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Summary 

In this thesis, the author develops a series of methods for estimating missing traffic 

flows at urban junctions (intersections) through direct observations, and the combined 

use of multiple data sources with data fusion. 

 

In the fields of Dynamic Traffic Management (DTM) and Intelligent Transportation 

Systems (ITS), data acquisition has been central and important. Since, in a field such 

as traffic systems (along with many others), a reliable and complete database is a basis 

for management and control of operations; if the data are unreliable or even partly 

missing, there will be trouble in the traffic systems. In the SCATS (Sydney 

Coordinated Adaptive Traffic System), traffic flow data are often found missing from 

loop detectors. The data quality of traffic flows directly affects the efficiency of an 

adaptive control system. Therefore, estimation of these missing flow is important. The 

research question pertinent to this addressed in this thesis is: What are the best ways 

to estimate the missing flows at an urban junction?  

 

The author puts this question by doing research using two sources: data from SCATS 

and FCD (floating car data) obtained from taxis. SCATS makes available, in addition 

to the raw data of traffic flow observations, control plan (timing) information. One way 

to estimate the missing data is by using available traffic flow observations. Another 

possibility is to use data from “missing” sources, along with traffic flow theory, for data 

fusion is also a possible method. Four main approaches are possible based on these two 

methods. The author tests each one by leaving aside actual detected values in order to 

represent a missing flow. The evaluations are made based on two kinds of target: 

values that are detected in each detection period, and ground-truth values. The 

original data represent the former, while more refined data are used to represent the 

latter.    

 

The first approach involves considering the historical pattern of data. The algorithms 

in this approach are based on the retrieval of existing observations, and the use them 

to estimate the missing flows. There are two ways of developing these algorithms. The 

first is by using a fixed detector. In this case, the flow observations are seen as 

independent variables, and possible flows that have not been detected are related to 

the flows observed in the recent past (through online or offline analysis). The second 

way is to consider the flow and the green at the same time, taking the flow/green ratio 

as an independent variable, and making the same assumptions as them to the flows. 

When it comes to application, the flows presented in the historical data are 

representative. However, the flow/green ratio fails to take effect. The reason is that 

the green is not adaptive to flows – the green does not change due to the flows for most 

of the time in the given data. In the results, even for days with stable flows, the 

estimated values using this approach may “shift” a little bit during a specific period of 

a day from the actual values. Compared with other approaches, the general 
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performance is the best when dealing with smoothed data. 

 

The second approach considers the spatial distribution of flows over lanes. The 

approach uses algorithms to refer to observations from detectors in other relevant 

lanes (for example, in the same phase) during the same period. This is done by 

comparing each lane with each other lane that is relevant to obtaining reference values, 

and then weighting those values according to their spatial characteristics. In 

application, the flows from lanes in the same phase are representative. In the results, 

this approach captures the instant changes of flow during short periods. Besides, it 

involves low relative errors when dealing with both original raw data and processed 

(smoothed) data. 

 

The third approach tries to link FCD with flows using the data fusion concept. There 

are two ways to consider this approach. The first is to use the relation of FCD speeds 

and loop flows. In traffic flow theory, a fundamental diagram of speed and flow is 

applicable under certain conditions on a freeway. The assumption is also made that 

there is a certain relation between the speed and flow of the traffic stream at junctions. 

Although the traffic speed is unknown, the speed from FCD is used to represent that 

of the whole stream. In the application, the relations show a general negative influence 

of flow on average FCD speed. However, the linear extrapolate tools do not so far yield 

uniformed fitting curves. The specific parameters vary from stream to stream. The 

estimated flows involve larger errors than in other approaches. The second part of this 

approach uses the relation of FCD counts and loop flows. The counts of FCD show the 

numbers of taxi streams, which represent part of the total traffic stream. There is a 

roughly positive relationship between FCD counts and total traffic volumes. A linear 

curve is made to fit for this relation. In the application, this provides an estimation of 

traffic on a stream level, with large errors. However, the errors are slightly smaller 

than when using the speed-flow relation. 

 

The fourth approach performs the estimation by applying a multiple linear regression. 

In the first step, the potential contributions of observations to each other are assumed, 

and the parameters showing these contributions are calibrated. In the second step, all 

these parameters are applied to the available values to calculate the missing values. 

The input range and analysis interval are both key factors influencing its performance. 

A suitable trade-off should be made such that the inputs are relevant enough, and the 

analysis interval not too short. In the application, MLR (A4) has the best record of 

dealing original flow data. Its performance depends on the amount of actual flow. 

In addition to these four approaches, two methods are developed for integrations. They 

are expected to further improve the estimation.  

 

The first integration uses an iteration method. The iteration goes between the values 

calculated using historical flow patterns and those based on the spatial flow 

distribution. This done by filling in the missing values using both approaches, and 

updating the values by applying the updating weighting factors and cross-comparisons. 
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The results indicate that when one of the other approaches does not perform well, the 

iterative one tends to be the better-performed alternative. When the performances of 

two approaches are close, the iteration can provide a better estimation than either one 

of them. Since there is no way of knowing when one approach will perform better than 

another one, using an iterative approach is a reliable and safe solution. It also requires 

fewer direct observations than the MLR integration method. The only drawback in this 

case is the computation costs, which are relatively high.  

 

The second integration starts from the MLR approach, and considers the information 

from the historical pattern and lane flow spatial distribution in order to improve the 

relevance of inputs. Those results turn out to be best in which the actual flow is 

relatively large, while and worse than the integration using iteration when the actual 

flows are low. Fortunately, it produces results faster than the integration using 

iteration.   

  

The data processing methods in this thesis include the coding of junctions, the 

extraction and retrieval of flows and timing plan, and the processing of FCD 

trajectories. Some tools are developed for achieving these processes, include a new 

coordinate system for forming FCD trajectories at urban junctions and an application 

of the PLSB (Piecewise Linear Speed Based) trajectory method.    

 

In discussing the experiments and case studies, the author sets up the experiment by 

defining some of the key influential factors observed in the initial experiments. Two 

junctions were chosen to apply the calibration and validation, respectively. Different 

approaches and methods were applied to the first junction, under different scenarios 

for the tests and calibration. In the first two approaches, the primary results using the 

initial methods, and improved results using updated formulas are included. Then, two 

integrated methods are applied to the second junction for the purpose of validation, 

which gives confidence to the extension.  

 

In the end, a comprehensive comparison is made among approaches and methods. The 

grand conclusion is that the best methods for estimating missing flows at the urban 

junction are determined according to the specific situation. Except for error indicators, 

criteria such as the data needed, the number of direct observations, and the 

computation costs should also be considered. Even for error indicators, the methods 

have different advantages with regard to specific missing data type (short- or long-

term) or data input type (raw data or processed data). The methods used here are 

recommended for practical application to estimating missing flows at urban junctions 

under stable traffic conditions, in situations meeting the criteria identified in this 

thesis. 

 

 

 

 



VIII 
 

 

Table of contents  

PREFACE .....................................................................................................................................IV 

SUMMARY .....................................................................................................................................V 

LIST OF FIGURES ..................................................................................................................... X 

LIST OF TABLES ..................................................................................................................... XIII 

1. INTRODUCTION ................................................................................................................. 1 

1.1. BACKGROUND ........................................................................................................................ 2 

1.2. RESEARCH QUESTION ........................................................................................................... 3 

1.3. RESEARCH PROCESS .............................................................................................................. 4 

1.4. CONTRIBUTION ...................................................................................................................... 5 

1.5. OVERVIEW .............................................................................................................................. 6 

2. THE STATE-OF-THE-ART ............................................................................................... 8 

2.1. MISSING DATA TYPE ............................................................................................................. 9 

2.2. MISSING DATA IMPUTATION ................................................................................................ 9 

2.3. DATA FUSION AND OTHER SOURCES .................................................................................. 13 

2.4. REASONING AND POSITIONING .......................................................................................... 15 

2.5. CONCLUSION FOR THE CHAPTER ....................................................................................... 18 

3. DATA ANALYSIS ............................................................................................................... 19 

3.1. DATA QUALITY ..................................................................................................................... 20 

3.2. LOOP FLOWS ......................................................................................................................... 21 

3.3. TIMING PLAN ........................................................................................................................ 26 

3.4. FCD....................................................................................................................................... 27 

3.5. CONCLUSION FOR THE CHAPTER ....................................................................................... 31 

4. METHODOLOGY ............................................................................................................... 32 

4.1. GENERAL FRAMEWORK ....................................................................................................... 33 

4.2. INDIVIDUAL APPROACHES .................................................................................................. 36 

4.3. INTEGRATION OF THE APPROACHES .................................................................................. 45 

4.4. CONCLUSION FOR THE CHAPTER ....................................................................................... 47 

5. DATA PROCESSING AND IMPLEMENTATION OF METHODS ....................... 48 

5.1. LOOP FLOW AND TIMING PLAN DATA PROCESSING .......................................................... 49 

5.2. FCD PROCESSING ................................................................................................................ 51 

5.3. CONCLUSION FOR THE CHAPTER ....................................................................................... 55 

6. CASE STUDIES AND EVALUATION .......................................................................... 56 

6.1. SETUP FOR CASE STUDIES .................................................................................................. 57 

6.2. CASES FOR APPROACH 1 HISTORICAL PATTERN .............................................................. 59 

6.3. CASES FOR APPROACH 2 LANE SPATIAL DISTRIBUTION .................................................. 64 



IX 
 

6.4. CASES FOR APPROACH 3 FCD - FLOW DATA FUSION ....................................................... 67 

6.5. CASES FOR APPROACH 4 MULTIPLE LINEAR REGRESSION .............................................. 69 

6.6. CASES FOR INTEGRATED METHOD 1: ITERATION ............................................................. 73 

6.7. CASES FOR INTEGRATED METHOD 2: ADVANCED MLR .................................................. 77 

6.8. CASES FOR VALIDATION ...................................................................................................... 80 

6.9. CONCLUSION FOR THE CHAPTER ....................................................................................... 85 

7. CONCLUSIONS ................................................................................................................. 87 

ACKNOWLEDGEMENT .......................................................................................................... 93 

BIBLIOGRAPHY ....................................................................................................................... 94 

APPENDIX .................................................................................................................................. 98 

APPENDIX 1 HISTORICAL PATTERN ............................................................................................... 98 

APPENDIX 2 LANE SPATIAL DISTRIBUTION ................................................................................. 100 

APPENDIX 3 FCD-LOOP FLOW RELATION.................................................................................... 102 

APPENDIX 4 MLR .......................................................................................................................... 106 

APPENDIX 5 ITERATION ................................................................................................................. 116 

APPENDIX 6 CORRELATION COEFFICIENT MAP OF TRAFFIC FLOW ........................................... 118 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



X 
 

List of Figures 

Figure 1-1 flow chart for the research for the thesis ............................................................................ 5 

Figure 2-1 Schematic diagram for the relation between uninterrupted flow and interrupted flow, Taylor 

et al. (1996) ...................................................................................................................................... 16 

Figure 2-2 flow chart for the position of  the work ........................................................................... 18 

Figure 3-1 Data quality for all 1st term junctions in SCATS (left), data quality for all 2nd term junctions 

in SCATS (right) (23rd April 2013) .................................................................................................... 20 

Figure 3-2 Data quality distribution over whole network in Changsha city for all 1st term junctions in 

SCATS system (23rd April 2013) ...................................................................................................... 21 

Figure 3-3 Visualization of  all the flows for two weeks on all detectors at junction 31616 in SCATS 21 

Figure 3-4 flow Mean (left) and standard deviation (right) at junction 31616 in SCATS .................... 22 

