.06 -0.07
3 Route - Bidirect | High -0.01 -0.04 -0.01 -0.02
4 Route - Bidirect | Inter 0.00 -0.01 -0.01 -0.02
5 Activity - Veemkade West | High -0.04 -0.04 0.02 -0.02
6 Activity - Veemkade West | Inter -0.02 -0.05 -0.01 -0.05
7 Inefficient Route Choice | High 0.00 -0.01 -0.01 -0.01
8 Inefficient Route Choice | Inter 0.00 -0.02 -0.01 -0.02

Underestimation vs. Overestimation

From the results shown in Table 7.4, it can be seen that the sensitivity of the system to an
underestimation appears to be larger than that of the overestimation for most of the test sce-
narios. For instance, comparing the second and fourth columns of test scenarios 1 to 3, as
well as 7 and 8, a larger increase in the error is seen in the latter column. To further discuss
these differences, the 5 scenarios selected and used to calculate the error changes shown in
Table 7.4 are presented in Figure E.2. It is possible to see that the scenarios selected for vari-
ation 4 (Under|All, High) are often lower density levels of the same conceptual scenario from
its test scenario, or are a previous time instant of the same conceptual scenario. However, as
the time period of the test scenario is when the inefficiency starts occurring, selecting a time
period before that in the same scenario indicates a similar behavior as selecting a distinct den-
sity level. This is because the patterns or the relative usage of the infrastructure remain, but
the flow regime is distinct.
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Another aspect highlighted by the results shown in Table 7.4 is the difference between
the sensitivity of the high and intermediate density level scenarios to variation 2 (Over|All,
High). When looking at the second column of Table 7.4, where the metrics are highly overesti-
mated, the following can be observed. The increase in the error of test scenario 2 (second row,
second column) is larger than in test scenario 1 (first row, second column). Similar remark is
made for test scenarios 3 and 4, as well as 7 and 8. From this, it can be seen that the interme-
diate density levels are often more sensitive to this variation than the higher levels of the same
conceptual scenario. The reason for this can be expected to be due to the boundaries of the
states defined by the higher density level scenarios. As the observations apply for most of the
test scenario, except for test scenarios 5 and 6, remarks can be made regarding these observa-
tions. As defined in subsection 7.1.1, the test scenarios on the high density level relate to the
scenario for which the highest densities are observed for each conceptual dynamics. That is,
the high density level corresponds to the boundary of the prediction, or where the maximum
possible density that can be predicted for a certain inefficiency are. Thus, the larger sensitivity
for the underestimation for most test scenarios is expected to be due the lower frequency of
higher densities, as the ones in the overestimation variations, for the same dynamics in the
database. This expectation is based on the comparison between the distinct density levels, as
the intermediate density levels present a larger sensitivity to an overestimation if compared to
its high density level counterpart.

These errors are further illustrated through the time series of the densities shown in Fig-
ure 7.2 and Figure 7.3. The time series correspond to the Event Blocks where the highest den-
sities appear in the different test scenarios. The larger errors obtained for the underestimation
are highlighted in the time series of the densities shown in Figure 7.2. In this scenario, it can be
seen that the overestimation variations do not significantly affect the prediction if compared
to the results of the high underestimation variation. This is because of the aforementioned
boundaries of the states defined by the high density level scenarios. When analysing the pre-
dicted time series of test scenario 3 for the different variations (Figure 7.3), it can be seen that
the overestimation variations affects the prediction more than in test scenario 1. However, the
underestimation variations still more negatively influence the prediction given that not even
the pattern of the time series is captured. While the real development of the density rises, the
predicted time series of the underestimation variations remain almost flat.
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Figure 7.2: Test Scenario 1 | Resulting time series of density in Block 16
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Figure 7.3: Test Scenario 3 | Resulting time series of density in Block 4

When illustrating the time series of the densities of the test scenarios on the intermedi-
ate density level, the larger sensitivity to the overestimation of these if compared to the high
density level scenarios is observed. Figure 7.4 and Figure 7.5 illustrate how the prediction is
overestimated from the start, that is, from the first minute of the prediction horizon. Compar-
ing these patterns to the one from Figure 7.3, a key distinction is that in the latter the predicted
states diverge from the real ones over time. Overall, for both high and low density level sce-
narios, the prediction for the area where the the densities rise seems to be highly sensitive to
the perturbations of the sensor data.
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Figure 7.4: Test Scenario 2 | Resulting time series of density in Block 16
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Figure 7.5: Test Scenario 6 | Resulting time series of density in Block 7

When analysing the results of test scenario 5, a distinct aspect of the dependence of the
prediction on the database is highlighted, which could explain the different results. For this
scenario, the aspect highlighted relates to the areas of focus of each conceptual scenario in-
stead of the density levels. As presented in subsection 6.2.2, the Veemkade is an area where
several inefficient dynamics are expected. Therefore, the frequency of scenarios and time in-
stants in the database for which certain dynamics are observed on the Veemkade increases.
For example, the scenarios for the ’Activity - Veemkade West’ and ’Veemkade - West’ are dis-
tinct in the share of agents assigned to perform an activity. However, the areas where den-
sities and travel times increase, and flows decrease, when each of these inefficiencies occur
relate either to the same, or to very closely located Event Blocks. This increases the number
of scenarios and time periods in the database for which closely related states can be found.
Hence, when the algorithm searches through the database, there is likely a wider range of op-
tions for distinct conceptual dynamics for which the objective function values have relatively
low variance. This is not only due to the metrics used to describe the dynamics, but also the
Event Blocks taken into account by the scenario selection system when searching through the
database. For this same reason, test scenario 5 has the highest increase in error for the low
underestimation variation (column 3 - Under|All, Low).

The sensitivity of test scenario 5 for variation 2 (Over|All, High) is thus larger than the
other scenarios because of scenario ’Veemkade - West’. The demand for the west-end of the
Veemkade to activate the physical bottleneck on that location is higher than that for the ’Ac-
tivity - Veemkade West’ inefficiency. Hence the selection of the high density levels of the
’Veemkade - West’ scenario, as the crowd states of test scenario 5 in variation 2 (Over|All, High)
are overestimated across all Event Blocks.

Distinct Estimation Directions

The results shown in Table 7.5 indicate that, overall, the prediction error is not significantly
sensitive to the case when the perturbations of the distinct sensors occur in different direc-
tions. If compared to the ∆εi ;var r ;r e f values of Table 7.4, the error changes are lower. Sur-
prisingly, there are even some variations for which the error decreases if compared to the ref-
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erence, as it can be seen by the cells colored in green. This is because this error is derived
from the 5 scenarios selected by the system, and further compared to the reference case. As
it can be seen in Figure E.2 and Figure E.3, even in the reference case, where the data has no
perturbations, some of the five scenarios selected by the system are not from the dynamics
of the test scenario used as input. One can see this by looking at scenario selected 3, of test
scenario 2, in Figure E.2. Due to the previously mentioned dependencies of the prediction on
the database, similar states might occur in these different conceptual scenarios. The sensi-
tivity of the system to the perturbations on the input is thus assumed to be larger for similar
conceptual scenarios, as even short variations can change the scenario selected.

Unlike what was initially expected, the results shown in Table 7.5 and Figure E.3, indi-
cate that the perturbations in distinct directions do not significantly misidentify the test sce-
nario’s conceptual dynamics. Instead, the scenarios selected are commonly distinct density
levels of the same conceptual dynamics, or similar dynamics in terms of the route and activity
demand as well as flow regime. The reason for this might be two-fold. Firstly, the results are
dependent on not only the direction of the perturbation (under or overestimation), but also
on the scale. In this research, the data is perturbed by translating each data point in the de-
fined direction and scale, where the scale is given by the percentage change value (e.g. 50%).
From the results, it seems like that even when the data is highly perturbed, the state vector of
the other scenarios in the database are still further away from these perturbed states for most
test scenarios. This might be due to the perturbed pattern not existing in the database, or
simply because the scale of the perturbation was not too large. The results might be different
if different scales where used, or if the prediction did not take all Event Blocks into account.
Which leads to the second reason for the observed results, the areas of the environment used
for the prediction. If only a sub-selection of Blocks were used, for instance in the west-end of
the Veemkade, the perturbed patterns could be more representative of a distinct scenario.

Sub-conclusions

Overall, the prediction appears to be highly sensitive to the perturbation from the sensor data,
especially the underestimation of the state metrics. This is because the underestimation of the
state metrics might lead to the selection of a scenario at a time where flows are stable, and so
the high density areas which arise in reality are not correctly predicted. The frequency of par-
ticular states in the database in terms of the density level as well as areas where inefficiencies
occur can influence the prediction when the data is perturbed. This could be seen by the low
error changes for variation 2 (Over|All, High), when the overestimated metrics are beyond the
boundaries of the states that exist on the database for some scenarios, and so the predicted
states are commonly the highest density level ones. Regarding the areas, when the range of op-
tions from distinct scenarios which have similar patterns increases, the variance of the lower
bound of the objective function values decreases, and so small variations in the real states can
lead to the selection of distinct scenarios. This is observed specifically for test scenario 5, and
it occurs not only due to the metrics used to describe the dynamics, but also the Event Blocks
taken into account by the selection system. For instance, several scenarios focus on ineffi-
ciencies on the west-end of the Veemkade, and even the ones on the east-end influence the
states that can be found on the west-end. This increases the chance that the similar spatial
and temporal patterns of the state metrics exist in the database. Meanwhile, the conceptual
dynamics of the inefficient route choice is always identified, despite the sensor perturbations,
due to its unique patterns regarding the pairs of Event Blocks used by the pedestrians. Fi-
nally, the distinct estimation directions do not appear to identify distinct dynamics as initially
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expected. These might be due to the scale of the perturbations tested, which lead to spatial
patterns that do not exist in the database when the entire area is taken into account.

7.3. Analysis of Sub-Selection of Event Blocks

In this section, the results of the different analysis objectives related to the sub-selection of
Event Blocks is discussed. The main goal is to assess how the reduction in the number of
objectives considered by the scenario selection system influences the predicted states, where
this reduction is derived from excluding all state metrics of certain Event Blocks. The set up
of the analysis is presented in subsection 7.3.1, where the Event Blocks considered by the sce-
nario selection system for the prediction are illustrated for each test scenario. The results of
each input variation are shown in subsection 7.3.2, and a general analysis of these results is
performed.

7.3.1. Set up of sensitivity for choice of Event Blocks

As presented in subsection 6.2.2, each scenario has a specific area where the inefficient dy-
namics is expected to appear. For instance, scenario ’Activity - Veemkade West’, of the uneven
distribution over the network dynamics, focuses on the increase in demand for the activity lo-
cation at the west-end of the Veemkade. Thus, one can say it is important to more accurately
predict the dynamics of that particular area when the density starts rising at that location. In
order to assess whether or not this can be achieved with the scenario selection system, one
can decide to only take into account the Event Blocks relevant for the particular area of inter-
est for the prediction. Also, another aspect of the analysis through the sub-selection of Event
Blocks relates to not including the relevant Blocks to assess what the effect on the predicted
states is. This can give insights into how the scenario selection system performs in case sen-
sors are malfunctioning at critical locations and time. In this analysis, four sub-selections are
used, according to Table 7.6, and the selection system is run for each one of the test scenarios
presented in Table 7.1 for these sub-selections. The chosen six Event Blocks are shown in Fig-
ure E.4 to Figure E.7. The first sub-selection uses six Event Blocks, chosen based on not only
the area of interest but also the areas which generate flows towards this main area, and that
are assumed to influence the relevant areas within the 15 minutes time horizon. The second
sub-selection uses three of the six Event Blocks of the first sub-selection, to further reduce the
number of objectives considered by the search algorithm and focus on the areas where den-
sities are rising more rapidly. The third sub-selection relates to excluding the most relevant
Block (i.e. the one nearer the area where densities start rising). Finally, the fourth considers
the same three Blocks as the second sub-selection variation, however in this sub-selection
these Blocks are excluded.

Table 7.6: Input variations for choice of Event Blocks

Variation Number of Event Blocks

Reference All 13 Blocks
Blocks Var 1 6 Blocks
Blocks Var 2 3 Blocks
Blocks Var 3 12 Blocks (All - most relevant)
Blocks Var 4 10 Blocks (All - Blocks Var 2)
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The reference values of each scenario for this analysis are the εi ;k,ob j q,r e f when all 13
Event Blocks are used. To exclude the possibility that the differences analysed are caused by
errors from the sensor data perturbations, all metrics of the real state input for all variations
tested are 100% accurate. That is, no over or underestimation is applied. Also, for each Event
Block, all state metrics which define its state according to Table 6.10 are used. Therefore, for
variation 1, the total number of individual objectives is reduced from 92, in the reference case,
to 42, as for each of the six Event Block, all 7 metrics are taken into account. For variations 2,
3 and 4 the number of individual objectives is 21, 84 and 70, respectively.

7.3.2. Results & Analysis

Table 7.7 shows the prediction error results for the input variations of the sub-selection of
Event Blocks. From the results shown in the table, the sub-selection of only the relevant Event
Blocks does not seem to significantly influence the predicted states of the test scenarios anal-
ysed. As it can be seen in columns 1 and 2, for a larger part of the scenarios, both the 6 and 3
Blocks variations yield either a slight increase in the error, given the negative ∆εi ;var r ;r e f , or
no apparent change. Regarding the sub-selections which exclude the relevant Blocks, only the
10 Blocks variation appears to more significantly influence the prediction. This can be seen
by the values in the first and second rows of column 4, where the highest increase in the error
appears when the three relevant Blocks are excluded. Meanwhile, the results of column 3 indi-
cate that if a single Block fails, the error in the prediction does not significantly rise for any of
the scenarios. To better understand these results, the five scenarios selected and used to cal-
culate the error changes shown in Table 7.7 are presented in Figure E.9 and further discussed
below.

Table 7.7: Results of Sub-Selection of Event Blocks Analysis. The combinations are shown by their variation
number, direction, metric and level as shown in Table 7.6. Every column of each row represents the change in the
error from the reference. The more negative the value (the darker the shade of red), the higher the decrease in the

performance when compared to its reference.

Test Scenario
∆εi ;var r ;r e f

6 Blocks 3 Blocks 12 Blocks 10 Blocks

1 Veemkade - East | High 0.00 0.01 0.00 -0.14
2 Veemkade - East | Inter -0.02 0.03 -0.01 -0.06
3 Route - Bidirect | High -0.01 -0.01 0.00 -0.01
4 Route - Bidirect | Inter -0.01 -0.01 0.00 -0.01
5 Activity - Veemkade West | High 0.01 0.01 -0.01 0.00
6 Activity - Veemkade West | Inter -0.01 0.00 0.00 0.00
7 Inefficient Route Choice | High 0.00 -0.01 0.00 0.01
8 Inefficient Route Choice | Inter 0.00 -0.01 0.00 0.00

The results of Table 7.7 and Figure E.9 indicate distinct behavior for the different test
scenarios. The sub-selection of the three relevant Blocks improves the prediction of test sce-
narios 1, 2 and 5 only, as it can be seen in the values of column 2. Similarly, the results shown
in column 4 indicate that the sub-selection which excludes these three relevant Blocks mostly
deteriorates the prediction of test scenarios 1 and 2. These results can be explained by the
Event Blocks selected for these analyses. For test scenarios 1 and 2, when 3 Blocks are sub-
selected, these exclude the Blocks at the west-end of the Veemkade, only focusing on the
Blocks on the east-end of that route. This in turn can assist in making the distinction be-
tween the scenarios in the database which focus on each end of that route. When 6 Blocks are
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used, however, this distinction does not occur, as the areas on the west-end are also taken into
account. Thus, the selection algorithm searches for a scenario in the database for which both
ends of the Veemkade have less error. The results of test scenario 5 support this reasoning as
both the sub-selection of 6 and 3 Blocks improve the results, given that both exclude the east-
end of the route, thus enabling the distinction to be made. For the same reason, when the
three relevant Blocks on east-end of the Veemkade are excluded in the 10 Blocks variation, the
selection system identifies the scenarios based on the information obtained from the Blocks
on the west-end. Hence, the scenarios selected correspond to the Activity - Veemkade West.

To illustrate the results discussed above, Figure 7.6 to Figure 7.7 show the mean absolute
error per Event Block, where the Event Blocks nearest to the location where the inefficiency
occurs are highlighted in red. From the figures, it is possible to see that, for test scenarios 1
and 2, the errors in the prediction rise at both ends of the Veemkade when only 10 Blocks are
used. The main Blocks that represent the east-end and Blocks 16 and 14, while the west-end
are 9 and 8, which are the Blocks with higher errors in Figure 7.6. This is because of the afore-
mentioned fact that the selection system is unable to differentiated between the scenarios of
the two ends of the Veemakde when the relevant Blocks which enable the differentiation are
excluded.

For test scenarios 2 and 5 shown in Figure 7.6b and Figure 7.7a, respectively, the sub-
selection of 3 Blocks improved the prediction exactly on the areas near the inefficiency loca-
tion. Similarly, the results for the variation when 6 Blocks are used for test scenario 2 (Fig-
ure 7.6b) illustrate that the larger errors are on the Blocks on the west-end of the Veemkade
(Blocks 9 and 10), as well as Block 16. These results illustrate the trade-offs when a larger num-
ber of individual objectives is used for the selection, as less optimal individual solutions are
found when more objectives are considered.

Density MAE per Event Block - Test Scenario 1
Sub-Selection of Event Blocks Results
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Figure 7.6: Mean absolute error per Event Block | Sub-selection of Event Blocks - Test scenarios 1 & 2
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Figure 7.7: Mean absolute error per Event Block | Sub-selection of Event Blocks - Test scenarios 5 & 6

Sub-conclusions

Overall, the effect of the sub-selection of Event Blocks when only the most relevant Blocks
are considered can improve the prediction. This is because it reduces the effect of the trade-
offs by focusing on the relevant areas, where densities are rising. This finding supports the
idea that building smaller-scale scenarios, with a focus on a certain area can be beneficial for
the performance of the prediction. This is because by having an area of focus, less overlap
between the crowd states obtained from different scenarios and inefficient dynamics can be
expected. This in turn facilitates the process of selecting a scenario from the database in which
the densities are rising in the correct location.

Regarding the sub-selection which excluded the most relevant Blocks, the prediction is
not significantly affected when a single sensor fails as the other sensors provide enough infor-
mation for identifying the correct scenario. However, another conclusion can be drawn given
the results of the analysis when 3 relevant Blocks are excluded. The prediction can be nega-
tively influenced when the Blocks used over the ones that are excluded relate to the area of a
different inefficiency, for which similar states occur. Following the discussion above regarding
the smaller-scale models, the reduction in the overlap between the states that occur in differ-
ent areas, but that relate to different scenarios, can be obtained. However, even if small-scale
models are used, the misidentification issue can remain when two inefficiencies occur in ar-
eas very close to one another. This is because the Event Blocks used for by the selection system
for these might not able to make the differentiation alone. The importance of the state met-
rics chosen to describe the scenarios when small-scale models are used is then highlighted,
as these can provide the additional layer of differentiation.
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7.4. Analysis of Sub-Selection of State Metrics

In this section, the results of the different analysis objectives related to the sub-selection of
state metrics are discussed. The main goal is to assess how the reduction in the number of
objectives considered by the selection system influences the predicted states, where this re-
duction is derived from excluding certain state metrics of all Event Blocks. The set up of the
analysis is presented in subsection 7.4.1, where the state metrics and combinations of metrics
used for the input variations are illustrated. The results of each input variation are shown in
subsection 7.4.2, and a general analysis of these results is performed.

7.4.1. Set up of sensitivity for choice of State Metrics

In subsection 7.2.1, it was presented how different real state metrics can have distinct accu-
racy depending on the sensor these are derived from. For instance, flows and densities are
often more accurate metrics than travel time, as they are derived from video cameras. Thus,
performing the prediction based on a selection of state metrics assumed more accurate can
be expected to improve the results. Similar to the considerations regarding the sub-selection
of Event Blocks, the sub-selection of State Metrics can reduce the number of conflicting ob-
jectives used by the optimization algorithm.

The sensitivity of the predicted states to five sub-selections of state metrics is tested in
this subsection. These input variations are shown in Table 7.8. While variations 1 to 3 test the
sensitivity of the output to each metric individually, where variation 1 (q) corresponds to only
flows, variation 2 (k) to only density and variation 3 (tt) to only travel times, variations 4 (k&q)
and 5 (k&tt) combine two metrics. For the k&q variation, only macroscopic metrics are taken
into account (i.e. density and flow). Meanwhile, the k&tt combines the density with the travel
time. The density is used in both combinations because, as mentioned in subsection 7.1.3,
each value of the density provides unique insights into the state of the crowd, and is also the
metric used for assessing the performance of the prediction.

Table 7.8: Input variations for choice of State Metrics

Variation State Metrics (current & history)

Reference All 8 metrics
Metric Var 1 Flow (q)
Metric Var 2 Density (k)
Metric Var 3 Travel Time (tt)
Metric Var 4 Density & Flow (k&q)
Metric Var 5 Density & Travel Time (k&tt)

The reference values of each scenario for this analysis are the εi ;k,ob j q,r e f when all state
metrics defined in Table 6.10 are used. To exclude the possibility that the differences analysed
are caused by errors from the sensor data perturbations, all metrics of the real state input for
all variations tested are 100% accurate. That is, no over or underestimation is applied. Also,
all 13 Event Blocks are used for all variations defined in Table 7.8, where only the metrics used
for describing each Block’s state are reduced. For q, k and tt variations, the total number of
individual objectives decreases from 92 to 26 (e.g. flow and flow history of each one of the 13
Event Blocks). For k&q and k&tt variations, the number of individual objectives is 52.
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7.4.2. Results & Analysis

Table 7.9 shows the prediction error results for the input variations of the sub-selection of State
Metrics. Overall, it can be seen that the use of the travel time metric, by itself or in combination
with the density, seems to cause most significant increase in the prediction error. This can be
seen by comparing the results of columns 3 and 5, where travel time is used, with the other
columns. These results are confirmed by the scenarios selected shown in Figure E.11. The
highlights of this analysis are further discussed below.

Table 7.9: Results of Sub-Selection of State Metrics Analysis. The combinations are shown by their variation
number, direction, metric and level as shown in Table 7.8. Every column of each row represents the change in the
error from the reference. The more negative the value (the darker the shade of red), the higher the decrease in the

performance when compared to its reference.

Test Scenario
∆εi ;var r ;r e f

Only q Only k Only tt k, q k, tt

1 Veemkade - East | High -0.02 0.01 -0.13 0.01 0.00
2 Veemkade - East | Inter 0.01 0.03 -0.06 0.03 -0.01
3 Route - Bidirect | High -0.01 -0.01 -0.01 -0.01 0.00
4 Route - Bidirect | Inter -0.02 0.00 -0.05 -0.02 0.00
5 Activity - Veemkade West | High 0.01 0.02 -0.01 0.01 0.01
6 Activity - Veemkade West | Inter 0.00 0.01 0.00 0.01 0.00
7 Inefficient Route Choice | High 0.01 0.03 -0.04 0.03 -0.04
8 Inefficient Route Choice | Inter 0.01 0.01 -0.01 0.01 -0.01

The improved results when only the density is used as a metric can be explained due to
the aforementioned considerations about the uniqueness of the states that the values of the
density describe. Besides, as defined in subsection 7.1.3, the metric used to assess the perfor-
mance of the prediction is the density. This can partially explain the increase in performance
for the variation when only the density is used. On the other hand, the negative results of
the travel time are due to the opposite behavior of this metric if compared to the density, as
the values of the travel time can be the result of multiple distinct traffic patterns. In this re-
search, as presented in subsection 6.3.1, it was decided that the the travel time metric would
be defined by the first and third quartiles of the travel time distribution. This choice aimed
at providing an additional layer of differentiation of the values of this metric for the different
scenarios. However, it appears that this is not fully achieved by these chosen metrics. The
question is thus whether the travel time as it is defined in this research is an appropriate met-
ric to be included in this method, or if other metrics could be used to quantify the conditions
along the routes. It is possible that adding more parameters related to the travel time dis-
tribution could improve the differentiation between the scenarios, for instance the standard
deviation.

From the results of the combination between the density and the other metrics, the fol-
lowing can be observed. Although adding the travel time to the density negatively influences
fewer scenarios than only using the travel time, when compared to the case when only the
densities are used, the decrease in performance is still significant. For instance, for test sce-
nario 2 the prediction error when only using the density decreases, while when densities and
travel times are used it increases. These indicate the travel time can actually hinder the ability
of the system in identifying the scenarios. However, without the travel time, so for instance
when only the macroscopic metrics are used, no information about the conditions over the
routes are included in the prediction. If there are more Event Blocks to describe the condi-
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tions of certain areas, this might not be a problem as the local density and flow information
might be enough to differentiate between the scenarios. In case the Event Blocks are spread on
the environment, which is more often the case in mass events, having no information about
the condition on the routes between these Blocks can be problematic. The chance of an in-
efficiency appearing in a location not covered by an Event Block increases as these Blocks get
further apart. Hence, although the results shown in Table 7.9 and Figure E.11 indicate that
only using densities and flows improves the prediction, these results might be different for
distinct sensor networks.

Sub-conclusions

So, it is clear that the sensitivity of the system is different per metric. The results show that, for
the state metrics used in this research, removing certain metrics can improve the prediction.
However, this improvement depends on the metrics which are excluded and how well the
remaining ones can uniquely identify the scenarios in the database. For instance, when only
the density is used, the scenarios and density levels can be identified due to the unique states
the density values defined. On the other hand, the travel time metric can be the result of
multiple distinct traffic patterns. Although the results appear to be negatively influenced by
the usage of the travel time metric, this is the only metric which describes the conditions over
the routes between the sensors. When the sensor network has sensors positioned spread on
the environment, having information about the conditions in between these sensors is clearly
important. Thus, instead of completely excluding this metric, it is preferable to define ways to
improve the information one wants to obtain from this metric. One can think of for example
adding more parameters related to the distribution of the travel time, which could provide the
differentiation between the scenarios.