Figure 3-5 Mean traffic volumes for each lane over a day at junction 31616 in SCATS ...................... 22 

Figure 3-6 Correlation coefficients and p-values (in brackets) from two days with the same DOW ... 23 

Figure 3-7 Correlation coefficient map for lane 2 at junction 20209 .................................................. 24 

Figure 3-8 Correlation coefficients and its p-values (in brackets) from four lanes in a same phase ..... 24 

Figure 3-9 Correlation coefficients map between lanes for junction 31616 in SCATS........................ 25 

Figure 3-10 Correlation coefficients contour figure between lanes for junction 31616 in SCATS. ..... 25 

Figure 3-11 Sample of  timing expression, flow values are involved. .................................................. 26 

Figure 3-12 Example of  data format of  FCD and trip determination ............................................... 28 

Figure 3-13 an example of  a map-matching check using Google map ............................................... 28 

Figure 3-14 FCD plots using one tenth of  all the taxi (left) and speed plot (right) 23th April 2013 ... 29 

Figure 3-15 Layout of  research areas and FCD records showing speed on Lao Dong road from 7:00 to 

7:15 23th April 2013 ......................................................................................................................... 29 

Figure 3-16 Chosen area (Longitude: 112.98-112.982 Latitude: 28.174-28.176) and FCD vehicle speed 

during a day in the small area near junction 20209, 23th April 2013. ................................................. 30 

Figure 3-17 Compare of  FCD/Flow in SCATS (left) and the ratio (right) at Lao Dong road between 

0:00-24:00 23th April 2013 ............................................................................................................... 30 

Figure 3-18 Compare of  FCD/Flow in SCATS (left) and the ratio (right) at Lao Dong road between 

7:00 -8:00 23th April 2013 ................................................................................................................ 30 

Figure 4-1 the framework decomposition, sources and corresponding approaches ........................... 36 

Figure 4-2 Two areas (in rectangles) to carry out data fusion inbound area (left) and outbound area 

(right). Arrows show the flow gathered from the detectors. .............................................................. 41 

Figure 4-3 Schematic flow chart of  the Iteration .............................................................................. 46 

Figure 5-1 Example of  junctions (left) and check of  errors in junction information (right) ............... 49 

Figure 5-2 Sample of  timing expression; flow values are involved within 30 minutes ........................ 50 

Figure 5-3 the green light time distribution, each phase on 15th-20th April 2013(30 minutes interval))

 ........................................................................................................................................................ 50 

Figure 5-4 Example of  FCD trajectories near a junction 31616 from west to east from 16:50 to 17:05 

compared with control plan. ............................................................................................................. 51 

Figure 5-5 Example of  FCD data-taxi ID and trips classification ...................................................... 52 

Figure 5-6 The original coordinate system in FCD (left), newly designed coordinate system (right) .. 53 

Figure 5-7 the FCD coordinate designed for data processing of  FCD heading. ................................ 54 



XI 
 

Figure 5-8 WGS84 used in FCD data processing .............................................................................. 54 

Figure 5-9 Example of  forming of  PLSB method to a single vehicle ................................................ 55 

Figure 6-1 A flow chart of  the discussion in the case study and evaluation chapter ........................... 57 

Figure 6-2 Layout of  case junctions in SCATS, junction 31616 (left) for calibration and evaluation, and 

31617 (right) for validation. .............................................................................................................. 58 

Figure 6-3. MAPE on the stream level, using an historical flow pattern over a two-week period, based 

on missing flow data on (1) West stream lane 1 (2), West stream lane 3 (3), and South stream lane 7. 60 

Figure 6-4.  RMSE at the stream level over two weeks, based on missing flow date for (1) West stream 

lane 1, (2) West stream lane 3, and (3) South stream lane 7. ............................................................... 61 

Figure 6-5. Estimation using approach 1.1 on lane 7 junction 31616, April 23, 2013, for original data 

(left) and processed data (right). ....................................................................................................... 62 

Figure 6-6. The green/flow ratio over one week (April 15-21, 2013) at 30-minute intervals. ............. 63 

Figure 6-7. Estimated results using the green light time/flow ratio approach in lane 1 on April 15, 2013: 

original (left) and processed data (right) with 30-minute interval. ...................................................... 63 

Figure 6-8 estimated results using degenerated approach 1.2 on lane 1 on day 15th April 2013-original 

data (left) and processed data (right) with 30 minute interval ............................................................ 64 

Figure 6-9. MAPE for the approach level, using approach 2 over 14 days per month, based on estimating 

the missing flow in  (a) West stream lane 1 , (b) West stream lane 3, and (c) South stream lane 7. .... 65 

Figure 6-10. RMSE approach level, using approach 2 over 14 days per month, based on an estimation 

of   missing flow on  (a) West stream lane 1 , (b) West stream lane 3. (c) South stream lane 7. ....... 65 

Figure 6-11. Estimation using approach 2 on lane 7, junction 31616, on April 23, 2013 for original data 

(left) and processed data (right) ........................................................................................................ 66 

Figure 6-12. Fitting curve of  outbound speed and flow for south stream on junction 31616 (left), and 

estimation using approach 3.1 on outbound south stream on junction 31616 for original data (right)67 

Figure 6-13. Fitting curve of  count and flow outbound of  south stream on junction 31616 (left), and 

estimation using approach 3.2 outbound of  south stream junction 31616, April 23 2013, for original 

data (right). ....................................................................................................................................... 68 

Figure 6-14. Estimation of  missing flow in lane 1 on April 22, 2013, using the multiple linear regression 

approach: use the original data case (left) and processed data case (right).  (Top: the whole dataset is 

from one approaching stream, down: dataset from the West stream. Analysis interval: 24h). ............. 70 

Figure 6-15. Estimation of  missing flow in lane 1, on April 22 2013, using the multiple linear regression 

approach: use original data (left) and processed data (right). (The whole dataset is from the West 

approaching stream, and the analysis interval is from top to bottom: 24h, 12h, 8h, 4h). .................... 71 

Figure 6-16. Comparison of  each approach on MAPE, on lane 1, April 21, 2013 ; validation interval: 1 

hour; using original and processed data............................................................................................. 72 

Figure 6-17. Iteration results for long-term missing (up: flow compared with actual detected flow, down: 

iteration times before convergence), lane 7, week 1, day 1 (April 15, 2013), original data (left) and 

processed data (right). ...................................................................................................................... 73 

Figure 6-18. Iteration results for long-term missing (up: flow compared with actual detected flow, down: 

iteration times before convergence), lane 7, week 2, day 2 (April 23, 2013), original data (left) and 

processed data (right). ...................................................................................................................... 74 

Figure 6-19. Iterative estimation for short-term missing morning peak, 7:00-10:00, on lane 7, April 15 

and 23, 2013; original data (left) and processed data (right). .............................................................. 75 

Figure 6-20. Iterative estimation for short-term missing afternoon peak, 16:00-19:00, on lane 7, April 



XII 
 

15 and 23, 2013; original data (left) and processed data (right). ......................................................... 76 

Figure 6-21. Iterative estimation and approaches 1 and 2 for the long-term missing, in lane 7, on April 

15 and 23, 2013; with original data (left) and processed data (right)................................................... 77 

Figure 6-22. Estimation using integration 2 for original data (left) and processed data (right) on lane 7, 

junction 31616, on April 15 and 23, 2013. ........................................................................................ 78 

Figure 6-23. Estimation using integration 2 for original data (left) and processed data (right) on lane 7, 

junction 31616, on April 15 and 23, 2013, during morning peak, 7:00-10:00. .................................... 79 

Figure 6-24. Estimation using integration 2 for original data (left) and processed data (right) on lane 7, 

junction 31616, on April 15 and 23, 2013, during afternoon peak, 16:00-19:00. ................................ 79 

Figure 6-25. Iterative estimation for long-term missing, on lane 5, April 15 and 23, 2013; original data 

(left) and processed data (right). ....................................................................................................... 81 

Figure 6-26. Iterative estimation for short-term missing morning peak, 7:00-10:00, in lane 5, April 15 

and 23, 2013; original data (left) and processed data (right). .............................................................. 82 

Figure 6-27. Iterative estimation for short-term missing afternoon peak, 16:00-19:00, in lane 5, April 15 

and 23, 2013; original data (left) and processed data (right). .............................................................. 82 

Figure 6-28. Iterative estimation for long-term missing, on lane 5, April 15 and 23, 2013; original data 

(left) and processed data (right). ....................................................................................................... 83 

Figure 6-29. Iterative estimation for long-term missing, in lane 5, on April 15 and 23, 2013; original data 

(left) and processed data (right). ....................................................................................................... 84 

Figure 6-30. Iterative estimation for long-term missing, in lane 5, on April 15 and 23, 2013; original data 

(left) and processed data(right). ........................................................................................................ 84 

Figure 0-1 The FCD speed- loop flow relation formed from inbound from streams (Top-down – East, 

South, West, North) ....................................................................................................................... 102 

Figure 0-2 The FCD speed- loop flow relation formed from outbound from streams (Top-down – East, 

South, West, North) ....................................................................................................................... 103 

Figure 0-3 The FCD count- loop flow relation formed from inbound from streams (Top-down – East, 

South, West, North) ....................................................................................................................... 104 

Figure 0-4 The FCD count- loop flow relation formed from outbound from direction streams (Top-

down – East, South, West, North) .................................................................................................. 105 

Figure 0-5 iterative estimation for long-term missing, on lane 7, day 15th and 23rd April 2013 ,15 

minutes resolution (left)and 30 minutes resolution (right) ............................................................... 116 

Figure 0-6 iterative estimation for short-term missing morning peak 7:00-10:00, on lane 7, day 15th and 

23rd April 2013 ,15 minutes resolution (left)and 30 minutes resolution (right) ................................ 117 

Figure 0-7 iterative estimation for short-term missing afternoon peak 16:00-19:00, on lane 7, day 15th 

and 23rd April 2013 ,15 minutes resolution (left)and 30 minutes resolution (right) ......................... 117 

Figure 0-8 Correlation coefficient map for lane 1 and lane 2 at junction 20209 ............................... 118 

Figure 0-9 Correlation coefficient map for junction 20209 and 31617............................................. 119 

 

 



XIII 
 

List of Tables 

Table 2-1 the framework for the imputation methods for missing flow data estimation .................... 12 

Table 2-2 Common data fusion techniques (Linn & Hall, 1991) ........................................................ 14 

Table 5-1 Determination of  turning in new coordinate .................................................................... 54 

Table 6-1. Error indicators for approach 4, lane 1 April 22, 2013. ..................................................... 70 

Table 6-2. Error indicators for approach 4, lane 1, on April 22, 2013; validation interval: 1 hour ...... 72 

Table 6-3. Error indicators for iterative estimation for long-term missing, on lane 7, April 15 and 23, 

2013. ................................................................................................................................................ 74 

Table 6-4. Error indicators for iterative estimation, and approaches 1 and 2 for long-term missing, on 

lane 7, April 15 and 23, 2013. ........................................................................................................... 77 

Table 6-5. Error indicators using integration 2 on lane 7, junction 31616, on April 15 and 23, 2013. . 78 

Table 6-6. Error indicators for three individual approaches, grand average of  MAPE ....................... 85 

Table 6-7. Error indicators for I1 and I2 in lane 7 at junction 31616, on April 23, 2013. ................... 86 

Table 7-1. Comments on all of  the approaches and integrated methods. .......................................... 90 

Table 0-1 Estimation results using historical flow pattern for the second week on all lanes at junction 