7.5. Discussions & Practical Considerations

The previous sections present a number of findings regarding the sensitivity of the forecast
for particular inputs from the real crowd states and settings of the selection system. In this
section, these findings are discussed for the application of the forecasting method. Two as-
pects of the results are discussed, as these appear to be more influential on the performance
of the system. The first aspect relates to the dependence of the prediction on the states found
in the database, discussed in subsection 7.5.1, while the second aspects relates to choices of
the individual objectives used by the selection system, presented in subsection 7.5.2. Finally,
some practical considerations regarding the development and application of the method, in
light of the objective of real-time crowd movement forecast, are discussed in subsection 7.5.3.

7.5.1. Dependence on Crowd States Database

From the analyses performed in the previous sections, the dependence of the results on the
states included in the database is highlighted. Particularly the frequency of certain state vec-
tors with similar values on the different areas of the environment can significantly change the
scenarios which are selected. When certain areas are the focus of multiple conceptual scenar-
ios, the chance that there are particular states in the state vector with similar values increases,
thus making it more difficult to differentiate between the scenarios. This can be problematic
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when the scenario selected does not indicate the correct flow regime and appearance or not
of the inefficiencies over the prediction horizon. For instance, in the case study used in this
research, two inefficient dynamics were identified on the west-end of the Veemkade. One re-
lates to the activation of a physical bottleneck while the other relates to the increased demand
for the activities on that area. In order to activate the bottleneck, the total demand on the en-
vironment for which the flow regime becomes unstable is higher than that for the inefficiency
regarding the increased activity demand. As the dynamics are described by the state metrics
derived at the discrete locations of the Event Blocks, similar states are derived from these two
scenarios. However, the future development of these can be significantly different.

The limitations in terms of differentiating between these similar state arises from a
combination of the metrics and areas used for describing the scenarios. Thus, one possible
way to address this issue would be to change the way the scenarios are developed for instance
by narrowing down the simulation space. Instead of developing the scenarios simulating all
the different areas, the scenarios could be developed specifically for the areas where the inef-
ficiency is occurs. This could also assist in enabling better control over the scenarios and how
these can be differentiated.

Another aspect of the dependence on the database relates to the boundaries of the
states that exist in the database. The highest and lowest density levels of each conceptual
scenario define the maximum and minimum states that can be found on the different Event
Blocks. One observation regarding such boundaries is that when the state metrics are overes-
timated, the prediction would tend towards the scenario which shows the appearance of the
inefficiency. This would be on the ’safe side’ if compared to the effect of having underesti-
mated metrics, which would lead to the opposite effect. The problem appears when there is
overlap between the different scenarios in terms of their area of focus, as in such case these
boundaries can be poorly defined. This means that the overestimation of the state metrics
can induce the prediction towards distinct scenarios, for which the states are closer to these
overestimated states. These distinct scenarios might illustrate the appearance of the a dis-
tinct inefficiency, which might induce crowd managers to wrongly define which strategy to
apply. Using the same example of the inefficiencies on the west-end of the Veemkade, if the
higher densities are occurring due to the increased demand for the activity, a strategy could
be to redirect visitors to other activities. In case the higher densities are occurring due to the
activation of the bottleneck, it might be better to limit the inflow into the area.

So, for the method to be robust against the similarities of the scenarios in the database,
and over or under estimation of the real states, one would have to first test the frequency
of certain states in the database which are within some similarity bounds. Identifying these
could provide guidance on how these similar states with distinct developments could be dif-
ferentiated.

7.5.2. Choices regarding the sub-selection of Individual Objectives

The analyses of the sub-selection of Event Blocks and state metrics both relate to the question
of which individual objectives to use for the prediction. In many ways this question also re-
lates to the weight assigned to each individual objective when combining these into a single
objective. It is clear from the results that both an improvement and a decrease in the perfor-
mance of the prediction can occur from the choices regarding these objectives. Both choices,
that is, which Event Blocks and which state metrics should be used, relate to the uniqueness
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of the states and scenarios these can define.

When choosing the Event Blocks, the sub-selection can most improve the results in the
sense of identifying the inefficiency and density level if the dynamics of the areas selected are
specific for a particular scenario. The areas chosen should correspond to the Blocks where
unique states related to a specific inefficiency occur. For instance, if it is known that a bottle-
neck is becoming active, the Blocks should be chosen such that the areas near that bottleneck
capture the dynamics of the bottleneck only. This means excluding the Blocks that relate to
a different inefficiency and which generate similar states to the ones observed when the bot-
tleneck is becoming active. This might not be straightforward, as depending on how the envi-
ronment is discretized by the Blocks, it might be the case that certain inefficiencies are related
to same Blocks. In such case, combining the sub-selection of Blocks with the sub-selection of
state metrics can assist in making this differentiation.

Similar to the choice of Event Blocks, when choosing the sub-selection of state metrics
to be used, the ability of the individual metrics to uniquely identify certain scenarios must be
taken into account. Based on the results of subsection 7.4.2, the sub-selection of metrics can
most improve the identification of the scenarios when the metrics that can be the result of
multiple distinct scenarios are excluded. In the case study and test scenarios of this research
such metric is the travel time, as the individual and combination of metrics which do not
include travel time can better identify the scenarios.

So, the insights into the influence of distinct choices of Event Blocks and state metrics
can be combined for improving the prediction. By understanding the effect of the different
metrics, and the uniqueness of certain states in specific Blocks, one can define specific metrics
for each Event Block which could improve the robustness of the system in terms of making
distinctions between the scenarios. Further research is needed into these combined choices
and the effect of these on the scenarios which are selected. For these further studies, one
can investigate the database, that is, the frequency of certain values of the metrics of each
Event Block, identify the scenarios for which similar states occur, and use such knowledge for
defining the settings of the selection system.

7.5.3. Practical Considerations

The practical considerations addressed below relate to the resources used to build the database
(offline step) and run the selection algorithm (online step). The computer available for this
research is a Windows 10 laptop, Intel core i7 - 4800MQ CPU @ 2.70 GHz, 16 GB RAM, 64-
bit Operating system. Regarding the offline development of the database, as mentioned in
subsection 6.2.3, 240 simulations are run to account for the 8 scenarios and corresponding 6
density levels, as well as the 5 replications per scenario and density level to estimate the re-
quired number of replications. Pedestrian Dynamics ®3.2 is the version of the microscopic
model used for running the simulations. All scenarios have a duration of 2.5 hours, which
on average corresponded to 2 hours of simulation time in the computer available for this re-
search. The average amount of agents simulated per scenario is 75,000, where the maximum
is about 100,000. The size of the output files from Pedestrian Dynamics for all scenarios to-
gether is 67 GB. This refers to the 8 scenarios and corresponding 6 density levels, as a single
replication is enough for each scenario and density level to account for the stochasticity.

The output files from Pedestrian Dynamics of these 48 simulations are used to derive
the crowd states and generate the crowd states database, which is the input of the online sce-
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nario selection system. The size of the final database is 10.2 MB, which is a significant reduc-
tion from the original output files. The scenario selection algorithm is developed and run in
MATLAB R2020a version, installed in the same laptop described in the previous paragraph.
In such laptop, the algorithm takes an average of 2.24 seconds to run and return the selected
scenarios.
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8
Conclusions, Discussions & Recommendations

In this chapter, the main conclusions of the research presented in this report are drawn. These
conclusions are presented in relation to the research questions in Section 8.1. From the find-
ings and analyses done in this research, Section 8.2 discusses the limitations of the method.
Finally, Section 8.3 presents the recommendations that can be made based on the results and
limitations identified from the application of the proposed method.

8.1. Conclusions

The objective of this research is to develop and validate a real-time crowd movement forecast-
ing method in which simulation is an offline step for the online forecast. The main research
question identified in this research is the following:

How to design and apply a real-time crowd movement forecasting method, which is
populated with a database of pre-simulated scenarios and uses a multi-objective

optimization approach?

From a review of the literature in existing crowd movement forecasting methods, it is
noticed that, for simulating in real-time, most model-driven methods make a trade-off be-
tween behavioral validity and computational burden. Models which validly reproduce the
different movement base cases and crowd phenomena observed in real life, and are thus ex-
pected to yield more accurate predictions, are disaggregate models, known for being com-
putationally expensive. Thus, literature suggests that methods to enable implementing these
behaviorally valid models for real-time prediction are sought after.

As the main research question presented above states, a database of pre-simulated sce-
narios must be built. To understand the types of scenarios that occur during a mass event for
which prediction would be desirable, theory in pedestrian traffic and crowd management is
studied in Chapter 3. From this literature study, four benchmark cases of inefficient dynamics,
shown in Figure 3.6, were identified, which indicate the typical conditions for the appearance
of unstable flow regime. When the flow regime is unstable, densities increase and walking
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speeds decrease. Hence, when such flow regime occurs, the probability that the crowd expe-
riences discomfort and potentially unsafe conditions rises. Thus, these benchmark cases are
seen as relevant for prediction.

The scenario database is the first pillar of the method proposed in this research. To
identify and build the scenarios, the framework proposed, shown in Chapter 4, includes three
main stages. Firstly, through an analysis of the supply and the demand of the event, the spe-
cific areas and times at which the crowd could face discomfort or threats to their safety are
pinpointed. Secondly, the inefficient dynamics of the event are identified based on the known
dynamics of the benchmark cases and supply and demand analysis performed. In Chapter
4, it was also argued that the conditions for which the observed dynamics do not lead to the
appearance of inefficiencies must be included in the database. Hence, for the third step, to
build the scenarios in the simulation environment, the concept of density levels is introduced.
Density levels relate to the demand pattern, that is, the total amount of agents generated per
time period, and is responsible for making the distinction between the scenarios for which
the relative usage of the infrastructure remains the same, but the higher demand induces the
unstable flow regimes to occur. Together, these inefficiencies and their corresponding density
levels form the scenario database to be used for the prediction.

The second pillar of the method is the real-time scenario selection system, which in
this research is based on a multi-objective optimization approach. As discussed in Chapter
5, to apply the multi-objective optimization for prediction, the concept of crowd states as in-
troduced in Section 3.1 is used. This concept, commonly used in system theory, refers to the
the metrics which contain the key information expected to describe the state of the crowd at
a certain time instant. For formulating the multi-objective problem of this research, the tra-
jectory data from the simulation of the scenarios is converted into the time series of crowd
state metrics, derived at discrete locations on the event terrain. This enables the application
of the multi-objective optimization approach. Each individual objective that composes the
multi-objective problem is formulated when the real state metrics are compared to its cor-
responding field of the state vector of each scenario and time period in the database. This
real states are derived from observing the real crowd and from knowledge about future distur-
bances into the system over the prediction horizon. The prediction is thus the scenario and
time period in the database for which the states most closely correspond to the real states.

The proposed method is validated in the analyses performed in Chapter 7. The first
analysis, related to the sensor data perturbations, indicated that the system is more sensitive
to an underestimation of the state metrics than an overestimation, due to the boundaries cre-
ated by the scenarios on the high density level. Also, the analysis showed the importance of
assessing the frequency of particular states in the database. This frequency relates to both the
density level and the areas where inefficiencies occur. It can influence the scenario selection
process by decreasing the variance of the objective function values of scenarios best ranked
by the selection algorithm. This lower variance can in turn mislead the prediction by increas-
ing the chance that a distinct scenario for which the current state is similar to the real states
is chosen, but for which the future developments are not as these can arise from distinct con-
ceptual scenarios. Especially when the data is perturbed, the likelihood that distinct scenarios
would be selected increases.

In Chapter 7, the influence of the choices regarding the individual objectives used by
selection algorithm were also analysed. It was found that the sub-selection of areas and state
metrics can both improve and deteriorate the performance, and the results are dependent on
the uniqueness of the scenarios these individual objectives can define. The sub-selection of
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Blocks to focus on the areas where the high densities arise indicate that if smaller-scale models
for the different areas of the infrastructure where built, the prediction could still be performed
through this method. This would not only save time and effort in building the scenarios, but
also provide more control over the simulation process.

To conclude, the discussions above highlight two aspects of the forecasting method pro-
posed in this research. These relate to the individual choices when designing the database
and applying the scenario selection system. The first aspect relates to the choices regarding
the scenario database. One should develop the database for the specific situations and dy-
namics that can occur on the different areas of the event environment for which prediction
would be desirable. Identifying such situations and corresponding dynamics narrows down
the scenario space to a representative set. The differentiation between the scenarios for which
discomfort and unsafe conditions arise from those that such conditions do not occur is then
simply done based on the demand pattern.

Regarding the application of the scenario selection system, the frequency of particular
states in the different areas of the environment is highlighted. The overlap between similar
states in these different areas arising from different scenarios can influence the prediction
by reducing the variance of the lower-bound of the objective function values. This in turn
facilitates that, if the data is perturbed, the scenario selected is incorrect. Building small-scale
models of the different areas of the environment could assist differentiating between these.
Also, reducing the number of conflicting objectives, by sub-selecting areas or state metrics, to
a set that can be specific for a particular observed behavior can also improve the prediction.