31616. Indicator MAPE, duration: the whole day (24 h), resolution 5 min. data input: original (raw) data

 ........................................................................................................................................................ 98 

Table 0-2 Estimation results using historical flow pattern for the second week on all lanes at junction 

31616. Indicator MAPE, duration: the whole day (24 h), resolution 5 min. data input: processed 

(smoothed) data ............................................................................................................................... 99 

Table 0-3 Estimation results using lane spatial distribution for the second week on all lanes at junction 

31616. Indicator MAPE, duration: the whole day (24 h), resolution 5 min. data input: original (raw) data

 ...................................................................................................................................................... 100 

Table 0-4 Estimation results using lane spatial distribution for the second week on all lanes at junction 

31616. Indicator MAPE, duration: the whole day (24 h), resolution 5 min. data input: processed 

(smoothed) data ............................................................................................................................. 101 

Table 0-5 fitting parameters from inbound, junction 31616, 23rd April 2013 .................................. 102 

Table 0-6 fitting parameters from outbound, junction 31616, 23rd April 2013 ................................ 103 

Table 0-7 fitting parameters from inbound, junction 31616, 23rd April 2013 .................................. 104 

Table 0-8 fitting parameters from outbound, junction 31616, 23rd April 2013 ................................ 105 

Table 0-9 Estimation results using MLR for the second week on all lanes at junction 31616. Indicator 

MAPE, duration: the whole day (24 h), resolution 5 min. analysis interval: 24 h, inputs category: all the 

lanes at a junction and a whole week, data input: original (raw) data................................................ 106 

Table 0-10 Estimation results using MLR for the second week on all lanes at junction 31616. Indicator 

MAPE, duration: the whole day (24 h), resolution 5 min. analysis interval: 24 h, inputs category: all the 

lanes at a junction and a whole week, data input: processed (smoothed) data .................................. 107 

Table 0-11 Estimation results using MLR for the second week on all lanes at junction 31616. Indicator 

MAPE, duration: the whole day (24 h), resolution 5 min. analysis interval: 24 h, inputs category: lanes 

from a stream and a whole week, data input: original (raw) data ...................................................... 108 

Table 0-12 Estimation results using MLR for the second week on all lanes at junction 31616. Indicator 

MAPE, duration: the whole day (24 h), resolution 5 min. analysis interval: 24 h, inputs category: lanes 

from a stream and a whole week, processed (smoothed) data ......................................................... 109 



XIV 
 

Table 0-13 Estimation results using MLR for the second week on all lanes at junction 31616. Indicator 

MAPE, duration: the whole day (24 h), resolution 5 min. analysis interval: 12h, inputs category: lanes 

from a stream and a whole week, data input: original (raw) data ...................................................... 110 

Table 0-14 Estimation results using MLR for the second week on all lanes at junction 31616. Indicator 

MAPE, duration: the whole day (24 h), resolution 5 min. analysis interval: 12 h, inputs category: lanes 

from a stream and a whole week, processed (smoothed) data ......................................................... 111 

Table 0-15 Estimation results using MLR for the second week on all lanes at junction 31616. Indicator 

MAPE, duration: the whole day (24 h), resolution 5 min. analysis interval: 8h, inputs category: lanes 

from a stream and a whole week, data input: original (raw) data ...................................................... 112 

Table 0-16 Estimation results using MLR for the second week on all lanes at junction 31616. Indicator 

MAPE, duration: the whole day (24 h), resolution 5 min. analysis interval: 8h, inputs category: lanes 

from a stream and a whole week, data input: processed (smoothed) data ........................................ 113 

Table 0-17 Estimation results using MLR for the second week on all lanes at junction 31616. Indicator 

MAPE, duration: the whole day (24 h), resolution 5 min. analysis interval: 4h, inputs category: lanes 

from a stream and a whole week, data input: original (raw) data ...................................................... 114 

Table 0-18 Estimation results using MLR for the second week on all lanes at junction 31616. Indicator 

MAPE, duration: the whole day (24 h), resolution 5 min. analysis interval: 4h, inputs category: lanes 

from a stream and a whole week, data input: processed (smoothed) data ........................................ 115 

Table 0-19 error indicators for long-term missing, on lane 7, day 15th and 23rd April 2013, 5 15 

30minutes resolution, ..................................................................................................................... 116 

 



1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

 

 

 

This chapter provides background to the research presented in this thesis, and 

identifies the main research question and the thesis’s contributions. Section 1.1 

provides background on the widespread phenomena of missing data in traffic systems. 

Major causes of this missing data are introduced, followed by their consequences. 

Relevant research conducted in similar areas is presented and classified. Based on 

current problems, the main research question is raised in section 1.2, followed by 

several sub-questions. In section 1.3, a complete induction-deduction loop is introduced 

to explain the research process used herein. Section 1.4 explains the contributions of 

the thesis, both practically and scientifically. Finally, section 1.5 provides an overview 

of the thesis structure.  
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1.1. Background  

Traffic congestion is a major urban problem. To address it, solutions such as dynamic 

traffic management (DTM), or traffic systems such as Intelligent Transportation 

Systems (ITS) have been developed. Traffic flow data play a significant role in accurate 

traffic state estimation and efficient traffic management. Hence, the availability and 

quality of traffic flow data are of great importance, and making estimations of traffic 

flows is needed for both on-line (real-time) and off-line processes. Meanwhile, these 

processes all rely heavily on the data. For example, among traffic systems, some use 

adaptive signal controls in response to the changing traffic volumes in urban regions, 

and these adaptive systems develop their control plans based on the real-time flows 

they have gained. SCATS is a worldwide-used intelligent transportation system, which 

determines its control plan based on the traffic volume in a given unit of time. If the 

data are incomplete or even completely missing, the operation of the system will be 

difficult. Then, it becomes important to improve the traffic flow data quality by 

estimating the missing flow. 

 

As described above, the position of data acquisition is crucial. Traffic data are collected 

in large quantities by various sensors and in multiple ways in intelligent 

transportation systems (ITS), including loop detector, GPS, video, Bluetooth, and 

others. Loop detector is one of the most important measurements for collecting traffic 

data. Many means have been tried of improving the loop data quality. The detector 

event data-collection (DEDAC) system was developed by the TransNow research team 

at the University of Washington. This system combines digital data-collection 

techniques, a multimedia high-resolution timer, and multithreaded programming 

techniques. The system can do real-time loop data quality evaluation, loop malfunction 

identification, and loop error correction. Zhang et al. (2003) developed a new dual-loop 

algorithm by conducting various checks to test the validity of individual vehicle data. 

However, this kind of system may be too expensive for most government agencies, 

especially in developing countries. There are numerous issues related to installation, 

comparability, and maintenance. Therefore, most of the existing traffic systems, 

without specific tools to guarantee their data quality, still need efforts to solve their 

problems of missing data. 

 

Missing data: causes and current situations  

 

Clearly, data missing are problematic for any functions that detect data that are to be 

used in a dynamic traffic management or other ITS system.  

 

There are multiple reasons for data missing this phenomena. The consequences, of 

course, are serious. According to Boyles (2011), causes of missing data include data 

detector failures, failures in power or communication, and man-made factors (Tang et 

al. 2015) such as incorrect observations are also included. Data transfer is another 
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trigger, as there can be loss of data packages during transmission (Qu et al. 2009). 

 

Missing data is widespread in many traffic systems. For example, Turner et al. (2000) 

found that, in archived data from San Antonio, Texas, nearly 25% of data records are 

missing or unreliable. Nguyen and Scherer (2003) note that 25-30% of the detectors 

from the Virginia Department of Transportation default permanently. In addition to 

the defaulting of detectors, some functioning detectors also provide unreliable or 

missing values. Kwon (2004) suggests around of the data for functioning detectors is 

missing. Qu et al. (2009) say that in Beijing the missing ratio in ITS of daily traffic 

flow volume data is around 10%. Four percent of this is due to the malfunctioning of 

detectors, and 6% to other reasons. In the case of specific detectors, some even show a 

missing ratio between 20% and 25%. 

 

The missing flow at a SCATS junction  

 

A considerable amount of research has been conducted on traffic flows on freeways. 

Yet, there is a need for more research on traffic flow at urban junctions.  

 

Smith et al. (2001) suggest that traffic signal systems represent the first widespread 

deployment of ITS. SCATS is one of the adaptive traffic control systems at junctions 

that adapt control schemes according to traffic flow volume. Stevanovic (2012) shows 

that the long-term benefits of SCATS include better performances than some other 

plans. However, due to the device failure, the data quality in the system is low. 

 

To improve the data quality at junctions in SCATS, a better understanding of flows is 

needed. For example, the flows in lanes vary according to streams, and turning or 

timing groups. While SCATS does not compare the flow counts over lanes, this study 

helps to look at this. 

 

Relevant studies using SCATS data 

 

Some studies have been conducted using similar data sources, and the data fusion of 

FCD and loop data from SCATS has been used by researchers to estimate traffic states 

or make predictions. For example, Chen et al. (2013) built a dynamic simulation model 

using SCATS and FCD from Changsha for the assessment and evaluation of urban 

networks. Li et al. (2014) use FCD to apply fusion methods for travel time monitoring 

in urban areas. Zheng et al. (2012) complete link travel times by using sparse probe 

vehicle data. Lu et al. (2012) compare the counts obtained from video recordings with 

flows in SCATS. 

1.2. Research question  

Previous studies have sought to improve the quality and comprehensiveness of raw 

observation data from monitoring systems. The focus in this thesis is on urban signal- 
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controlled intersections. The main research question then is: 

 

What are the best ways to estimate traffic flow volumes missing at a junction?  

 

This research question directs our thinking on: whether the traffic flows are collected 

well at detectors or not, and whether the values detected are consistent with each 

other. Therefore, to specify the research question, several sub-questions are 

formulated, as follows: 

   

• What is the data quality at junctions in a traffic control system such as SCATS? 

• How to check the flow consistency of a junction?   

• How to connect FCD with loop data to provide more information？ 

• What are the differences in methods in estimating missing traffic flows?  

1.3. Research process  

The research makes use of an induction-deduction loop concept. First, from the 

induction side, the author identifies the phenomena of missing flow by analyzing the 

flow data from SCATS (Chapter 3). A research question is raised (Chapter 1). To find 

out the answers to the research question, the author undertakes actions from both the 

induction and deduction side. Then the findings from one side act as the inputs to 

another side, iteratively.  

 

First, from the induction branch on the right hand side, the observed flows are 

analyzed from available data sources, and their patterns are observed. The author 

makes some tentative hypothesis about the relationships between the missing flow 

and other observations (Chapter 2). Primary approaches are made based on these 

relations: Using the nearest detector or the average of neighboring days (as close to 

time or distance as possible) (Chapter 4). These primary approaches yield some initial 

results (Chapter 6). These processes are then carried out in the induction branch, as 

shown in Figure 1 1. 

 

A literature review is conducted based in part on the deduction branch on the left hand 

side (Chapter 2).  The primary approaches used in the induction section are combined 

with theories and concepts from previous studies (Chapter 4). This leads to the 

suggestion of new approaches, whose performances are tested in case studies (Chapter 

6).The updated approaches are compared with various observations, and the research 

process goes back to induction branch.  

 

After several loops of switching between induction and deduction processes, feeding 

the inputs of induction or deduction with outputs from both, the methods with better 

results will be confirmed and applied for a validation. The methods still with 

unsatisfactory performance even after many trials are reserved for use as a reference. 

The section on the final output (Chapter 7) presents some suitable means of missing 
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flow estimation, provides recommendations for application in practice, and points out 

possibilities for improvements to ongoing research. 