8.2. Discussions

This section discusses the limitations identified for this research. Firstly, aspects of the de-
velopment of the scenario database are discussed in subsection 8.2.1. Regarding the scenario
selection system, the discussions of subsection 8.2.2 focus on the state metrics and formula-
tion of individual objectives. Finally, subsection 8.2.3 discusses the results obtained from the
analyses performed.

8.2.1. Discussion on Scenario Database

From the steps of the scenario development framework, multiple decisions need to be made
for the application of these steps. The limitations regarding the choices for the identifica-
tion of the inefficient dynamics, the density levels and the simulation of the scenarios are
discussed in this section.

Inefficient Dynamics

This research assumes that the scenarios to be included in the database are based on the four
benchmark cases of inefficient dynamics. This limits the prediction to the situations defined
by these four cases. As the benchmark cases are derived from literature, it is expected that
these are able to capture a relevant set of scenarios that can occur for which prediction might
be needed. However, as the set of scenarios developed is not compared to real data from the
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event, this research cannot determine the realism of the scenarios developed based on this
method. Also, it is not possible to determine whether the method can be generalized for mass
events. This would required applying it for different cases and identifying the cases for which
it is applicable, but especially for the ones that it fails.

Density Levels

The concept of density levels as introduced in this research is key for differentiating the sce-
narios for which the inefficiency occurs from those that it does not. In this research, the step
size to increase the density level from the minimum to maximum of each scenario is constant,
that is, the density levels are equally distant. Based on the analysis of the results, the density
level can play a significant role when the real data is perturbed. For instance, if the real data
from the sensors is underestimated, the scenario selection is often a lower density level than
it is actually observed in the environment. Given this finding, one could argue that, the larger
the density, the more relevant it is to perform accurate predictions. This would mean that the
step size between density levels on high density conditions should be smaller than those on
the lower density conditions. This wider range of options of higher densities on the environ-
ment could improve the prediction if one considers that the real data from the sensors has
perturbations.

Simulation

One aspect of the development of the scenarios is the fact that many simulations are run prior
to the event for developing the scenario database. For very large and complex event areas, or
for events that occur in multiple days in which different infrastructure and activities occur on
these days, the scenario database can be significantly large. Hence, the influence of the size of
the event area, and complexity of the environment, on the feasibility of the application of the
method needs to be further studied. One topic to be addressed is the size of the model used
for the development of the scenarios. In this research, the computation time of the simulation
increases as the entire environment is simulated for all scenarios. However, given that the
scenarios focus on specific areas, one could argue that only simulating those areas would be
sufficient for performing the prediction. This can be supported by the insights from the results
that show that improvements on the performance of the system can be achieved when a sub-
selection of areas is used. These insights, however, are limited, and more research is needed to
get a better picture of the application of the method when the scenarios have different sizes.

8.2.2. Discussion on Scenario Selection System

The metrics and areas where these metrics are derived are some of the key decisions regarding
the development of the scenario selection system. Following, the formulation of the individ-
ual objectives also plays a major role in the performance of the system. Hence, the limitations
regarding these choices are discussed in this section.
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Crowd State Metrics & Event Blocks

The choice of state metrics in this research focuses on the mesoscopic and macroscopic met-
rics, specifically on metrics which can be derived by sensors commonly used in crowd moni-
toring of mass events. The results have shown that the performance of the prediction can be
highly sensitivity to the metrics used, and the uniqueness of the states these can define. This
raises the question if the results of the prediction would be different if additional or distinct
metrics were used. These could be metrics from sensors, or even domain knowledge added
by crowd managers. From the sensors, these could include for instance other parameters of
the travel time distribution, or even metrics on a distinct level of aggregation. Currently, GPS
trackers can provide data on microscopic level. However, one has to keep in mind the issues
with penetration rate as well as the ability of simulation models to capture the behavior on
this levels.

The Event Blocks, or the areas of the environment where the state metrics are derived
from, are also seen as a topic for further study. In this research, these study of these Blocks is
limited to the sub-selection of areas, that is the number of areas used for the prediction, and
to a lesser extent to the location of these Blocks. However, one could argue that these specific
locations could be chosen such that the performance of the selection system is improved. As
stated in subsection 5.3.1, measurements close to entry locations can provide indications of
the travel demand flows, but not so much on route choice. Thus, further insights into the
effect of the specific locations in which the environment is discretized could provide valuable
information for the application of the method, and choice of state metrics to be derived for
these.

Individual Objectives

The individual objectives used in this research are formulated by the comparison of the met-
rics based on the GoF measures, specifically the Squared Error. The choice of this measure
implies that the comparison is done based on the individual data points of the time series of
the state metrics. Hence, the information from the time series is only retrieved for the met-
rics for which the current state history is derived. This raises the question if the results would
change if the time series of the metrics were compared, instead of the discrete data points. As
discussed in subsection 5.4.1, this can be done by using GoF measures such as the RMSE, or
metamodels for describing the time series, which can be further compared by statistical tests
for the equality of their coefficients. Testing the differences obtained from using these more
sophisticated measures can be fruitful to understanding the robustness of the method further.

8.2.3. Discussion on Forecasting Analyses

The results of the application of the method obtained in this research are not focus on the
realism of the prediction, as no real data from SAIL is used for the analysis. Hence, it is not
yet possible to say the validity of the prediction through this method for real-world applica-
tion. However, the analyses provide useful insights into the strengths and weaknesses of the
method. These can be further explored with real data, to assess whether the results would
remain the same, or if differences occur. For instance, studying the effect of selecting a set of
state metrics for the prediction, and the specific influence of each individual metric.
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8.3. Recommendations

Recommendations for future research and practical applications of the method are discussed
in this section. These are based on the knowledge acquired during the development of this re-
search, the findings obtained, and the limitations identified. The recommendations for prac-
tice are presented in subsection 8.3.1, while the recommendations for science are shown in
subsection 8.3.2.

8.3.1. Recommendations to Practice

Based on the knowledge acquired while developing this research, the following recommenda-
tions can be made for practice:

• From identifying the scenarios based on the scenario development framework, and sim-
ulating these for developing the database, improved insights are obtained about the po-
tentially dangerous conditions prior to the event. This can assist in the preparation of
plans for managing the crowd, as well as in the study of the environment.

• In this research, it was assumed that the sensor network and the types of sensor are
defined beforehand, by the event organization. However, the sensor network can be
defined by the scenarios identified instead, as the scenarios highlight the specific ar-
eas and times where high densities can potentially occur. This can improve the perfor-
mance of the scenario selection system as well as the optimize the usage of the sensors
for monitoring purposes.

• Studying the crowd state database prior to applying the method can assist in defining
the settings of the scenario selection system which can best differentiate between spe-
cific scenarios in real-time. By understanding the database, the sub-selection of metrics
and Event Blocks can be done to optimize the operation of system, using also critical
knowledge about the crowd which might not be obtained from the sensors.

8.3.2. Recommendations to Science

Based on the knowledge acquired while developing this research, the following recommenda-
tions can be made for science:

• Recommendations regarding scenario database:

– The scenario database in this research is developed based on the concept of the
benchmark cases of inefficient dynamics. An interesting research topic would be
to test the validity of the scenarios developed through this method with actual data
from mass events. This can be done by developing the scenarios for specific events
through this method, and comparing these to the scenarios that actually occurred.
The analyses relate to the specific dynamics that occur, as well as how well these
are represented by the simulation model’s outputs.

– Another interesting topic for research relates to the statistical analyses of the final
states in the database, when the trajectory data from the simulations is converted
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into the time series of state metrics. Research could assess the frequency of partic-
ular states, the sources of these similarities and the specific metrics, and quantify
the effect of this frequency on the prediction.

– The development of the database in this research uses all areas for all scenarios.
The simulation model of the event is therefore very large and takes more time to
run each scenario. An alternative to this approach could be to study how to de-
velop smaller models, which focus on the areas of the environment which are spe-
cific for each particular scenario, and how to apply the system for such database.

• Recommendations regarding scenario selection system:

– The state metrics and the Event Blocks have large influence on the results ob-
tained. It would be interesting to study additional or distinct metrics to describe
the state of the Blocks. For instance, distinct statistical measures which relate to
the travel time distribution could facilitate the distinction between the scenarios,
or other metrics which could be developed to describe the conditions over the
routes.

– Following from the recommendation above, it would also be interesting to research
the effect of distinct combinations of Blocks and metrics on the prediction results.
From the understanding of the states that occur in the database for the distinct sce-
narios, one could identify the specific combinations of metrics and Blocks which
could facilitate the differentiation between particular scenarios.

– A key aspect of the scenario selection system is the use of the real states derived
from the sensors. In this research, these are only used as direct input for the predic-
tion. It would be interesting to also measure these real states after the prediction,
and compare them to the states predicted by the system. This data assimilation
process could create a feedback loop to adapt the settings of the system. An adap-
tive system could for instance dynamically update the weights assigned to each
metric given the measured error of these state metrics.
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A
Discussions on Crowd Dynamics Theory

A.1 Influencing factors on pedestrians’ choice behavior

The factors that influence pedestrians’ choice behavior are more extensively discussed below.
As it will be seen, some factors have been more widely discussed in literature than others. For
instance, as route choice behavior of pedestrians has been more researched over the years,
multiple elements have been identified which influence this behavior. On the other hand,
there is a large gap in literature concerning choices such as arrival time and activity time.
The factors discussed below aim at illustrating how distinct dynamics can occur on the event
environment by simply considering the effect of these factors on the behavior of pedestrians.

A.1.1. Personal Factors

• Age →Age is factor proven to influence different aspects of the choice behavior of pedes-
trians. Regarding choices on the strategic level, Chang and Lu (2013) has shown that for
the event studied by the authors, middle-aged (25-35) people prefer to arrive at least
one hour before the event starts. In general, it can be expected that older people prefer
to arrive closer to the time the event starts, as younger people often spend more time
socializing with friends or doing other activities. Most studies on the effect of age on
the choice behavior of pedestrians are related to the choice of route and walking speed.
Regarding the former, it was found that seniors place a higher value on the safety of
the route (Seneviratne, 1985). For the latter, it was found that average walking speeds
decrease non-linearly as age increases (Duives, 2016).

• Gender → Similar to age, gender is a fact associated with changes on operational level
decisions. Walking speeds of women are found to be lower than those of men (Duives,
Daamen, & Hoogendoorn, 2014b).

• Culture → Although walking speeds have been found to be influenced by this factor,
where on average Western countries have higher speeds than African and Asian coun-
tries (Duives, 2016), this factor is also expected to affect other levels of behavior. For
instance, access mode choice is expected to be affected as people from different coun-
tries have been shown to have distinct mobility cultures (Buehler, 2011; Geis, 2019).
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• Familiarity → This factor is mainly found in literature to be correlated to tactical level
decisions (Bovy & Stern, 1990; Golledge, 1999). Route choice, unplanned activities as
well as activity scheduling are all influenced by the familiarity of the visitors with the
event environment. Familiar pedestrians tend to choose routes and activities that they
know (Golledge, 1999). In the case of events which might occur in city centres, one can
expect that, if a large amount of the event visitors are familiar with the area, the demand
for different routes and activities can be estimated based on daily patterns.

• Time spent → This factor refers to the time a visitor spends at the event, and it can be
related to both the time assigned to perform activities and the number of activities per-
formed. A visitor who spends more time at the event can be expected not only to per-
form more activities (Iliadi, 2016), but also to spend more time performing activities due
to a more relaxed behavior.

• Group size → The last personal influencing factor considered in this section relates to
the groups. Several authors have highlighted that a considerable amount of pedestri-
ans in events do not walk alone but in groups (Aveni, 1977; Coleman & James, 1961;
Moussaïd et al., 2010). This percentage is up to 70% according to Moussaïd et al. (2010),
where most frequent groups are composed of two to four members. Walking speeds of
pedestrians were observed by the study to decrease linearly as group size increases.

A.1.2. Exogenous Factors

• Surrounding environment → Features of the environment, such as vegetation, presence
of landmarks, canals and rivers, as well as lighting have all been shown to have attractive
influence on pedestrians tactical level choices (Hill, 1982; Korthals & Steffen, 1988; Bovy
& Stern, 1990). Due to the pleasantness of the routes where these elements are present,
pedestrians are more likely to choose route with these elements, even when these are
longer than other possible routes.

• Width of paths → Tactical level choices, especially route choice, are also influenced by
the width of the paths as shown by different studies (Korthals & Steffen, 1988; Bovy &
Stern, 1990; Guo & Loo, 2013). These studies state that wider paths have been shown to
be attractive to pedestrians. The width referred to in this section might be of a corridor
on the environment or even to a sidewalk, for events which occur in the city center for
example.

• Intersections or crossings → The number of intersections or crossings also affects tactical
level choices. However, unlike the two elements previously mentioned, this factor has
been shown to influence pedestrians negatively. This means that pedestrians tend to
avoid routes with a higher the number of intersections or crossings (Bovy & Stern, 1990;
Guo & Loo, 2013).

• Travel distance → Although travel distance has been shown to influence pedestrians
route choice, where pedestrians choose the shortest route between two activities (Borgers
& Timmermans, 1986), this factor is also expected to influence unplanned activity choice.
This is because a pedestrian can be considered to select an activity near its position if
that activity can be performed in more than one location.

• Number of attractions →The number of attractions along a route or within an area of the
environment is highly influential on pedestrians route and unplanned activities choice
as shown by several studies (Bovy & Stern, 1990; Guo & Loo, 2013; Hoogendoorn & Bovy,
2004; Ton, 2014; Iliadi, 2016). These attractions can be seen as stimulation of the envi-
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ronment, and especially in large-scale events which naturally concentrate multiple at-
tractions in distinct areas, pedestrians can be considered triggered by the environment
in their choices influenced by this factor.

• Weather condition → As many large-scale events happen outdoors, it is expected that
the weather condition affects their behavior on different levels. On the operational
level, pedestrians have been shown to increase their walking speeds as the weather be-
comes more uncomfortable (Knoblauch et al., 1996). This means that in dry weather,
visitors walk slower than in rainy weather conditions. Besides the walking speed, the
weather condition also changes pedestrians’ route and activity choices (Daamen, 2004;
Ton, 2014; Iliadi, 2016; Bovy & Stern, 1990). Routes with weather protection are chosen
over other routes when the weather is rainy. Also, in uncomfortable weather conditions,
visitors strategic level behavior might change. Visitors might decide to spend less time
at the event and thus their arrival time changes, but they might also decide not to go to
the event at all, leading to less demand. The choice of mode of transport to access the
event might be different as visitors are likely to prefer private modes due to the weather
conditions. Regarding temperature, the effect varies as it seems to be dependent on the
amount of time pedestrians are exposed to such temperature (Duives, 2016). It can be
expected that, if the weather is too warm, visitors that are exposed to it for longer are
more likely to start preferring routes with weather protection.

• Day & time → The day of the week and time of the day has been shown to influence
tactical level pedestrian behavior (Seneviratne, 1985; Ton, 2014; Iliadi, 2016). The activ-
ities that pedestrians choose might be different depending on the day of the week and
time of day of the event. For instance, people usually have lunch at around midday so
visitors are expected to be at locations that serve food at around that time. In the case of
events, this factor can influence not only tactical level but also strategic level decisions.
For instance, it can be expected that the visitors arrive closer to the event time for events
that occur on weekdays, as they are often departing directly from their work locations.
Also, for events that occur on multiple days, the weekend demand is likely to be higher
than the weekday demand. This pattern is shown in the study of Iliadi (2016), where the
distributions of trips on Friday, Saturday and Sunday is higher than on Thursday. The
author also statistically proves that there is a relationship between the time of the day of
the event and tactical level choices such as route choice.

• Access / Egress facilities → This factor influences the strategic level choices of pedestrians
(i.e. arrival time and access mode). For events located in central areas, where access is
facilitated by many modes of transport available, pedestrians are likely to choose based
on their personal preferences (e.g. cultural aspects), or simply based on the mode’s ca-
pacity and service frequency. This in turn influences their arrival time since it is condi-
tioned to the mode’s timetable.

• Event schedule → The key decisions affected by this element are the arrival time and
planned activities. As shown by Zomer (2014), the type of performance (e.g. spectacular,
nice) and the usage of information before the event can highly influence the activities
visitors plan to perform. This in turn influences how visitors schedule their activities,
thus by influencing the planned activities, the event schedule can indirectly define likely
sequences of activities visitors are going to perform during the event.

• Event’s land use → Events can occur in multiple locations. Although these can be fully
dedicated for the event organization, large-scale events often make use of existing in-
frastructure of cities’ public areas. Hence, there might be areas of the environment that
event visitors might interact with pedestrians which are not visiting the event, and thus
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might have different trip purposes and therefore distinct behavior. Visitors might try
to avoid such areas due to the conflicts, thus the land use of the event is expected to
influence visitors’ route choices and unplanned activities.

• Crowd management → During an event, crowd management measures aim at providing
information to visitors regarding, among others, the event’s main attractions, locations
of these attractions, route crowdedness and sometimes even travel times areas of the
event environment. As shown by (Zomer, 2014), such information might highly influ-
ence route choice of pedestrians during events. The goals of these measures can be to
distributed flows over the network or also to limit the inflow into certain areas if nec-
essary (Galama, 2016). The effect of these measures on the development of scenarios
are many, as not only different measures might be considered for distinct scenarios, but
also the compliance with the information given might change.

A.2 Crowd Phenomena Description

The Layered Crowd Disaster Model proposed by Wieringa (2015) illustrates multiple phenom-
ena which were observed in real crowds. In the model, these are connected to the different
flow conditions these phenomena are expected to appear. Although prediction of crowd dis-
aster is not in the scope of this research, the phenomena which relate to development of the
states (e.g. flow conditions) towards a crowd disaster can provide key insights for dynamics of
interest for prediction. Therefore, these are detailed in this section.

A.2.1. Phenomena Description

The phenomena in the Crowd Disaster Model are referred to as self-organization phenom-
ena due to the spontaneous occurrence of these, which arise simply from the interactions be-
tween the pedestrians with other pedestrians and the environment, with no external influence
(Helbing & Johansson, 2010). The first three phenomena relate to the free flow conditions, and
these are still considered efficient phenomena as they can improve the throughput as it will
be discussed below.

Lane Formation Diagonal Formation In free flow state, these two phenomena relate to the
appearance of lanes for different directions of movement. While lane formation oc-
curs in bidirectional corridors, diagonal formation has been observed at crossing flows
(Helbing et al., 2001). These lanes appear due to frequent interactions between the
pedestrians in mixed streams, which move pedestrians a little aside every time an inter-
action occurs in order to pass each other. This side-wards movement tends to separate
oppositely moving pedestrians, and as pedestrians in uniform lanes have rare and weak
interactions, these lanes tend to not break easily (Helbing et al., 2001). The formation
of these lanes can reduce the capacity loss in bidirectional flows (Hoogendoorn & Bovy,
2003).

Zipper-Effect This phenomena relates to the behavior observed when pedestrians walk di-
agonally in front of each other, that is, when they show a lateral displacement, so that
the space directly in front of their feet is still empty (Hoogendoorn & Daamen, 2005).
This can improve the capacity as the lanes formed can become narrower, thus allowing
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for more pedestrians to cross per time (Hoogendoorn & Daamen, 2005). While the for-
mation of lanes is a phenomena already established in literature, the existence of the
zipper-effect phenomena is still a topic for further research.

When the efficient self-organization develops to inefficient self-organization, the neat
flow patterns become dynamic, and the phenomena presented in subsection 3.3.1 start ap-
pearing. As it can be seen in Figure 3.5, the appearance of these phenomena can lead to
a blockade or the activation of a bottleneck. When this occurs, the decreasing throughput
and increasing density levels can lead to the phenomena described under the crowd turbu-
lence flow regime. Due to increased stress and discomfort, the behavior of the pedestrians
can become more aggressive. However, due to the limited possibility to move, the following
phenomena can be occur:

Pushing As the name suggests, this phenomena relates to the intentional pushing behavior
of pedestrians when these experience long waiting times with no clear reason for these
delays, and the discomfort for being in too high density conditions (Helbing & Mukerji,
2012). Although it is argued that this pushing behavior is intentional, Helbing and Muk-
erji (2012) state that in fact the situation the pedestrians are in when these start pushing
happens unintentionally, simply due to the physical interaction forces whenever den-
sity increases.

Stampede Relates to the situation when many people move uncontrollably and quickly to-
wards the same direction at the same time (Wieringa, 2015). Similar to herding, stam-
pede can be caused by pedestrians presenting a following behavior. However, the time
frame when this happens when considering the stampede is much shorter, and so the
increase in the density can be expected to be much quicker, putting the crowd at a
higher risk of unsafe conditions.

Craze A craze relates to the competition for scarce places (Wieringa, 2015). This can be for
situations when the pedestrians at a concert attempt to be closer to the stage, or in
evacuation conditions when pedestrians compete for the exit doors. This competing
behavior and high densities can generate turbulent flows.

Figure A.1: Fundamental Diagram illustrating Crowd Turbulence
(Source: Helbing et al. (2007))

All of the above phenomena
can lead to crowd turbulence. The
turbulence state has been illustrated
by Helbing et al. (2007) and is shown
in Figure A.1. The blue line is
fundamental diagram proposed by
Weidmann (1992), and the red line
indicates the observed flow den-
sity relations derived from an event
when crowd turbulence occurred. As
stated by Helbing et al. (2007), this
turbulence results from a sequence
of instabilities in the flow pattern,
and is identified when people are so densely packed that they move involuntarily. It can seen
in the figure that the stage when crowd turbulence could start occurring would be around crit-
ical densities, but unlike the fundamental diagram of Weidmann (1992), the density appears
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to increase much further, and flows only start decreasing later, possibly due to this involun-
tarily movement of the crowd in turbulent state.

When a crowd disaster occurs, that is, when the conditions on the environment can
cause injuries or death of pedestrians, the accumulation and high densities thereof lead to
the appearance of the following phenomena:

Crush Helbing and Mukerji (2012) refers to crush as the phenomena where people are crushed
by a physical bottleneck at its narrowest point.

Trampling Trampling refers to the situation when falling pedestrians are being walked over
(Helbing & Mukerji, 2012).

Quake/Wave Wieringa (2015) defines quake as the situation when the pedestrians are experi-
encing pushing behavior which are not intentional but arise from the fluctuating forces
in the crowd.

A.2.2. Reflection on the application for this research

The identification of the inefficient self-organization on the event environment leads to the
assumption that unstable flow conditions can start appearing. As previously mentioned, for
such flow conditions the likelihood that the crowd might experience discomfort or that unsafe
density levels might arise increases. Given the objective of the prediction method developed
in this research, which is that of providing insights to crowd managers regarding the comfort
and safety of the crowd, the identification of these phenomena can provide key inputs to the
scenarios that can occur for which crowd management would be necessary.

The chronological order of the layered crowd disaster model indicates also that the early
identification of inefficient self-organization can allow for the avoidance of grid lock situa-
tions. As it is clear that not all possible conditions and dynamics can be captured in the sce-
nario database, the phenomena which indicate the unstable flow conditions can provide key
insights into which dynamics are relevant for prediction. For instance, from identifying the
increasing interest and attraction for a specific activity, one can anticipate higher densities
in the area where the activity is located, and possibly higher flows in the routes towards this
activity.

Although the phenomena in the unstable flow layer can all represent the dynamics for
which prediction would be desirable, it is considered that in event terrain, the faster is slower
effect can be rarely expected. This is because of the locations where this phenomena occurs
(narrow bottlenecks such as doors or gates). In event terrains, the either do not exist, for in-
stance in events in the urban areas, or, in the case of gates, are used mainly for coordinating
the entrance of pedestrians into the terrain, thus no competing behavior is expected. Simi-
larly, slow moving bottlenecks which significantly hamper the flows are not often expected in
event terrains. This is not only due to the size of these terrains, and therefore space for overtak-
ing, but also because often group compositions are small, of two to four members according
to Moussaïd et al. (2010).
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B
Discussions on Scenario Development

Framework

B.1 Inputs and Parameters of Simulation Models

The table below contains an overview of typical inputs and parameters required to build a
simulation model. The description of each input and parameter is provided as it can be known
by other names in different simulation tools. Also, the description aims at giving insights into
how each input affects the model’s operations and thus the crowd dynamics.

9



Table B.1: Overview of inputs and parameters of the different simulation modules

Module Input Parameter Description

Geometry of infrastructure
Defines the physical boundaries / dimensions of activity and functional
spaces, obstacles, walls, walkable areas as well as special infrastructure ele-
ments such as rain shelters, gates and doors.

Movable infrastructure Defines the location of obstacles that can change position (e.g. barriers).

Functional spaces
Assigns physical elements that are not activities a function (e.g. queuing ar-
eas)

Activity spaces
Defines the type of activity performed in each physical location for which the
boundaries where drawn when building the geometry. Also, considers the be-
havior in each type of activity (e.g. standing, sitting).

Activity time Time an agent takes to perform an activity.

Transport facilities
Defines which physical elements correspond to facilities for access and egress
transport modes. The location and capacity of these is considered.

PT timetable
Defines the time each public transport facility will generate or terminate
agents.
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No. of queues per activity
Defines which queues are to be considered for an agent that wants to go to an
activity that requires queuing.

Demand pattern Defines the number of agents generated by the model per time interval.

No. of agents per route
Proportion of the total number of agents generated per interval assigned to
each route.

Max. number of agents Maximum number of agents created by a generator.

Transport generator
Connects a certain generator with a transport mode (e.g. agents are created
according to the timetable of a public transport service)

Max. desired speed Maximum speed an agent will walk on when its walking freely.A
ge
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Agent radius Parameter that defines the area an agent occupies in the model.