Data imputation, Traffic flow theory, Data fusion concept

Assumptions 

Hypothesis

Update of primary methods/ raise new methods 

Validation and analysis 

On the basis of theories and data sources

Confirmation or rejection of approaches

Evaluation

Deduction 

Observations from data analysis 

Missing flow/Patterns  

Tentative  hypothesis

Underlying rules and relations

Experiment and testing 

Implementation

Primary approaches/updated approaches 

Calibration 

Induction 

Research question 

Chapter 1 introduction Chapter 3 data analysis  

Chapter 5 data processing    

Chapter 6 case study and 
evaluation     

Chapter 6 conclusion and recommendation      

Chapter 2 state-of-the-art   

Chapter 4 methodology   

Start 

Chapter 2 state-of-the-art   

Chapter 6 case study and 
evaluation     

Chapter 4 methodology   

Chapter 6 case study and 
evaluation     

Chapter 1 introduction 

 

Figure 1-1 flow chart for the research for the thesis  

 

In conclusion, it should be noted that the actual research process is far more complex 

than is suggested by the contents of this thesis. The gains include cumulative outputs 

from the loops between induction and deduction processes.   

1.4. Contribution  

Theoretical contribution   

 

The theoretical contributions of this thesis include the development of algorithms, and 

detailed analysis.  

 

The first contribution concerns the quality of the traffic data. This thesis provides a 

further look into the flows at an urban junction, and develops a series of methods to 

improve the data quality at junctions. These methods are easy to apply and suitable 

for further improvements under various conditions. The research also benefits from 

traffic state estimation, prediction, management, and control.    

 

The second contribution concerns data. The thesis solves missing flow estimation 

problems by linking both imputation and data fusion concepts, in considering multiple 

factors that have been involved in this problem. The trials that link different data 

sources such as loop flow and FCD have provided some important findings and 

implications for further research on this topic. 

     

In addition to algorithm development and data, the research for this thesis has 

provided comprehensive comparisons between different techniques of flow estimation–

from simple to complex, from a single aspect to multiple aspects. It also takes into 
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account factors influencing the performance of algorithms, such as suitable periods, 

and analysis interval. These detailed factors have usually been ignored or omitted in 

previous research. 

 

Practical contribution   

 

The practical contributions of this thesis are mainly in flow estimation and data 

processing:  

 

From the SCATS side, the thesis provides an inspection into the data availability of 

the whole SCATS network in Changsha, China, showing the data availability of each 

lane of each junction. This can be a significant information that SCATS can use for 

purposes of management and control.  

 

In data processing, by sorting and classifying, flow data from SCATS are well 

organized into groups. Each flow record in the network can be extracted by referring 

the junction number, date, and lane number. The thesis proposes some solutions in 

data processing of FCD, too. FCD is classified according to their attributes such as ID, 

and for each vehicle their actual trip at specific time periods are defined. The author 

uses a way to form FCD trajectories and to calculate the speed and counts. 

1.5. Overview  

This section provides an overview of the thesis structure. In this chapter, the 

background of the research is explained (1.1), followed by a presentation of the 

research questions (1.2). The main research question involves the concepts of induction 

and deduction loops (1.3). Contributions are also stated (1.4), followed by an overview 

(1.5). 

 

Chapter 2 presents a literature review of previous studies on missing flow type (2.1), 

and missing data imputation methods (2.2). Then, literature on data fusion and other 

topics are presented (2.3). The author then sketch the argument of the thesis (2.4), 

followed by a conclusion (2.5). 

 

Chapter 3 mainly looks into the data itself. In 3.1, the quality of data flows from the 

loop detector in SCATS is analyzed. In 3.2, patterns from the time and space 

dimensions are shown. The timing plan (3.3) and FCD (3.4) are then analyzed. For 

FCD, the analysis starts with the data structure and then considers the utilization of 

speed and counts.  

 

Chapter 4 presents the methodology. First, the author describes the way chosen to 

express the flow in the general framework (4.1). Secondly, four individual approaches 

are introduced in 4.2. The first approach (4.2.1) contains two sub-approaches: the 

historical flow pattern (4.2.1.1) and the historical timing-flow pattern (4.2.1.2). The 
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second approach is that of lane spatial distribution (4.2.2). The FCD data flow fusion 

(4.2.3) contains two sub-approaches: they using the speed/flow relation (4.2.3.1) and 

counts/flow relation (4.2.3.2), respectively. The multiple linear regression is described 

in 4.2.4. The combination of approaches is presented in 4.3. Two of them are iteration 

(4.3.1) and advanced multiple linear regression (4.3.2).  

  

Chapter 5 is a short chapter describing the data processes. Two raw data sources are 

processed: data from SCATS (5.1), containing a loop flow and timing plan, and taxi 

data from FCD (5.2).  

 

Chapter 6 shows the experiments and the results, including the experiment set-up 

(6.1), tests and calibration and validation. A comparison and a final evaluation are 

presented in the conclusion (6.9). Among individual cases, sub-approaches are also 

tested for the historical flow pattern and the historical timing-flow pattern; as well as 

the speed-flow relation and counts-flow relation. 

 

Chapter 7 provides the overall conclusions, recommendations for application, and 

suggestions for future research work.  
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2. The state-of-the-art 

 

 

 

This chapter introduces the state-of-the-art of missing flow estimation as well as the 

positioning and the reasoning of the thesis work. The literature reviews and previous 

studies provide theoretical support for the development of methods. Firstly, the 

chapter gives the general classification of missing data in section 2.1. Secondly, section 

2.2 goes through the background of missing data imputation and classifies the current 

methods. Thirdly, section 2.3 gives brief descriptions about data fusion and other 

relative topics. Fourthly, section 2.4 shows possible challenges, according to current 

studies, and positions the research work. The author also describes the plans to face 

these challenges, which shows the reasoning of the methods. Finally, a conclusion is 

made in section 2.5.  
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2.1. Missing Data type  

Rubin (1976) gives the definitions for the classification of the missing data. This 

classification is ‘missing data mechanisms’. There are three types of missing data: 

Missing completely at random (MCAR), missing at random (MAR) and missing not at 

random (MNAR).  

 

Among these types of data missing, MCAR shows data that are missing completely at 

random. MAR shows missing at random, but the missingness of which is not random, 

and the missingness can be fully accounted where there is complete information. That 

is to say, the observed values have the same statistical distribution as the other 

observations. Missing not at random (MNAR) is neither MAR nor MCAR; in this case, 

the reasons of missing are related to the whether or not there exist a missingness, so 

the distribution has been hidden.  

 

Usually, it is impossible to identify from a dataset which category they belong to. 

However, due to the setting up of the sensors and the mechanisms of the detection, it 

can be assumed that, the missing data in a traffic area belong to the MAR or MCAR. 

Actually, imputation methods are widely applied according to the relations of missing 

data or the missingness. 

  

However, traditional imputation methods may face challenges: If there is not enough 

available value in the dataset, it is hard to get the relations by the few data that are 

not missing. In this case, some more information is needed. Otherwise, more advanced 

algorithms are required. In this case, the information from other sources is concerned. 

This then falls to the same concept of data fusion. The following two parts will give the 

state-of-the-art for both imputation and data fusion.  

2.2. Missing Data imputation  

As talked before, the quality of the data acquisition and the analysis of a traffic 

management system are affected by the degree of missing traffic flow data. Completing 

the missing flow data is a fundamental step. 

 

Albright, D. (1991) gives the history of Traffic volume estimation and evaluation in the 

US: During the 1930s, traffic volumes were extensively manually counted. In the 1940s, 

the measurements were transferred to mechanical ones, which made approaches for 

data integrity. From the 1950s to 1960s, annual traffic summary statistics got 

theoretically developed. Historical assumptions, normal distribution of traffic, traffic 

variability, and data imputation and smoothing were developed and widely used. 

Many imputation-based procedures were developed for recovering missing data. Some 

that have been used or related to missing data estimation are presented in the 

following Table 2-1. 
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Single imputation and multiple imputation  

 

There are multiple types and several ways of categories for imputation techniques. 

One way to make classification is single imputation and multiple imputation. Single 

imputation is to fill in one single value by the processes. One example of the single 

imputation is ‘’hot-deck’’. The term "hot deck" indicates that the information comes 

from the same dataset as the recipients. Sande (1996) uses hot deck imputation, and 

the units recorded in the sample are replaced by the values obtained from the nearest 

data record.  

 

Multiple imputation (MI) is to reconstruct or train multiple missing points at the same 

time (Schafer, 1997). Rubin (1987) develops the method that averages the outcomes 

across multiple imputed data sets. Nguyen and Scherer (2003) use multiple imputation 

techniques to account for missing data in support of intelligent transportation systems 

applications. In the method, each data set imputed is analyzed separately, the results 

are made average. The standard error term is considered according to the variances of 

each data set.  

 

Temporal/spatial algorithms   

      

The temporal imputation stands for the algorithms that making an estimation based 

on the average value of historical data in the same time interval to interpolate missing 

data. Guo et al. (2008) state that data collection along the time dimension is a 

fundamental determinant of the nature and utility of the data streams. Many research 

solves missing data by considering this aspect (Chen and Shao, 2000) (Nguyen and 

Scherer, 2003), especially when there are no other neighbor detectors. This method 

has some advanced versions which with the same concept, but equipped with higher 

techniques, for example, Qu et al. (2009) develops a probabilistic principal component 

analysis (PPCA) to impute the missing flow volume data based on historical data 

mining.  

 

Nearest neighbor imputation is one of the hot deck methods which belongs to single 

imputation methods mentioned in previous part. It estimates the missing value using 

the average data from one or more of neighboring detectors. The Lane distribution 

method is one case of this algorithm (Conklin and Smith 2002). 

 

Regression  

 

Regression is another tool that has been widely used. Rubin (1987) uses the regression 

method for missing data imputation. Pawlak (1993) uses regression imputation by 

giving a function and estimate the parameters based on the known variables. Chen et 

al. (2003) apply a regression imputation to filter data from single-loop systems. This 

method considers the relations relative locations, which is suitable for both urban and 
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freeway networks. Nguyen and Scherer (2003) use linear regression model, and Al-

Deek and Chandra (2004) suggest the model to use nearby detectors. Yuan. Y et.al 

(2012) uses multi-linear regression to estimate multi-class and multi-lane flow counts 

from generic freeway surveillance systems. 

      

Except for imputation, regression approach has been widely used in the research 

related to the analysis of traffic flows. Romana (1999) uses linear regression to form 

the direct ratio between travel speeds of passing and passed vehicles. Guan et al. 

(1999) explore the relationship between capacity reduction of the high-occupancy-

vehicle (HOV) lane in ingress and egress section. They analyze the impact factors, by 

a database developed from field collection using both linear regression and non-linear 

regression model. Fazio, J. et al. (1999) uses correlation coefficients to find the factors 

that impact fatalities. Smith, B. (2001) uses cluster analysis to group together similar 

samples of traffic volume conditions to identify intervals of time of day (TOD) signal 

timing control. Wang, X. et al. (2009) develops Kriging-based methods for mining 

network and count data over time and space. 

 

Others  

 

Other techniques have also been used in this area. For example, Southworth et al. 