Activity group
For a certain activity type, this input defines the sub-group of that type to be
considered (e.g. from the ’commercial activities’ type, sub-groups can be food
places or shopping areas).

Table B.1 – continued on next page
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Table B.1: Overview of inputs and parameters of the different simulation modules

Module Input Parameter Description

Activity conditioning
Conditions that agents need to meet to be assigned to an activity (pre-), or
conditions checked when an agent arrives at an activity (post-condition).

Location distribution
For a certain activity group, it is possible that multiple locations can be used to
perform it. The location distribution determines how agents are distributed
between these.

Revising allowed Determines whether an agent is allowed to revisit certain activities.

No. of activities per route
Defines the maximum number of activities to be performed by an agent as-
signed to a certain route.A
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Sequence of activities Determines the order in which activities must be performed.

Routing method
Method used by an agent when planning its route from its origin to its desti-
nation (e.g. least effort, shortest distance).

Use densities for routing
When the least effort routing method is used, if this parameter is switched on
it indicates that an agent will try to avoid crowded areas.

Preferred clearance
The minimum distance an agent prefers to keep between itself and obstacles
when determining a path through a corridor (in meters).

Max. shortcut distance
Maximum distance from the current position of the agent that an attraction
point can be, whereby ≤= 0 means no restriction (in meters).

Side clearance factor Factor an agent uses to plan its route in relation to the corridor’s wall.
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Side pref. update factor
Determines how fast the indicative route of an agent converges towards its
current position.

Min. desired speed
Minimum desired speed of an agent. This functions as a threshold as agents
stop walking if their speeds are below this minimum and only start walking
again when they can move at speeds higher than or equal to this threshold.

Relaxation time
Parameter that defines how strongly an agent reacts to deviations from its de-
sired velocity.M

ov
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Viewing angle Angle that defines agent’s field of view.
Table B.1 – continued on next page
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Table B.1: Overview of inputs and parameters of the different simulation modules

Module Input Parameter Description

FoV avoidance range
Maximum distance in the FoV used by agent’s when finding possible collisions
with obstacles and other agents.

Avoidance preference
Bias that determines the preferred side of passing an obstacle (e.g. left or
right).

Personal distance Desired distance an agent wants to keep between itself and other agents.
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B.2 Example Scenario Development Framework Appli-
cation

This section introduces a small-scale example of the application of the development of the
scenarios through the scenario development framework shown in Figure 4.5. The fictitious
event terrain created for illustrative purposes is shown in Figure B.1. It can be seen that there
is a music stage, illustrated in blue in the figure, five commercial facilities, shown in orange,
and one toilet area. The arrows on the corridors indicate that there is one entry located on the
right, and one exit located on the left. Thus, only unidirectional flows are expected along the
entry and exit corridors.

Figure B.1: Small Scale Example - Terrain

The event dynamics is analysed for this terrain based on the supply and demand check-
lists presented in subsection 4.2.2. From the supply checklist, only questions 1 and 3 are an-
swered with yes for the above terrain. Question 1 relates to the locations where the width of
the path gets narrow, which occurs by the entrance to the exit corridor. Meanwhile, ques-
tion 3 relates to the concentration of activities in the same area. In the event terrain shown
in Figure B.1, there are two areas which concentrate activities, on the right-hand side, where
three commercial facilities exit, and on the left-hand side, where there are two commercial
facilities and one toilet. From the demand checklist, questions 1 and 4 are answered with yes.
A demand peak can be expected at the end of a performance, where there might be a large
amount of visitors moving towards the exit, clogging the bottleneck near the exit. Further,
based on question 4, one can expect that the most attractive activities are the ones near the
stage. As the main attraction of that event is to watch the music concert, visitors are more
likely to perform activities on the commercial facilities on the right-hand side, as they can
also watch the performances from there. Hence, the three areas highlighted by the questions
of the checklists are shown in Figure B.2.

The level of risk of these different areas is estimated qualitatively based on the exposure
to high densities. From the three areas, only the physical bottleneck at the exit, and the area by
the stage and commercial activities on the right-hand side are expected to have high densities
for extensive periods. This is because, as previously mentioned, the commercial facilities on

13



Figure B.2: Small Scale Example - Checklist highlights

the left-hand side are likely to receive lower demand than the ones on the right-hand side.
Besides, there is more available space for the visitors who go to those activities. On the other
hand, as the activities on the right-hand side are near the stage, visitors are more likely to
stop at the area to watch the concert, reducing the space available for walking and queuing
for the commercial activities. Hence, two inefficient dynamics are identified: (1) a physical
bottleneck scenario by the exit, and (2) an uneven distribution over the network at the area by
the stage and commercial facilities on the right-hand side. These are illustrated in Figure B.3.

Physical 
Bottleneck

Uneven 
Distribution 

Over the 
Network

7 m

Avg Activity 
Time = 2 min

Figure B.3: Small Scale Example - Risk Assessment & Inefficiency Identification

For these two inefficient dynamics, the start point for estimating the density levels is de-
fined from a static capacity calculation. For the physical bottleneck, the width of the narrowest
point of the path is used for this calculation, as well as the capacity value of a fundamental di-
agram. The maximum flow of pedestrians according to the FD proposed by Weidmann (1992)
is 1.225Ped/m/s. Hence, the point of departure of the density level for the physical bottleneck
scenario is a total demand of 30870Ped/h ((1.225×7)×60×60).
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Regarding the uneven distribution over the network scenario, the point of departure for
the density level relates to the capacity of the activities, which can indicate when queues might
start arising. The capacity of activities can be calculated based on the activity time. Given
that the activity time of each facility is 2mi n/Ped , the capacity of each commercial activity is
30Ped/h. In total, the capacity of the activities on the right-hand side is thus 90Ped/h. These
capacity values are calculated so that there is a starting point for the simulations, an initial
reference input to start up the model. As the simulation is dynamic, the process to define
the additional density levels is interactive, that is, by adjusting the demand and observing the
development of the high density regions.
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C
Discussions on Scenario Selection Framework

C.1 Crowd monitoring systems and capabilities

In the scenario selection framework, a key element is the real pedestrian traffic data retrieved
from crowd monitoring sensors. From these, the key inputs to the scenario selection system
proposed in this thesis are derived. Below, different types of sensors are presented and their
capabilities in retrieving distinct crowd state metrics are discussed.

• Video Imaging/CCTV → Cameras mounted over the environment areas provide video
imaging of the crowd. The system itself is relatively expensive, but is one of the most
commonly seen and most accurate methods for counting pedestrians. By applying im-
age processing techniques, these system can achieve an accuracy up to 98% on flows
up to 2200 ped/h (Baelde, 2016). From these systems, local measurements can be cap-
tured, which is important to assist in getting more detailed information on the condition
of bottlenecks and heterogeneity between pedestrians (Daamen et al., 2016). Studies
have derived pedestrians’ flows patterns from these sensors, and they can also assist in
the derivation of densities and other state variables. As these are not able to identify
the identity of pedestrians, tracking is not possible with these type of sensors (Duives,
2016).

• Infrared Sensor → Similarly to the video imaging, infrared sensors need to be mounted
and are thus also less flexible. The state variables this sensor collects is also similar to the
video cameras (e.g. flows), as these also are not able to identify pedestrians’ identities.
However, the accuracy and coverage of these sensors is lower than the cameras, espe-
cially in high density situations where, as shown by (Kerridge et al., 2004), the detection
rate decreases if compared to low density situations. Both infrared and counting cam-
eras’ performances are dependent on the environment, light and weather conditions
(Duives, 2016).

• Wi-Fi & Bluetooth → Although these sensors also need to be mounted, given that they
can be simply attached to existing infrastructure elements they are more flexible than
the two previously discussed ones. From Wi-Fi and bluetooth sensors, densities, travel
times and route splits can be obtained (Daamen et al., 2016). However, in order to have
meaningful values of the measurements for the entire crowd, the penetration rate of
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these systems needs to be defined, often estimated from other sensors such as video
cameras. The range of these sensors should not overlap, as this would mislead the re-
sults given that the same device could be detected in multiple sensors without neces-
sarily moving (Baelde, 2016). Also, as these sensor detect the personal mobile devices
of the pedestrians, the raw data collected need to be anonymised before sending to the
server (Daamen et al., 2016).

• GPS → GPS trackers are portable devices which track the position of its carriers while
they walk through the environment. Similar to Wi-Fi and bluetooth sensors, these track-
ers can be used to derive route splits, however the level of detail in the route information
is higher for these trackers (Daamen et al., 2016). The penetration rate is also a required
parameter for using the GPS data. This rate is often much lower than that of Wi-Fi and
bluetooth sensors, as visitors to the event must be willing to carry the trackers, and since
a tracker needs to be provided per visitor, to achieve a high penetration rate in a crowd
many trackers would be necessary. Also, as discussed in the study of Daamen et al.
(2016), real-time data synchronization from trackers can be problematic given the de-
pendence on good communication between the trackers and the server.

• Stewards → Stewards are either responsible for counting people manually or for work-
ing at the event area, sometimes walking in the middle of the crowd to evaluate the
states. Problems might arise due to the dependence on people’s perception of the en-
vironment. Different perceptions might lead to different qualitative state estimates by
different stewards for the same crowd conditions. Also, as a long-term solution having
stewards performing the counts can be particularly expensive, and quantitative data
from these counts might contain errors caused by cases of missed or duplicated count-
ing (Baelde, 2016).

• Airborne system (UAV) → The cameras attached to airborne systems collects similar
data to those captured by video cameras, with the advantage that these systems are
not spatially-fixed. However, these systems give less information about each individ-
ual within a frame (Duives, 2012). Besides, due to the risk of this equipment falling and
hurting visitors, these are often prohibited or only allowed within a minimum distance
of the event boundaries.

• Social Media → Social media applications such as Twitter and Instagram have been
shown to also contribute to the monitoring of crowds during large-scale events. From
these applications, it is possible to estimate the number of people or even evaluate the
emotion of the crowd on different areas of the environment. Also, these systems can be
used to communicate with the crowd during the event by informing visitors of changes
in schedule or crowding in areas (Duives, 2016). Often, only qualitative and incom-
plete data can be retrieved for crowd management usage. This is either because only a
sub-sample of the population uses social media at the event, or because the informa-
tion from these comes from inside the crowd, thus not fully capturing the crowd states
around the area.

18



D
Discussions on Application of the Frameworks

D.1 Discussion on Simulation Model’s Behavior Validity

The first point of discussion is regarding the route choice algorithm. From the two options
available in PD (i.e. shortest path and least-effort), studies in pedestrians’ route following be-
havior affirm that the least-effort approach is more representative of real pedestrian behavior
(Shepherd et al., 2010). The following discussions on this section are regarding the collision
avoidance algorithm.

In the study of Duives et al. (2013), a review of crowd simulation models and their capa-
bilities in representing crowd movements is performed. Multiple aspects are addressed by the
authors for the distinct models they assess, such as the applicability of the model in terms of
computational burden, or even the possibility to model self-organizing movement. Of these,
the aspect discussed in this research relate to the motions that frequently occur during crowd
movements. This is considered more relevant than the other aspects for the proposed appli-
cation given that its valid representation can most considerably affect the prediction results,
as discussed in Chapter 4. For instance, models that do not validly reproduce the interaction
forces between agents and the boundaries of the environment, are more likely to yield unreal-
istic throughput, either by under or overestimation. This can be critical if one considers that,
in the case of a overestimation, it can result in the model not predicting the appearance of
possible bottlenecks.

The selected motions from the ones proposed by Duives et al. (2013), given the appli-
cation for the study area of SAIL, are the unidirectional, bidirectional and crossing flows, as
well as the entering and exiting movements, typical of bottlenecks. Based on the criteria de-
veloped by the authors, the entering and exiting movement can be partially modelled by the
velocity-based model developed by Moussaïd et al. (2011) implemented in PD. Similar to most
of the models reviewed by the authors in their study (Duives et al., 2013), exiting behavior is
considered poorly modelled by this velocity-based model. This is because interpersonal re-
pulsive forces are not included, so the widening of the wedge at the exit is not realistically
simulated. Regarding the unidirectional, bidirectional and crossing flow cases, these can be
modelled by the velocity-based model implemented in PD. However, a remark is made here
regarding the validity for multi-directional movements. Although the model is able to repre-
sent that behavior, similar to other microscopic models which represent the interaction forces
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between agents, the throughput achieved before congestion starts appearing is often lower
than in reality. This is also highlighted by the study of Sparnaaij et al. (2019), which compared
the model’s output in bidirectional scenarios under high-density conditions with empirical
data and found that, although the model is able to reproduce the throughput, a specific set of
parameters is needed. One example is the reduction of the agent’s radius if compared to the
value considered valid for other types of movement.

When avoiding obstacles in high-density conditions, pedestrians are observed to rotate
their bodies or even walk sideways (Yamamoto et al., 2019), thus providing more space for
a larger number of pedestrians to cross the same width. As more research is needed in this
rotational behavior of pedestrians, to the author’s knowledge, this not yet implemented in any
commercial simulation tools. Thus, when formulating the scenarios for the application of the
method, attention needs to be paid to the validity of the prediction in bidirectional sections of
the infrastructure. Furthermore, in the sections of the infrastructure where bidirectional flows
are expected to play a minor role on the development of the states of interest, these need to
be avoided in the simulation.