(1989) introduce RTMAS, which applies time series model to make a prediction as well 

as the missing value estimation. Wall et al. (2003) present a time-series algorithm for 

correcting errors in the freeway traffic management system archived loop data. Other 

similar applications are Monte Carlo techniques (Gelfand and Smith, 1990) (Gilks et 

al. 1996) (Schafer 1997). Zhong et al. (2004) apply an advanced model based on a 

genetic algorithm for the missing count estimation. Tang. J. et al. (2015) use a fuzzy c-

means (FCM) to impute missing traffic volume data in loop detector and optimize the 

parameter of cluster size and the weighting factor in FCM model using a genetic 

algorithm (GA). Some studies are combined and improved gradually. For example, 

Tanner and Wong (1987) use the data augmentation DA method. Lavori et al. 1995 

give the expectation maximization method. In the EM method, the historical average, 

especially during the day time, is used. Smith and Babiceana (2004) apply a Two-tiered 

approach, which is known as EM/DA, it makes the combination of the expectation 

maximization method (EM) and Data augmentation (DA), by adjusting and adding 

punishes to the imputes according to the period– during the day or the night. 
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Table 2-1 the framework for the imputation methods for missing flow data estimation 

 

Method categories Methods  Reference studies 

Single Imputation Hot deck  Sande (1996) 

Multiple 

imputation(MI) 

and Linear 

regression 

Linear Regression 

Rubin (1987) 

Pawlak (1993) 

Chandra and A1-Deek (2004) 

Yuan et al. (2012) 

The propensity score method Rosenbaum and Rubin (1983) 

The expectation 

maximization method (EM) 

Dempster et al. (1977) 

Lavori et al. (1995) 

Schafer (1997) 

Smith and Babiceana (2004) 

Data augmentation (DA) 
Tanner and Wong (1987) 

Smith and Babiceana (2004) 

Others 

(Temporal/spatial algorithms, 

traffic flow theory)  

Rubin (1987) 

Schafer (1997) 

Chen and Shao (2000) 

Treiber and Helbing (2002) 

Conklin and Smith (2002) 

Huang and Zhu (2002) 

Nguyen and Scherer (2003) 

Chen et al. (2003) 

Ni, D. et al. (2005) 

Van Lint and Hoogendoorn (2009) 

Others 

Time series (e.g. ARIMA) 

Southworth et al. (1989) 

Nihan (1997) 

Wall et al. (2003) 

Monte Carlo techniques  

Gelfand and Smith (1990) 

Gilks et al. (1996) 

Schafer (1997) 

Genetic algorithms (GA) 
Zhong et al. (2004)  

Tang. J. et al. (2015) 

Probabilistic principal 

component analysis (PPCA) 
Qu et al. (2009)  

 

Traffic flow theories are also considered to support the estimation of missing data. 

Forexample, Treiber and Helbing (2002) develop an adaptive smoothing method based 

on the notions from the first-order traffic flow theory, to reconstruct and clean flow 

observations from dual-loop systems. This approach has been further generalized by 

Van Lint and Hoogendoorn (2009) to fuse multiple data sources. Except for the 

methods mentioned that can be classified, there are also many other methods that 

have been used to make the estimation of missing data, which are not so easy to 

classify. For example semi-parametric methods (Lawless and Kalbfleisch, 1999), 
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Bayesian methods (Fitzgerald, 1999) and pseudo-nearest-neighbor approach Huang 

and Zhu (2002). Boyles, S. (2011) makes a comparison of all the interpolation 

methods for missing traffic volume data.  

2.3. Data fusion and other sources   

The previous part has given the fundamental concepts about missing data imputation 

methods. Although section 2.2 also contains data fusion concept and data sources, this 

part shows some specific looks into data fusion and some other topics associated with 

the flow estimation concerned in this research.  

 

Data fusion  

 

The data fusion concept act as an important role in estimating the missing flow due to 

its special position and utility. Data fusion has been discussed for long and widely used 

in any offline or online traffic management or data archival system. Currently, traffic 

data are collected from various sensors such as loop detectors probe vehicles, video 

cameras, mobile phones and Bluetooth, etc. However, some provide highly correlated 

data, their data are of different types, with uneven frequency and density. By data 

fusion techniques, the information from these sources can be made to compliment for 

each other. Similarly, if data are missing, the relation or the information can also be 

gained in this way to make consistent and reliable estimating for missing values; 

especially when there are not enough imputation possibilities provided too few direct 

observations from a same system.  

 

Linn and Hall’s (1991) give a simple three-level model for data fusion, which is also 

explained by Varshney (1997). In the model, each level has its particular function and 

purpose; the higher level data fusion is supported by the results from low level, and 

each level has its corresponding suitable methods. Five general, goal-oriented, data 

fusion methods are spread in the three levels: data association, positional estimation, 

identity fusion, pattern recognition, and artificial intelligence (Linn & Hall, 1991). For 

the first level, the main task is to process raw data, and the outputs are the foundation 

or inputs for the usage of the higher level. For the second level, further information 

such as features and patterns are provided;methods like Regression or Neural 

networks are applied. For the third level, assessments and decisions are made. A table 

is shown for common data fusion techniques. 
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Table 2-2 Common data fusion techniques (Linn & Hall, 1991) 

Level General Methods Techniques 

Level 1 
Data association Figure of merit (FOM) 

Position estimation Kalman filter 

Level 2 
Identity fusion Neural network 

Pattern recognition Cluster analysis 

Level 3 Artificial intelligence 
Expert system/ Fuzzy 

logic 

 

As the development of data fusion techniques, the concept of data fusion has been 

widely and commonly used in the traffic area. The goals and the implementations are 

updating. For instance, Ou (2011) describe a ‘core’ and a ‘shell’ as the two components 

in traffic data fusion. The core represents the physical laws or assumptions in traffic 

theory, and the shell stands for the assimilation tools. He uses data-driven 

assimilation tools to develop a series of data fusion methods by linking the underlying 

relations of data and checking the consistency. Similarly, this research also checks 

consistency of data to support the imputation tools.    

 

GPS application  

 

The use of Global Positioning System (GPS) technologies has performed as an 

important traffic data collection means for all kinds of transportation studies. Li et al. 

(2002) investigate the minimum sample sizes for collecting field data with GPS devices 

by estimation using a modified IET equation; travel speed is described as stable and 

can be easily measured for travel time and delay studies. Remias, S.et al. (2013) use 

probe data sources to identify the adaptive control at the intersection. Some very 

specific problems always exist in the data fusion process related to GPS, for example, 

the expression of speed and travel time. Li et al. (2014) measure travel time by tracing 

probe vehicles with GPS, while the average speed data on a link from GPS appears to 

be closely related to the inverse of the average travel time. 

 

Intersection control plan  

  

Smith, B (2001) describes the three main elements in timing plan: cycle length, splits, 

and offsets. Nakatsuji, T. et al. (2004) estimate the turning movements at intersections 

using a logit-based stochastic user equilibrium (SUE) model integrated with a genetic 

algorithm. Kumar, S. et al. (2011) use only location-based flow data to estimate some 

spatial parameters such as density and travel time by using LWR model. Banks, J. 

(2006) investigates the interrelationships between the intervening variables and 

average flow per lane under capacity conditions.  
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2.4. Reasoning and positioning  

Having went through some of the previous studies, there still exist some. Therefore, 

this part introduces them from several aspects, and shows reasons for the development 

of methodology with an intention to face these challenges. 

 

Missing data at a junction  

 

As stated before, there are three kinds of missing data. Some traditional ways, such 

as historical imputation or simple regression can solve the majority of the cases. 

Whereas, if there are not enough available direct observations, some more information 

is required or advanced tools should be developed. However, complex models call for 

high computation costs and complex calibration.  

 

In the chapter 3 data analysis, there does exist a large scale of flow missing data in 

the SCATS. In this case, the author tries to start from fast and efficient methods, 

following a ‘simple is good’ principle, such as to give a quick imputation of missing 

values. Fortunately, the target concerned in this article is a junction, where there is a 

natural comparability among flow observations over time and space. For instance, at 

urban junctions, traffic from one approaching stream is distributed in parallel lanes; 

the detectors spread over on each lane also provide values from various locations at 

the same time. Therefore, the flow data collected at an intersection can be expressed 

from the time coordinate and the space coordinate (equation 4.1), and missing value is 

expressed by the similar way (equation 4.2). Using the direct observations from other 

time or space has become the first and efficient choice (equation 4.3). 

 

Improvements of efficient methods  

 

As stated in the previous part, although many types of research use the imputation 

both temporally or spatially, seldom of them tells the difference between these two 

under various situations. To face this challenge, at first, the author implements some 

primary methods (primary implementation in approach 1) to show the utilities of 

temporally or spatially imputation, simultaneously and independently. Then the 

author tries to make improvements based on specific characteristics of these 

traditional methods. For example, weighting factors are added to improve the 

reliability of relations between traffic flows observation. Finally, the author makes the 

integration of these methods by involving the methods in an iteration (integrated 

method 1). 

 

Traffic flow at signalized junction  

 

A traffic flow 𝑞 is defined as the number of vehicles passing a certain cross-section 

within a unit time. Similarly, the traffic flows at the junction can be seen as the traffic 
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volumes through a lane or several lanes within a given period. Compared to traffic 

flows on freeways, traffic flows at junctions have some particular characteristics. One 

of the most important characteristics is the interrupted flow. Taylor et al. (1996) state 

that, the delay and congestion of uninterrupted flow are generated by internal 

interactions in the stream of flows themselves; the flow on freeway is an example of 

uninterrupted flow. While, for interrupted flows, the performances of the streams are 

also influenced by external factors such as the intersection control or other kinds of 

modes or even a railway level crossing. The traditional speed-flow relation provides 

more than one corresponding speed or travel time for a certain flow value. While for 

interrupted flow, the speed only decline with the increase of the traffic volume. The 

comparison of this relation is shown in the following figures.  

 

Figure 2-1 Schematic diagram for the relation between uninterrupted flow and interrupted flow, Taylor et al. 

(1996) 

 

For urban junctions, traffic flow only exists when the green light turns on, that is to 

say, unlike on freeways, traffic at the urban junction are discretely interrupted by 

signal lights. Thus, it can be described as a kind of interrupted flow. Therefore, the 

flow detected at the junction in the thesis is, in fact, a kind of interrupted flow.  

 

These theoretical support have led to a convenience when analyzing the relation 

between speed and flow at the junction. Although speeds of the corresponding segment 

are unknown, they are assumed by other ways; for example, FCD helps to represent 

the speed on the segment (approach 3).  

 

Further in regression  

  

As previous part says, the flow measurement may link to both time and location factor 

at the same time. However, the underlying relevance between the observation, that is 

to say, the degree the values can influence and contribute to the missing flow can be 

rather complex.  

 

The research question, is then inspected from statistical aspect. The author uses 

regression to train the relations among the observations. As described in the previous 

parts, the regression is a widely used tool. However, there are some challenges about 

the regression tool itself, too. Firstly, the specific input type and amount are unknown. 
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Secondly, the analysis interval of the parameters in the regression model is another 

difficult consideration.  

 

To face these challenges, The author develops an MLR (multiple linear regression) 

(approach 4) with various inputs range to see the influence of inputs and, considering 

the period of the analysis interval from 4 hours to 24 hours. The author also tends to 

get more understanding of regression by evaluating the performances every one hour, 

thus to maximize the utilization of the available data (integrated method 2). 

 

Other concerns 

 

Except for the challenges mentioned before, some important concerns in the previous 

research also play significant roles in the research. The author considers them and 

tries to make improvements from them. Here are some major examples. 

 

The first concern is about the choice and utilization of relevant days and locations. 

Except for the neighboring days, observations from other relevant sets of the days are 

also supposed to be useful. The author provides estimation using different groups of 

days by adding weighting factors; so as it for the estimation from the spatial 

dimension. The weighting factors are also derived from the data by finding the 

relations from data itself, and they are updated with the process of the estimation.  

   

The second concern is about the level of aggregation of the input data. The traffic 

volumes detected at junction are composed of several traffic during a period, and these 

outputs from the system has already been aggregated somehow. However, they still 

hold large deviation of variances over time. The direct observation can be close to 

ground-truth data after smoothing. In previous studies, some show the results of 

imputation before aggregation versus aggregation before imputation. In this research 

work, the characteristics of the data itself are also considered by a different and 

convenient way: make the estimation according to two types of inputs: using original 

data (direct observation) and processed data (smoothed).  

 

Another concern is the consideration of other traffic elements. The research work not 

apply control plan as a reference, the green information from it is also taken into 

account. For example, Approach 1.2 also uses the concept to try to conduct the relation 

between flow and green.  

 

A flow chart showing the positioning of the thesis work is presented in Figure 2-2, 

which also gives the reasoning by using arrows. Specific methods are marked by 

colored blocks. 
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Figure 2-2 flow chart for the position of  the work  

2.5. Conclusion for the chapter  

This chapter has gone through the research related to the topic from the aspect of 

missing data imputation, data fusion, and others. Major imputation methods are 

classified. This research not only gives single imputation to replace the missing value, 

but also makes continuously updates in the estimation. Thus, in the following 

chapters, the process to get these missing flow will be called as missing flow 

estimation. The challenging topics according to current methods and situations are 

raised, followed by the way to face them. These topics are: 

 

 Simple and efficient methods for fast computation  

 Targeted at the traffic flow at signalized junction  

 Dig more out of traditional imputation of temporal and spatial dimension 

expression  

 Evaluate and improve the regression methods  
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3. Data analysis 

 

 

Except for the theories, data at hand is an inseparable part to discover the issues and 

to search for solutions. This chapter specializes in the analysis of the data sources. 

Three kinds of data sources originated from two independent traffic systems: offline 

data (flow data, timing plan data) from SCATS and offline FCD (taxi floating car data) 

from GPS data. Section 3.1 analyzes the quality of loop flow data from SCATS. Section 

3.2 presents the patterns of loop flow data. The data type of timing plan and its 

utilization are described in section 3.3. Finally, Section 3.4 demonstrates the data 

structure of FCD and possible utilizations. In the end, a conclusion is drawn from this 

chapter.  
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3.1. Data quality  

The quality of traffic flow data from loop detectors is presented, since they are the 

main focus of the research. SCATS is implemented to junctions in Changsha city in 

two terms. 102 junctions are equipped with detectors in the 1st term and 104 junctions 

are equipped with detectors in the 2nd term.  

 

The data availability is defined as the number of observed data available over the 

number of observations that should be recorded during a whole day.  

Figure 3-1 shows the current data quality in the urban area for one day (23rd April 

2013) for junctions in 1st term and 2nd term. The number on X-axis (1 to 102) refers to 

the junction number. Each blue bar in the figure represents the availability at a 

junction. The value for every bar ranges from 0 to 1, in which 0 shows that no data is 

available at this junction, and 1 shows that all detectors work well and provide flow 

data over each time of the day. 

                                                                                                     

 

 

 

 

 

 

 

Figure 3-1 Data quality for all 1st term junctions in SCATS (left), data quality for all 2nd term junctions in 

SCATS (right) (23rd April 2013) 

 

The average rate of data availability is 51% for all the 1st term junctions and 75 % for 

all the 2nd term junctions in 2013. Looking at the data quality of those junctions 

distributing over the map, some adjacent junctions are of similar low data quality, and 

some others are with higher quality. Thus, the data availabilities of these junctions 

are similar in certain areas. However, this research starts from a certain junction and 

then expands to multiple junctions level, thus the relations among junctions will be 

not be considered in this thesis but in future works. Since the junctions from the 2nd 

term generally have better data availability than the ones in the 1st term, test cases 

are picked up from the 2nd term junctions due to relatively complete observations. The 

developed methods are expected to be applied to each single junction from either 1st 

term or the 2nd term.    

 

According to the analysis of available SCATS data, there are a lot of types of missing 

flow. For experimental purposes a classification of missing data is defined: The first 

type is the long-term missing, which lasts for a whole day. The second type of missing 

data is incidental (random) missing, which only occur at a very short period. 
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Figure 3-2 Data quality distribution over whole network in Changsha city for all 1st term junctions in SCATS 

system (23rd April 2013) 

3.2. Loop flows 

Loop flow observations used in the thesis come from SCATS in Changsha, China. In 

the figure, the flow pattern over a week on all lanes are visualized. On the one hand, 

for a single lane, the flows have their similarities in every day of a week; on the other 

hand, in one same day, the flows have their similarities distributing over the lanes, 

and these similarities are highly related to the signal plan.  

 

Figure 3-3 Visualization of  all the flows for two weeks on all detectors at junction 31616 in SCATS  

 

For a junction, if compressing the cubic onto one surface (day axis), means and 

standard deviations from all the set of flows at a same location are presented as 
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follows. No matter for the means nor the variances, they show an obvious trend on the 

time dimension. For a specific lane, the averages of flows on this lane keep stable, 

while the variances are also stable. If compressing the visualization cubic onto another 

surface (lane axis), averages of flow volumes of each time for all the lane are plotted as 

Figure 3-5 . It can be seen, the flow volumes increase and decrease with almost the 

same range for each lane over a day.   

 

 

Figure 3-4 flow Mean (left) and standard deviation (right) at junction 31616 in SCATS 

 

 

Figure 3-5 Mean traffic volumes for each lane over a day at junction 31616 in SCATS 

 

According to these findings, it is assumed that the flows are correlated both in the time 

dimension and the spatial dimension.  

 

To verify the assumptions, the correlation coefficient and its P-Value test are used for 

uncovering the relations. The correlation coefficient illustrates a quantitative measure 

of some correlation and dependence, and it shows the statistical relationships between 

two or more random variables or observed data values. Pearson product-moment 

correlation coefficient method is used. The calculation formula is: 

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
          (3.1) 
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Where 𝑐𝑜𝑣(𝑋, 𝑌) is the covariance and 𝜎𝑋  is the standard deviation of the variable 

X,  𝜎𝑌  is the standard deviation of variable Y. To construct a confidence interval 

around correlation coefficient that has a given probability of containing ρ, the P-value 

test is conducted. The test shows the probability of an observed result, assuming that 

the null hypothesis is true, thus here a Hypothesis test is given by: 

 

Null Hypothesis: Ho: ρ = 0 

Alternate Hypothesis: Ha: ρ≠0 

 

Set the significant level as 𝛼 =0.05. If the P-value is less than the significance level, 

there is sufficient evidence to conclude that, there is a significant linear relationship 

between variable X and variable Y. The hypothesis H is rejected if the p-value is less 

than significant level. 

 

Historical flow pattern  

 

Two individual observations show similar trend, they are on the same location and of 

the same day of week (DOW) from two weeks. The P value is much smaller than 0.05, 

thus the results of correlation coefficients are significant.  

 

 

Figure 3-6 Correlation coefficients and p-values (in brackets) from two days with the same DOW 
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If the sets of observations from all the available days in the same lane are put together, 

the results become this ‘Correlation coefficient map’, which showing correlations of the 

flows from each pair of days. (In the appendix 6 , more figures are aviliable) 

Figure 3-7 Correlation coefficient map for lane 2 at junction 20209 

 

The correlations level of flows from days at the same lane are distributed relatively 

smooth. The P values are all quite small, thus the direct ratios between the sets of 

flows are significant. Thus, it is assumed that, for a same lane, the observations from 

other days are relevant and useful for an estimation. 

 

Flow relations according to lane distribution  

 

Similar to the historical pattern, flows from certain lanes in the same day show 

similarities. For all pairs of variables, The P values are all smaller than0.05, thus the 

results are all significant. Similarly, correlation coefficient maps can showall the 

correlation coefficients of flows onall pairs of lanes in a same day with available data... 

 

Figure 3-8 Correlation coefficients and its p-values (in brackets) from four lanes in a same phase 

 

On the correlation coefficient map, some peaks are observed, for example, the 

correlations among lane 12, 13 and 14 are extremely high. They are exactly in the same 
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phase.  A detailed contour compare the correlations with the control plan for junction 

31616. It is obvious that the lanes in the same control cycle group (phase) have higher 

correlation coefficients. This relation can be also observed on other junctions. For 

example, correlation coefficient maps from junction 20209 and junction 31617 are 

presented in appendix 6. 

 

 

 
Figure 3-9 Correlation coefficients map between lanes for junction 31616 in SCATS. 

 

 

Figure 3-10 Correlation coefficients contour figure between lanes for junction 31616 in SCATS. 

 

Except for the lanes in the same phase, the lanes from the same stream that close to 

each other also have a high correlations. Although not shown here, the turning is also 
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a large factor for the distribution of lane flows. The actual mechanism of how flow 

influenced by the lane distribution may fall in all of these reasons simultaneously. 

 

To make a conclusion, the lanes in relative groups are holding high correlation 

coefficients, which indicates these lanes are relevant with each other. The statement 

is going to be a strong support of missing flow estimation approach 2- Lane spatial 

distribution. 

3.3. Timing plan  

Apart from the loop flows observations, signal timing plan is another data source from 

the same system (SCATS) but with a different type. The availability of signal timing 

plan data is optimistic after checking all the samples: almost all the timing plan data 

recorded are normal. From timing plan, two kinds of information can be obtained: 1. 

the lane groups in the same phase. 2. Duration of each phase and starting time of a 

cycle (the accuracy is up to one minute). 

 

The groups of lanes in the same phase have been used in the analysis of flow relation 

in the previous part. For this part, the duration of a phase is introduced. The duration 

of a phase shows the green and red a cycle gives to a stream. Since a traffic stream can 

only pass the junction under green light, it is assumed that the traffic volume and 

green light time should be somehow related. To make a connection between the timing 

plan and traffic flows, a timing plan- flow diagram is drawn. In this diagram, the 

horizontal axis shows the time and the vertical axis shows the distribution of lanes. 

Several lanes are grouped in a same single phase. Green rectangles represent green 

light amount in a phase. White numbers are the traffic volumes from each detection 

interval. 

 

Figure 3-11 Sample of  timing expression, flow values are involved. 

  

The data from the diagram are manipulated to get more information: From the 
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available data, only the starting time stamp of each control cycle and the green light 

time of each phase of a cycle are known. The starting time stamp is in integer minutes 

such as 7:05 and 7:07. Therefore, the precise duration of a cycle is unknown since there 

lacking information of yellow lights and all-red lights time. However, the total time of 

these yellow lights and all-red lights can be assumed by the comparing the starting 

time of two cycles with a certain distance with the adding up green light time of all 

cycles in between. In this case, for a total 30-minute interval from 7:00 to 7:30, 11 

cycles are exactly involved. A match between the control cycles and flow detection 

interval can be set by finding a period with their least common multiple. Similarly, the 

green lights in cycle and the flows in each detection interval can also be matched. By 

synchronizing lane flow with timing plan, it helps to involve the timing plan to flow 

estimation. 

 

To make a conclusion, the timing plan data can contribute to the flow estimation by 

two means: 

 

 Grouping the lanes in a same phase, which is useful for lane spatial distribution 

(approach 2). 

 Matching the phase with flow observations (approach 1.1) and FCD (approach 

3). 

3.4. FCD 

The raw data of FCD are from Taxi GPS, in Changsha, China. As the Figure 3-12 

shows, there are several important attributes that could be directly or indirectly used 

to form trajectories for a taxi. Here gives an introduction of them and relative usage of 

them.  