D.2 Identification of Inefficient Dynamics - SAIL

This section presents the reasoning behind the identification of each scenario under each
benchmark of inefficient dynamics. These scenarios are briefly described in Table 6.3 and
further explained below.

D.2.1. Physical Bottlenecks Inefficient Dynamics

The first physical bottleneck identified is located at the Piet Heinkade, where the total width of
the path (about 9 meters) is split into two narrow lanes by an obstacle obstructing the move-
ment in that location. Upstream the bottleneck (from west to east), the flows are bidirectional,
whereas downstream of it it is expected that the two lanes are used for different directions. The
lane on the right (closer to the water) is anticipated to be used by the flows going towards the
Veemkade, and the left lane for the opposite flows. If the flow towards the Veemkade exceeds
the capacity of that bottleneck, and queues start forming upstream, the flow from the other
direction is also likely to get hampered.

The second physical bottleneck is at the west-end of the Veemkade. There are two dis-
tinct dynamics of this bottleneck which are likely to cause the appearance of inefficient phe-
nomena. Firstly, if the flows along the Veemkade are higher than the capacity of the path
considering only the width without the platform (see Figure 6.4 - 13 m width), and a higher
share of visitors uses that path. Secondly, if a higher share of visitors decides to go all the way
to the end of the platform, the capacity of the gate (8.5 m width) to go back the route along the
Veemkade can be exceeded and queues start appearing.

Finally, the narrowing of the path on the east-end of the Veemkade is the third physical
bottleneck location identified. If the capacity of the narrower part of the path is exceeded,
queues also start forming and can propagate upstream.

From the width of the paths indicated in Figure 6.4, a static analysis can be performed
and an indication of the demand to activate these bottlenecks can be estimated based on traf-
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fic flow theory (fundamental diagram). The aim of the static capacity estimated here is only
to give insights into the difference in maximum demand to be assigned to each section of
the infrastructure before congestion starts appearing, it is thus considered sufficient to cal-
culate this value based on the fundamental diagram proposed by Weidmann (1992). This is
the chosen fundamental diagram because it is derived based on the average value found by
plotting the fundamental diagram found in 25 different papers, and the flow characteristics
are for a non-pushy crowd. Besides, this fundamental diagram is widely used in research. For
unidirectional conditions, the maximum flow of pedestrians according to Weidmann (1992) is
1.225Ped/m/s, and from these the capacity values for each of physical bottlenecks identified
are indicated in Table D.1.

Table D.1: Capacity values of the physical bottlenecks identified for the study area

Location
Narrowest
Point (m)

Static Capacity -
Unidirect (Ped/h)

Piet Heinkade 4 17640
Veemkade - West 8.5 37485
Veemkade - East 10 44100

D.2.2. Flow Interaction Inefficient Dynamics

As indicated in subsection 3.2.1, the capacity of the infrastructure decreases when flows are
multi-directional if compared to when these a unidirectional. At certain times during the
event these flow interactions can occur with higher or lower intensity, that is, where a higher
share of visitors from one direction can hamper the flow of the other directions, and thus also
the total throughput of cross-sections. In the study area, the main locations where these can
occur are at the intersection at De Ruijterkade, as well as along the path between that inter-
section and the Piet Heinkade. For the former, the key dynamics consider each of the possible
movement directions being dominant over the others, and thus queues extending in distinct
directions. For the route, one can consider the dynamics based on the distinct shares per
direction, where the dominant flow direction can either be west-east or east-west.

In bidirectional conditions, the maximum flow as proposed by Weidmann (1992) is re-
duced by a percentage dependent on the share of flows per direction, where a maximum re-
duction of about 16% can be observed for direction shares of 90%/10%. Table D.2 indicates the
capacity values for each of the locations identified for bidirectional conditions (at the critical
90%/10% share).

Table D.2: Capacity of sections for bidirectional flows

Location
Narrowest
Point (m)

Static Capacity -
Bidirect (Ped/h)

Intersection - De Ruijterkade 10 37044
Route - De Ruijterkade to Piet

Heinkade
9 33340
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D.2.3. Uneven Distribution over Network Inefficient Dynamics

The dynamics of interest for this phenomena relate to the increased interest and attraction of
visitors for specific activity locations as well as for specific routes. Regarding the activities, one
can expect that the activity location on the west-end of the Veemkade attracts most visitors.
As previously mentioned, this location is also were many tall ships are located, thus the com-
bined demand for these attractions can create high densities on that area as the capacity can
be exceed. Besides, the activities concentrated at De Ruijterkade, where not only commercial
facilities are located but also the entrance to the ferry towards the purple route, can present
the same dynamics. The combined demand for these two activities can lead to discomfort
and possibly unsafe density levels.

The route along the Veemkade is the only route to watch the tall ships and the demand
for it besides being very high, the behavior of visitors along this route also causes the uneven
distribution as visitors are likely to walk slower and stop more frequently for pictures. Thus,
it is most likely that the network will be unbalanced as the capacity for that route is overused
while the Piet Heinkade is likely to be significantly less crowded. This consideration leads to
the, expected dynamics for the following phenomena (inefficient choice behavior) discussed
below.

D.2.4. Inefficient Choice Behavior Inefficient Dynamics

As the route along the Veemkade gets crowded due to bottlenecks being activated or the at-
traction for activities along that route increases, visitors moving from west to east might start
choosing less efficient routes to avoid this crowding. The less efficient route in this case is to
move along the Piet Heinkade, as this route is less attractive, and the dominant flow direction
is the opposite direction. This inefficient choice behavior can lead to undesirable flow interac-
tions and, if the share of visitors who choose this route increases, can also indicate discomfort
as visitors try to avoid the Veemkade.

D.3 Scenarios’ Setup in Pedestrian Dynamics - SAIL

This section presents the inputs to build each scenario considered for the SAIL event in Pedes-
trian Dynamics. These inputs are defined based on the capacity calculations mentioned in
the previous section, as well as the dynamics that need to be reproduced, as indicated in Fig-
ure 4.4.

D.3.1. Scenarios

Similarly to how it is done in subsection 6.2.3, the sections below describe each input consid-
ered for the development of the scenarios. However, below these inputs are shown in more
detail.

Demand Pattern

The inflows per scenario are summarized in Table D.3, and the distribution of these
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flows per entry location are shown in Table D.4. For all scenarios, this demand is assumed to
be uniformly distributed over the hour, except for the demand coming from the ferry, which
then follows the ferry schedule (i.e. 20 minutes frequency) and generates a maximum of 1100
pedestrians per arrival. The definition of these demand patterns and shares per entrance was
based on an visual analysis of the conditions on the areas where the inefficient dynamics were
defined. Also the difference between the capacities of the physical bottlenecks, especially the
identification of the capacity at the Piet Heinkade bottleneck as shown in Table D.1, indicate
that that bottleneck would always be congested if most of the demand would be generated
from the West-end. Thus, the dynamics on the other areas (e.g. demand exceeding capacity
of the Veemkade-West) would never occur as pedestrians would get stuck at the Piet Heinkade.
To account for that, even thought it can be expected that most demand comes from the West-
end, the distribution over the entrances is spread for the scenarios for which the dynamics
focus on the Veemkade and Piet Heinkade.

Table D.3: Scenarios’ demand pattern

Scenario Max Inflow (ped/h) Min Inflow (ped/h) Step Size

1. Piet Heinkade 51000 34000 10%
2. Veemkade - West 57800 44200 10%
3. Veemkade - East 47600 30600 10%
4. Intersection - Multi-direct 51000 34000 10%
5. Route - Bidirect 44200 27200 10%
6. Activity - De Ruijterkade 51000 34000 10%
7. Activity - Veemkade West 47600 30600 10%
8. Inefficient Route Choice 51000 34000 10%

Table D.4: Scenarios’ share per entrance

Scenario
Share per Entrance

West-end Ferry Kattenburgstraat East-end

1. Piet Heinkade 65% 8% 11% 16%
2. Veemkade - West 40% 6% 32% 22%
3. Veemkade - East 40% 6% 32% 22%
4. Intersection - Multi-direct 39% 6% 23% 32%
5. Route - Bidirect 65% 8% 11% 16%
6. Activity - De Ruijterkade 46% 7% 17% 30%
7. Activity - Veemkade West 40% 6% 32% 22%
8. Inefficient Route Choice 40% 6% 32% 22%

Activity Schedules & Activity Demand

In the SAIL terrain, the schedule of the activities is what mostly guides the usage of
the infrastructure, as the route options are limited. Three main routes are defined for the
study are of SAIL, based on the exit location of the pedestrians who follow these routes. The
first is for the pedestrians who follow the Orange route, that is, the route to visit the tall ships
along the Veemkade, exiting on the east-end. The second route relates to the pedestrians who
take the ferry to the Purple route, and the third route is for the ones who go to Amsterdam
Central, or exit at the west-end. The corresponding points of origin considered for each of
these destination locations are shown in Table D.5, where the existing origin and destination
pairs are the ones indicated with an x.

Besides their entry and exit locations, a share of pedestrians is also assigned to perform
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Table D.5: Origin-destination pairs

Origin/Destinations West-End Ferry East-End

West-end - x x
Ferry x - x

Kattenburgstraat x - x
East-end x - x

an activity along their route. The commercial activity locations are mainly three, at De Rui-
jterkade, Veemkade-West and Veemkade-East, as illustrated in Figure 6.5. Due to the location
of these activities, it is expected that the first two will have higher demand than the Veemkade-
East, whereby the Veemkade-West is assumed to have the highest demand of all. The assign-
ment of the activities is based on the pedestrians exit location. For instance, pedestrians who
exit at the east-end are the ones assumed to be at the event to watch the tall ships along the
Veemkade. Thus, these are mostly assigned to activities along the Veemkade, where a higher
share is assigned to the activities at the Veemkade-West. On the other hand, pedestrians who
exit the study area through the ferry are only assigned to activities at De Ruijterkade.

For most of the scenarios, the share of agents from the total amount generated per hour
who are assigned to perform an activity along their route is 50%. However, for the uneven
distribution over the network scenarios, given the dynamics of these scenarios, the share of
agents assigned to an activity is increased to 80%.

Routing & Movement Preferences

The routing and movement preferences are mostly controlled by parameters of the em-
bedded algorithms of Pedestrian Dynamics. For most of the scenarios, as discussed in subsec-
tion 4.1.3, the macro/meso behavior characteristics defined through the inputs are of interest
for the scenarios this study is concerned with. However, for scenario 8 - Inefficient Route
Choice - a specific set of parameter of Pedestrian Dynamics is used to simulate the dynamics
of this scenario. These are further detailed below.

The route planning behavior of agents in Pedestrian Dynamics can be influenced by
the routing method chosen. As previously stated, the method chosen in this research is the
least-effort approach. Unlike the shortest-path method which simply considers the route with
shortest distance, the least-effort also takes the density along the route into account when
planning the route for each agent. The densities are considered based on a cost function
which considers both, the total travel time along the route when the route is free, as well as
the delay expected considering the density along the route. The exact equation to calculate
this cost is shown in Equation D.1.

tot alCost = nor malT i me +wei g htedDensi t yDel ay + (
nor malT i me ×Edi s ×Wdi s

)
(D.1)

Where,

nor malT i me = D

S ×Esm +E f s
(D.2)
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wei g htedDensi t yDel ay =
(

D

SL ×Esm +E f s
−nor malT i me

)
×Dw (D.3)

The elements which form the nor malT i me equation relate to the distance (D) from
itself the agent takes into account to estimate the delay caused by density, the maximum speed
(S) of an agent, the speed multiplier of an edge (Esm) and fixed speed of an edge (E f s). For
the wei g htedDensi t yDel ay , the SL refers to the local sped depending on the density at the
edge, and Dw is the delay weight of an agent. Finally, Edi s and Wdi s relate to the discomfort
factor of an edge and discomfort weight of an agent.

For the application for this research, two items of this equation are highlighted. These
are the distance (D) and the the delay weight of an agent (Dw ). As one can see by the equa-
tions, these two values have a large influence on the totalCost estimated by an agent when
defining its route. For the delay weight, this value indicates how sensitive an agent is to en-
countering delays along its route. These delays are calculated based on the density, and for
instance if an agent would need 20 seconds to transverse a certain edge at its desired speed,
but due to high densities it is expected that this agent can only walk at half of its speed, the
total time expected is then 40 seconds due to the 20 second delay caused by density.If the
delay weight is high, this extra time to transfer (i.e. delay) is considered more important the
regular time, and so agents are more likely to avoid these crowded areas. For scenario 8, by
making agents reconsider their route by the locations where these can move between the two
routes (i.e. the lanes connecting the Veemkade to the Piet Heinkade), this rerouting due to
the desire to avoid crowded areas can be considered. For the simulations of scenario 8, for all
density levels, the value considered for the distance was 100 meter, and for the delay weight
a uniform distribution between 1.5 and 5. These values are assumed based on analysis of the
equations above and the effect expected for these values thereof, as well as from a discussion
with simulation experts who had experience with this parameters from previous simulations.