 Vehicle (taxi) ID 

 Time of day  

 Recording day  

 Instantaneous speed  

 Latitude and longitude  

 The Instantaneous heading  

 

Taxi ID defines a certain vehicle. Time of day distinguishes the days of records. By 

sorting ID and day, a general route of a certain vehicle can be presented.  

   

The time of day (timestamp) of a taxi can imply the trips during a day. Regularly, for 

a certain ID, there is a 30-second interval between two consequence records. However, 

there are also some exceptions, taxi ID 33, it has 21-second intervals here. Even for a 

same taxi, running at a place during different period are seen as different trips. For 

example, taxi 33, has 4 trips according to its timestamp differentiation. 

 

Speed is the instance velocity of a taxi at that timestamp. It can represent the velocity 
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vector of a taxi combined with heading. The unit is km/h in the raw data, and it should 

be transferred to m/s when needed. In the areas near junctions, nearly half of the speed 

records are nearly zero. This represents, the queuing status at the signal controlled 

junction. 

 

Longitude and Latitude show the position of the taxi at a certain time. A general 

scatter plot gives the geographic distribution of taxis at a certain time (Figure 3-14). 

Besides, these two attributes don’t provide distance directly; more processes are need 

for the transformation to distance information. (See section 5.2) 

 

Original link and link ID are for the link match of the taxi. However, there lacks a link 

ID map; thus link match could only be carried out manually by self-made methods. 

The methods are shown in the data processing chapter. 

   

Figure 3-12 Example of  data format of  FCD and trip determination  

 

The data availabilities for Vehicle ID, Latitude, and Longitude, Time of a day, the 

general availability are ideal. While, for instantaneous speed and heading, their 

availabilities are low in some records. Besides, Latitude and longitude are not matched 

with a map; this has been revised by checking and switching the global deviation. 

 

 
Figure 3-13 an example of  a map-matching check using Google map 

 

When the speeds of floating cars are demonstrated on the network by different colors, 

some traffic status can be visualized. (Here in the figure, the green color represents 

free speed, such as speed over 60 km/h. While red color represents low speed from 10 

to 20km/h, and black shows very low speed which is lower than 10km/h. Other colors 

stand for the speeds in between.) 
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Figure 3-14 FCD plots using one tenth of  all the taxi (left) and speed plot (right) 23th April 2013 

 

From the figure, it is clear that the majority of the low-speed records are located at 

junctions.  What is more, the records of the taxis are comply with the shapes of the 

road segments. Therefore, matching the FCD to each link and junction segment is 

possible. 

 

Two kinds of information from FCD can be expected after data processing, they are 

FCD speed and FCD counts. Both of them come out from FCD trajectories. A specific 

way to process FCD trajectories will be introduced in the data processing chapter. In 

this chapter, only the results from the analysis are presented. 

 

FCD speed  

 

By visualizing FCD, the speeds during each period are shown. Data in an area is 

selected to give an example. As the Figure 3-15shows, the research area is the road 

between junction Lao dong road/Fu Rong road and Lao dong road/Shao Shan, which is 

a west-east road. The SCATS number of Lao dong road/Fu Rong road is 20209, and the 

SCATS number of Lao dong road/Shao Shan road is 30407. The period is 6:45 to 8:45 

in the morning of 2013.4.23 and the time interval is 15min. On the speed plot, red 

represents higher speed and blue represents lower speed.  

 

 
Figure 3-15 Layout of  research areas and FCD records showing speed on Lao Dong road from 7:00 to 7:15 

23th April 2013 
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Figure 3-16 Chosen area (Longitude: 112.98-112.982 Latitude: 28.174-28.176) and FCD vehicle speed during 

a day in the small area near junction 20209, 23th April 2013. 

 

Here is an example of the speed plot near junction. To make a comparison for the 

possible data fusion process, an area near the junction is chosen for analysis. FCD can 

be processed to provide reference speed at this road segment. Besides, the counts, 

together with the flow counts at the same position, can give penetration rate of the 

taxi during this period. 

 

FCD counts 

 

The FCD counts are collected by processing raw data by vehicle ID, position and time. 

These FCD counts are compared to the traffic flow detected by the nearest neighboring 

loop, is the ratios are seen as the penetration rate at this location.  

 
Figure 3-17 Compare of  FCD/Flow in SCATS (left) and the ratio (right) at Lao Dong road between 0:00-

24:00 23th April 2013  

  

Figure 3-18 Compare of  FCD/Flow in SCATS (left) and the ratio (right) at Lao Dong road between 7:00 -

8:00 23th April 2013  

 

The penetration rate location is low during the morning peak and afternoon peak, 



31 
 

however, it becomes quite high at midnight. Rooming into the peak hours, the ratio 

has reached 0.7 at 7:00. This due to that, many taxis are still on road during the mid-

night, but social vehicles increase largely during the daytime and increase sharply 

during the night. Besides, in this case, the location is at the city center, which is a 

highly utilized link for route choice for taxis. 

3.5. Conclusion for the chapter  

This part tells important facts that, nearly one-third (49% in 1st term and 25% in 2nd 

term) of the flow data are missing from SCATS. Both long-term and short-term flow 

missing cases exist. From the analysis of flow means and variances, similarity patterns 

obviously exist in flow observations over time and space. Besides, these relations are 

proved to be direct correlations with high correlation coefficients. This chapter also 

links timing plan to the flow observations, showing that lanes are grouped by phases 

and that flows can be matched with timing. For FCD, the author has shown the desired 

coverage on the urban network. Developed from the attributes, two utilizations are 

confirmed: speed and counts. In conclusion, this part has shown the relations within 

and between data, which are stable and reliable supports for the next step analysis 

and algorithm developments.   
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4. Methodology 

 

Chapter 4 provides the methodology, including four individual approaches and two 

integrated methods. The four individual approaches are from two aspects: estimate a 

missing flow by using other directly flow observations, or by assuming a traffic 

flow theory and using a data fusion concept. Firstly, to ensure a unification, section 

4.1 raises the general framework of expressions. Secondly, section 4.2 provides 

individual approaches: historical pattern (including two sub-approaches), lane spatial 

distribution, FCD and traffic flow data fusion (including two sub-approaches), and 

MLR (Multiple linear regression). Thirdly, section 4.3 shows two integrations. The first 

combines historical pattern and lane spatial distribution methods using an iterative 

process. The second improves MLR by referring information from the historical pattern 

and lane spatial distribution. Finally, sections 4.4 makes a conclusion of this chapter. 
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4.1. General framework   

In the beginning of the descriptions of approaches, the flows and missing flows are 

expressed by the way they are measured. Then, all the approaches and methods are 

expressed. 

Expressions of flow 

 

Detectors provide flows in a certain interval at a specific day, and usually, these 

detectors are fixed at a location. Therefore, a flow observation, according to the way it 

is measured (measured by detectors), is defined by location, time, and TOD (time of 

day). 

 

                       𝑞(𝑙, 𝑑, 𝑡), 𝑙 ∈ 𝐿, 𝑑 ∈ 𝐷, 𝑡 ∈ 𝑇                   (4.1)  

                           

𝑞: Estimated traffic flow;  

𝑙:  Location of an observation where it is detected;  

𝑑: Day of an observation when it is detected;  

𝑡: The time of an observation when it is detected;  

𝐿: Set of lanes concerned;   

𝐷: Set of days concerned;  

𝑇: Period of time concerned;  

 

Similarly, a missing flow can be expressed by adding a subscript x to the variables. 

                        𝑞(𝑙𝑥 , 𝑑𝑥 , 𝑡𝑥), 𝑙𝑥 ∈ 𝐿, 𝑑𝑥 ∈ 𝐷, 𝑡𝑥 ∈ 𝑇𝑥                 (4.2) 

𝑙𝑥: Location where the missing data located; 

𝑑𝑥: The day when the missing data located;         

𝑡𝑥: Specific time of the missing data;                 

𝑇𝑥: Set of period of time related to the missing flow time 

 

 Estimation from direct observation  

 

Naturally, when the flow observation is missing from a detector, other observations 

are considered. So the first choice is to use the direct observations with different 

location, day, or time. Since the flows concerned are detected near the urban 

junctions, usually signal timing plan can also help:  

          �̂�(𝑙𝑥, 𝑑𝑥 , 𝑡𝑥)~{𝑓(𝑞(𝑙, 𝑑, 𝑡)|𝑙 ∈ 𝐿, 𝑑 ∈ 𝐷, 𝑡 ∈ 𝑇), {𝑠(𝐿𝑥 , 𝑑, 𝑇𝑥  )|𝑑 ∈ 𝐷}}    (4.3) 

𝑓: Function to operate flow observations; 

𝑠: Signal timing plan; 

𝐿𝑥:The group of lanes that containing the lane with missing flow; 

𝑇𝑥:The period that containing the period with missing flow; 
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Some representative approaches using this way are Approaches 1, 2, and 4.  

 

 Estimation from data fusion concept  

 

The second choice is to use measurements from other independent data sources. One 

possible way is refer to the traffic flow theory such as q= k * v. 

         �̂�(𝑙𝑥, 𝑑𝑥 , 𝑡𝑥)~{𝑞𝑒𝑥𝑡(𝐿𝑥, 𝑑𝑥 , 𝑇𝑥), 𝑢𝑒𝑥𝑡(𝐿𝑥, 𝑑𝑥 , 𝑇𝑥), 𝑘𝑒𝑥𝑡(𝐿𝑥, 𝑑𝑥 , 𝑇𝑥). . 𝑒𝑡𝑐}     (4.4) 

𝑢: Average vehicle speed; 𝑘: Density, the number of vehicles per unit length of the road; 

𝑒𝑥𝑡: External /other data sources 

𝑔: Function describing relation of flow to density/speed;  

 

Suitable datasets can be many: FCD (speed, counts), CCTV camera (flow, speed, and 

travel time), AVI etc. The Approach 3 is one example of this kind of estimation.  

 

Decomposition of the framework  

 

The general framework considers the issue from the aspects of direct observation and 

data fusion. In this part, each part of the general framework (4.3) (4.4) will be 

introduced separately. 

 

 Part 1: The available direct traffic flow observation  

  

The first part shows direct observed traffic flows from another time and space. The 

inputs of this part are sets of flows with various coordinates. The formulation is as 

follows.  

 

                        𝑓(𝑞(𝑙, 𝑑, 𝑡)|𝑙 ∈ 𝐿, 𝑑 ∈ 𝐷, 𝑡 ∈ 𝑇)                     (4.5) 

To ensure there is enough relevance between the inputs and the missing values, at 

least one of the coordinates (𝑙, 𝑑 𝑜𝑟 𝑡) should be fixed to where or when the missing 

values are. For example, the sets of days can be used only when it is at a same lane. 

Similarly, it only makes sense to compare the flows on different lanes on a same day. 

However, there are two situations that may ignore this restriction. Firstly, all the 

values are retrieved iteratively and cross-compared. This situation will be introduced 

in the first integrated methods. Secondly, if the function 𝑓 is a regression tool (which 

will be later introduced as the approach 4 and integrated method 2), the sets of input 

values are given more freedom, this is because that, regression tool has the ability to 

distinguish the relevance by itself.  

 

Usually, the coordinate time of day 𝑡 is fixed, that is to say, values are chosen from 

other days or other lanes but the same time period in a day. There is one exception, for 

a detection failure that lasts only for a short period of time, the available values shortly 

before and after this period are also importance. In this case, it is suggested to take 
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into consideration the flow values over nearby periods in the same day on a same lane. 