D.4 Derivation of Travel Time

One of the state metrics used for the application of the case study, as presented in subsec-
tion 6.3.1 are the first and third quartiles of the travel time distribution between each pair of
Event Blocks. In this section, the derivation of the travel time and the rational behind the
choices made regarding this metric are discussed.

As presented in the same subsection aforementioned, the travel time as used in this
research is the time taken for each pedestrian to move between each pair of Event Blocks. The
value of each pedestrians’ travel time is derived when the pedestrian is identified at a certain
Event Block Bx , where only its last visited Event Block (By ) is then considered for the travel
time calculations. These calculations are according to Equation D.4, where t ti ,By→Bx is the
travel time of pedestrian i between By and Bx , estimated by subtracting the time pedestrian i
is identified at Event Block Bx coming from Event Block By .

t ti ,By→Bx = ti ,Bx − ti ,By [s] (D.4)

The first decision discussed regarding this metric is that of considering only the travel
time between each pair of Event Block. This approach is chosen because the travel time then
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also gives insights into the usage of the infrastructure and routes. For instance, if there are
two routes to go from Event Blocks Bi to B j , where one is direct and the other passes through
Bk , the value of the travel time between Bi to B j only considers the direct route, as the travel
time of pedestrians who are identified at B j from the other route are then considered in the
Bk → B j pair.

As stated in subsection 6.3.1, the normalization of this metric can be done by dividing
the travel time by the length of the route between each pair By → Bx . However, as it happens in
SAIL and likely in other mass event given the scale of the environment, there might be distinct
routes between each pair By → Bx , with no other Event Block in between to differentiate which
route was used by visitors who arrive at Bx coming from By . This leads to the problem that
a larger number of Event Blocks is needed in order to ensure that there is only one possible
route between each pair of Event Blocks. As in reality these Event Blocks for the application
of the method for prediction are derived based on the sensor network of the event, adding
sensors in all locations necessary to make the distinction between all possible routes would
likely be unfeasible. Another factor which one must take into account is that there are activity
locations between certain pairs of By → Bx and which do not exist between others. The travel
time distribution between these pairs with activities is thus expected to be higher as visitors
stop to perform the activity.

The considerations above highlight the fact that normalizing the travel time simply
based on the length of the route between each pair By → Bx does not make the values of
this metric more comparable, as there are other route attributes which influence its value.
Therefore, no normalization is done for the travel time at this stage, only when formulating
the individual objectives for the optimization as it is discussed in subsection 6.3.2.

D.5 Normalization Method

As stated in subsection 6.3.2, the state metrics require normalization because the metrics have
different units and orders of magnitude. To explain in more detail, without normalization the
variation of the orders of magnitudes for the various metrics leads to those with a larger order
of magnitude being more influential on the optimization process. For instance, based on the
fundamental diagram proposed by Weidmann (1992), one can say that the density in an Event
Block can vary from 0 to 5.4 ped/m2, while the flow ranges from 0 to 1.225 ped/m/s. It is thus
clear that, when comparing the real and simulated values of the flow of an Event Block, the or-
der of magnitude of the difference is much lower than that of the density. Assuming that both,
the real flow and the real density are on the upper bound of their respective values (i.e. 1.225
and 5.4), and these are being compared to a scenario for which their corresponding values are
both 0, the resulting Square Error of the flow is 1.5 ped/m/s while for the density it reaches
29.16 ped/m2. The density has implicitly more impact on determining which scenario is cho-
sen by the optimization algorithm, that is, a scenario for which the density error is lower has
higher chances of being selected over a scenario for which the flow error is lower.

In order to define a method to normalize the metrics a set of assumptions need to be
taken into account, as discussed by Sparnaaij (2017), which relate to two error metrics to
compare the real and simulated data. These are the absolute (Mscen − Mr eal ) and relative
( Mscen−Mr eal

Mr eal
) errors. In this thesis, the choice to use the absolute error is made due to two rea-

sons. Firstly, it avoids the problem of having an infinite error when the real value of the metric
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is zero. Secondly, as stated by Sparnaaij (2017), one of the assumptions of the relative error is
that, for the magnitude of deviation, the error is smaller if the real value of the metric is larger,
if compared to a smaller real value. For instance, a deviation of the density of 0.5 ped/m2

between the real and the scenario’s value is five times more wrong when the real density is 1
ped/m2 over when it is 5 ped/m2. This behavior is not desirable given that it is considered
more important to get more accurate predictions when the values are higher (e.g. near or over
capacity) given the impact of smaller deviations from these.

Given the choice of using the absolute error, two examples of normalization methods
can be found in the pedestrian literature, both related to calibration of a pedestrian model.
While Duives (2016) performs a normalization based on the maximum error for a given type
of scenario and metric, Sparnaaij (2017) normalizes each metric based on the ratio between
the values of the metrics from his reference (i.e. real) data, which is retrieved per type of sce-
nario considered by the author. Unlike these studies, the scale of the environment and the
number of pedestrians in the simulations is much larger in the present study, and so is the
variation between the values of each metric both within a scenario (due to the distinct areas
of the environment) and between scenarios (given the different dynamics and density levels).
Besides, the metrics considered in the current study are also different. Therefore, although
concepts discussed by both aforementioned authors are used as reference, a new method for
normalization is proposed in this research.

As done by Duives (2016), the normalization method proposed in this research is based
on the maximum deviation of each metric. However, Duives (2016) assumes that there are no
differences between the maximum error of metric m in scenario i and the maximum error
of the same metric in scenario j . This is considered problematic as there is no normaliza-
tion across scenarios, so an equally large deviation of the normalized error can be considered
different depending on the size of the deviation for a particular scenario. Therefore, in this
thesis, the assumed maximum deviation of each metric is based on its order of magnitude
considered across all scenarios according to Equation D.5.

Nor mm = max
s∈S

Em (D.5)

Where Nor mm is the normalization value of metric m, and Em is the maximum error of
metric m across the set of all scenarios (S) in the scenario database. However, a distinction is
made regarding the value assumed as to be the maximum error (Em) given the distinct nature
of the metrics used in this research for which normalization is necessary which were presented
in subsection 6.3.2. As already discussed in subsection 6.3.1, unlike the flow and density met-
rics which in themselves are normalized across the different areas of the environment, the
travel time metric is dependent on the route attributes (e.g. length, existence of activities).
Furthermore, through the fundamental diagram, one can say that the flow and density have
reference values which one can use for defining the maximum error, which are valid across all
Event Blocks and scenarios. For the travel time, although one can derive a value valid across
the scenarios, it is not desirable to consider a single value for all pairs of Event Blocks, as this
would not consider the aforementioned route attributes and distinct dynamics between these
pairs. For instance, as one can imagine, the maximum travel time between Bx → By can be
very large if the route between these is long, and it also has an activity in between. Therefore,
it is considered problematic to use this value to normalize the travel time between Bp → Bq ,
where the route is much shorter, no activities or bottlenecks exist in between, and maximum
possible observed travel times are therefore much smaller.

27



Based on these considerations, it is decided that in this thesis, the flow and density
are normalized based on their maximum values in the fundamental diagram, for which the
fundamental diagram of reference is that of Weidmann (1992). The first and third quartiles of
travel time, on the other hand, are normalized based on their maximum value per pair By →
Bx over all scenarios in the database. Finally, the trend metrics also need to be normalized. As
these relate to the angle of the line that describes the trend over the past 15 time instants, it
is considered that the maximum error occurs when the real and simulated trends of a metric
are on opposite ends of the possible range of gradients. This range is given by (−π

2 , π2 ), thus
the maximum error is π, which is the normalization value used for all the trend metrics (flow,
density, first and third quartiles of travel time). Table D.6 summarizes these considerations.

Table D.6: Normalization of State Metrics

Metric Norm

1 Density 5.4
2 Density History 5.4
3 Density Trend π

4 Flow 1.225
5 Flow History 1.225
6 Flow Trend π

7 Q1 - Travel Time max
s∈S

By → Bx

8 Q1 - Travel Time History max
s∈S

By → Bx

9 Q1 - Travel Time Trend π

10 Q3 - Travel Time max
s∈S

By → Bx

11 Q3 - Travel Time History max
s∈S

By → Bx

12 Q3 - Travel Time Trend π
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E
Discussions on Forecasting Analysis

E.1 Sensor Data Perturbations

The discussions of this section relate to the analysis of the sensor data perturbations described
in Section 7.2.

E.1.1. Selected Scenarios

As presented in subsection 7.1.2, it has been decided that in this research the 5 optimal sce-
narios (i.e. the 5 scenarios with lowest objective function value) are used for the analyses.
Therefore, when calculating the values shown in Table 7.4 and Table 7.5, these 5 scenarios are
used according to Equation 7.1 to Equation 7.4. For the analyses, however, it is important to
identify which specific scenarios and time instants these correspond to, as well as the order
in which these are selected. Hence, these results are shown in Figure E.2 and Figure E.3. Each
scenario selected is shown by its conceptual, name according to Table 6.3 (e.g. Veemkade -
East), and density level (e.g. DL 1, DL 6). The cells of the tables are colored based on the com-
parison between the scenario selected and time instant against its corresponding real scenario
and time instant, according to Figure E.1.

Figure E.1: Cell color code for Figure E.2 and Figure E.3
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Figure E.2: Name and order of scenarios selected by the system per sensor variation for reference and variations 1 to 4
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Figure E.3: Name and order of scenarios selected by the system per sensor variation for variations 5 to 8
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E.2 Sub-Selection of Event Blocks

The discussions of this section relate to the analysis of sub-selection of Event Blocks described
in Section 7.3.

E.2.1. Sub-selected Blocks

The figures presented below illustrate the selected Event Blocks per test scenario presented in
Table 7.1. For test scenarios 1 and 2, which relate to the physical bottleneck at the east-end of
the Veemkade, the six and the three Event Blocks selected are highlighted in Figure E.4. As the
inefficient dynamics are expected to occur by Event Block B11, the areas which generate large
flows towards this Block are chosen.

Figure E.4: Six Event Blocks sub-selected for test scenarios 1 and 2

For test scenarios 3 and 4, which relate to the flow interactions between pedestrians
coming from and to Amsterdam Central Station, the six and three Event Blocks selected are
highlighted in Figure E.5. As the inefficient dynamics are expected to occur between B2 and
B4, the areas relevant for the dynamics of the movement along this stretch are chosen.

Figure E.5: Six Event Blocks sub-selected for test scenarios 3 and 4

For test scenarios 5 and 6, which relate to the uneven distribution over the network due
to the combined demand for the activities on the west-end of the Veemkade, the six and three
Event Blocks selected are highlighted in Figure E.6. As the inefficient dynamics are expected
to occur between B5 and B9, the areas relevant for the dynamics of the movement along this
stretch are chosen.
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Figure E.6: Six Event Blocks sub-selected for test scenarios 5 and 6

Finally, for test scenarios 7 and 8, which relate to the inefficient choice of route of
pedestrians trying to avoid the high densities along the Veemkade by re-routing to the Piet
Heinkade, the six and three Event Blocks selected are highlighted in Figure E.7. As the inef-
ficient dynamics are identified by the pedestrians rerouting through the lanes that connect
these two main streetds, the areas relevant for capturing this re-routing behavior are chosen.

Figure E.7: Six Event Blocks sub-selected for test scenarios 7 and 8

E.2.2. Selected Scenarios

As shown in Section E.1, for the analyses of the results, the specific scenarios and time instants,
as well as the order in which these are selected, used for calculating the error changes shown
in Table 7.7 are presented. Figure E.9 shows these scenarios for the reference case, as well as
setting variations according to Table 7.6. Each scenario selected is shown by its conceptual
name according to Table 6.3 (e.g. Veemkade - East), and density level (e.g. DL 1, DL 6). The
cells of the tables are colored based on the comparison between the scenario selected and
time instant against its corresponding real scenario and time instant, according to Figure E.8.

Figure E.8: Cell color code for Figure E.9
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Figure E.9: Name and order of scenarios selected by the system per sub-selection of Event Block variation for reference and variations 1 and 2
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E.3 Sub-Selection of State Metrics

The discussions of this section relate to the analysis of sub-selection of State Metrics described
in Section 7.4.

E.3.1. Selected Scenarios

As shown in the above sections, for the analyses of the results, the specific scenarios and time
instants, as well as the order in which these are selected, used for calculating the error changes
shown in Table 7.9 are presented. Figure E.11 shows these scenarios for the reference case,
as well as setting variations according to Table 7.8. Each scenario selected is shown by its
conceptual name according to Table 6.3 (e.g. Veemkade - East), and density level (e.g. DL
1, DL 6). The cells of the tables are colored based on the comparison between the scenario
selected and time instant against its corresponding real scenario and time instant, according
to Figure E.10.

Figure E.10: Cell color code for Figure E.11
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Figure E.11: Name and order of scenarios selected by the system per sub-selection of State Metric variation for reference and variations 1 to 5
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