 

Another important component is the function 𝑓, which may be composed of sequences 

of algorithms or processes, indicating how the selected values are calculated, 

assimilated, or normalized towards the missing values. Generally, there are many 

choices for those algorithms or tools.  

 

 Part 2: The signal timing (control) plan  

 

This part shows signal timing (control) plan. It plays three main roles in the 

estimation. Firstly, the group information from control plan is used to select lanes on 

the spatial dimension; which will be introduced in Approach 2. Secondly, green light 

time is assumed to be related with the flows. Thirdly, control plan acts as a reference 

for of FCD trajectories. The sets of signal timing plan information are denoted as:  

 

                               𝑠(𝐿′, 𝑑, 𝑇′), 𝐿′ ∈ 𝐿, 𝑑 ∈ 𝐷, 𝑇′ ∈ 𝑇               (4.6) 

For time coordinates, the day is the same day 𝑑 when the detection fail. As for the 

specific time of a day, a signal timing plan is not as the same interval as flows does. 

Here 𝑇′  shows a period containing one or several cycles, covering the time during 

which the flows are missing. For the spatial coordinate, several batches of lanes are 

grouped (maybe in a same phase). 𝐿′ stands for the group of lanes that containing the 

lane with missing flow.  

 

 Part 3: The external sources part 

 

This part shows the consideration of external data sources. It expresses the effort to 

make an estimation using data fusion concept. 

 

𝑞𝑒𝑥𝑡(𝐿𝑥, 𝑑𝑥 , 𝑇𝑥), 𝑢𝑒𝑥𝑡(𝐿𝑥, 𝑑𝑥 , 𝑇𝑥), 𝑘𝑒𝑥𝑡(𝐿𝑥, 𝑑𝑥 , 𝑇𝑥). . 𝑒𝑡𝑐           (4.7) 

Some traffic measurements are from other ways, with different formats and 

resolutions. The data fusion can integrate multiple data into a consistent, accurate, 

and useful representation. In this thesis work, FCD is an external source to help to 

make the estimation of flows.  

 

To sum up, considering the available data sources in this thesis, the general framework 

for the estimation can be expressed in following diagram: 
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Figure 4-1 the framework decomposition, sources and corresponding approaches  

 

In this diagram, horizontal blocks show the available data sources, and vertical blocks 

show four individual approaches. Their corresponding formulations are represented in 

the same color, covering horizontally the sources have been used. In the next part, 

these individual approaches are introduced in detail.     

4.2. Individual approaches  

Derived from the main framework, four individual approaches are shown, they 

considers the issue from the aspects of: (1) historical pattern (both flow and timing), 

(2) lane spatial distribution (in a timing plan), (3) FCD speed- flow relation, FCD 

counts-flow relation (4) MLR (Multiple linear regression). Followed by integrated 

methods (1) Integration using iteration and (2) Improved MLR. 

4.2.1. Approach 1 Historical pattern 

In the Approach 1 : historical pattern, the historical information of flow are considered 

independently, and then the flows and timing are considered together as an historical 

information.  

4.2.1.1. Historical flow pattern (Approach 1.1) 

The algorithms in this approach retrieve exist observations and use them to estimate 

the missing flows. The observations are from the time dimension at the same location 

(on the same lane). The process then keeps updating the multiple missing flow values 

by finding the balance between each set of patterns from each set of days. 
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Formulation   

 

�̂�(𝑙𝑥, 𝑑𝑥, 𝑡𝑥)~{𝑤𝐷𝑂𝑊 ∗ �̅�(𝑙𝑥, 𝑑𝐷𝑂𝑊𝑥
, 𝑡), 𝑤𝑊𝐷 ∗ �̅�(𝑙𝑥, 𝑑𝑊𝐷𝑥

, 𝑡), 𝑤𝐷 ∗ �̅�(𝑙𝑥, 𝑑𝐴𝐷, 𝑡), 𝑡 ∈ 𝑇𝑥}     (4.8) 

 

𝑄: Estimated traffic flow on an aggregate level; 𝑠: Signal timing plan  

𝑙: Location of a traffic state where it is detected; 𝑙𝑥: Location where the missing data 

located;  

𝑑: Day of a traffic state when it is detected; 𝑑𝑥: The day when the missing data located;                   

𝑟: Aggregate time of 30 minutes;      𝐷: Set of days  

𝐴𝐷: Set of all the days that are available in a relatively long-term  

𝑊𝐷: Set of days in a same week  

𝐷𝑂𝑊: Set of same day of week over a sequence of weeks  

 

Considering different sets of the day, the formula can be also stated as:  

 

�̂�(𝑙𝑥, 𝑑𝑥, 𝑡𝑥)~�̅�(𝑙𝑥, 𝑑, 𝑡), 𝑑 ∈ 𝐷𝑂𝑊𝑥, 𝑡 ∈ 𝑇𝑥           (4.9) 

 

�̂�(𝑙𝑥, 𝑑𝑥, 𝑡𝑥)~�̅�(𝑙𝑥, 𝑑, 𝑡), 𝑑 ∈ 𝑊𝐷𝑥, 𝑡 ∈ 𝑇𝑥     (4.10) 

 

�̂�(𝑙𝑥, 𝑑𝑥, 𝑡𝑥)~�̅�(𝑙𝑥, 𝑑, 𝑡), 𝑑 ∈ 𝐴𝐷, 𝑡 ∈ 𝑇𝑥      (4.11) 

 

They represent the estimation only considers the flow from a same week/ the same day 

of week/all the recent days. The following paragraphs will then describe the 

development of this approach. 

 

Development  

 

From the general framework, this approach starts from the direct observations in the 

time dimension: 

�̂�(𝑙𝑥, 𝑑𝑥 , 𝑡𝑥)~𝑓({𝑞(𝑙𝑥, 𝑑, 𝑡)|𝑑 ∈ 𝐷, 𝑡 ∈ 𝑇})     (4.12) 

 

In many cases, the coordinate time of day 𝑡 is fixed, the main task in this approach is 

to determine the sets of days. The sets of days are denoted as 𝐷 and the selection of 

them depends on: (1) Availability (2) Relevance (3) Reliability. The following 

paragraphs describe these three points in detail. 

  

 Availability  

 

The availability shows whether a data is recorded at a certain point. To check it, 

fix the position coordinate 𝑙 to 𝑙𝑥 where missing flow occurs (at the urban 

intersection, this location is usually a specific lane), search on the time dimension, 

and update the sets of 𝐷. For another time dimension variable t, the availability 

depends on the type of missing data. For large scale missing type, there is no 

available T onwards and afterwards of 𝑡𝑥 in the same day 𝑑𝑥, so available T onwards 
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and afterwards of 𝑡𝑥 have to be found in other days 𝐷. For small scale missing type, 

additionally, a within-day period 𝑇𝑥 onwards and afterwards of 𝑡𝑥 is also available. 

 Relevance  

 

The relevance shows whether the coordinates are relevant or representative to the 

missing values. The concept is similar to time-series theory, which is used widely in 

freeways traffic flow estimation. Four major components in a time-series process, they 

are Trend, Seasonality, Cyclic and Randomness. The relevant of coordinates are 

selected referring to these four considerations. Firstly, the longer-term trend is 

captured by selecting all the available recent days (AD) that are approaching the 

missing flow day. For example, all the days with available data at one location in one 

month can be selected a set of AD. Secondly, due to the reason that there is no more 

detailed information about the categories of flows, the seasonality cannot be identified. 

Thirdly, for cyclic, the set of days in a same week (WD) and the set of same day of the 

week over a sequence of weeks (DOW) are used. They show the pattern that are 

repeated over relatively short spans. (E.g. days in a same week (WD) refers to the last 

week of January, days in a same day of week (DOW) refers each Monday of January). 

Lastly, randomness refers to short-term variations. There has been many research and 

tools looking insight into this aspect. However, this thesis work focuses on 

deterministic part of the estimation. The probabilistic part will be added to the 

research work in the future. 

 

Initial choice of 𝐷 considers the days that are relevant. There are several ways of 

choosing specific days. For example, there is a way for an ex-post analysis:  

 

 AD: all the recent available days in a month.  

 WD: the other days from a same week  

 DOW: the previous DOWs (day of week) in a month 

 TOD: several minutes before and after the missing flow (missing data type: 

small scale)  

 

For an ex-ante analysis, the situation has changed. In reality, especially for an on-line 

control approach, there is no access to the information in the upcoming days. 

Therefore, only data from the past can be used for these sets.  

 

 Reliability 

 

The concern of reliability sorts the values that are already in the sets. For all the sets 

of 𝐷, they are made with an initial choice (already conducted in the relevance part) 

followed by the updating process (in this reliability part). 

 

By using the initial sets of days 𝐷, some estimation results can be obtained, these 

results are called a temporal reference. Compare the temporal reference with inputs, 

if the differences have exceeded an unacceptable level, the inputs are considered as 
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unreliable. As a result, the concerned days will be removed from the sets of days 𝐷. 

The final estimated values come out progressively. The acceptable level is determined 

by: Assume all the reference values to be of a normal distribution. The expectation of 

the mean is represented by the temporal reference, and the variance is the same as it 

in original data. Set 99.7% as the range of reliable confidence interval, so the values 

within μ ± 3𝜎 are supposed to be reliable. Finally, update the estimated values until 

reaching convergence.  

4.2.1.2. Historical timing + flow pattern (Approach 1.2)   

This approach links flows and timing plan, and takes the flow/green ratio (historical 

passing ratio) as a new variable to be considered. Firstly, the ratios during each period 

on each day are calculated. Secondly, an estimation of the ratios on a specific day are 

made by referring to historical ratios (in the same way as approach 1.1). Finally, the 

flows are estimated by multiplying the estimated ratios with given green.   

 

Formulation   

�̂�(𝑙𝑥, 𝑑𝑥 , 𝑡𝑥)~ 

𝑠(𝑙𝑥, 𝑑𝑥 , 𝑇𝑥) ∗ {𝑤𝐷𝑂𝑊 ∗ �̅�(𝑙𝑥, 𝑑𝐷𝑂𝑊𝑥
, 𝑡), 𝑤𝑊𝐷 ∗ �̅�(𝑙𝑥, 𝑑𝑊𝐷𝑥

, 𝑡), 𝑤𝐷 ∗ �̅�(𝑙𝑥, 𝑑𝐴𝐷, 𝑡), 𝑡 ∈ 𝑇𝑥}   (4.13) 

    

�̂�: Estimated traffic flow;  

𝑙𝑥: Location where the missing data located; 

𝑑𝑥: Day when the missing data located;         

𝑡𝑥: Specific time of the missing data;                 

𝑇𝑥: Set of period of time related to the missing flow time; 

𝑠: Signal green light; 

𝑙𝑥: Location where the missing data located;  

𝑟: Ratio of flow/green light (vehicle per unit green time);      

 

Development  

 

The formula involves both flow and green light time. 

 

�̂�(𝑙𝑥, 𝑑𝑥, 𝑡𝑥)~{𝑓({𝑞(𝑙𝑥, 𝑑, 𝑡)|𝑑 ∈ 𝐷, 𝑡 ∈ 𝑇}, {𝑠(𝐿′, 𝑑, 𝑇′)|𝑑 ∈ 𝐷  }  (4.14) 

 

The greens in each phase are denoted as 𝑠(𝑙𝑥 , 𝑑, 𝑇𝑥). The traffic flows on each lane are 

summed up in the same period 𝑞(𝑙𝑥, 𝑑, 𝑇𝑥). The ratio is defined as the flow per green 

light time. 

𝑟 = 𝑞(𝑙𝑥, 𝑑, 𝑇𝑥) 𝑠(𝑙𝑥 , 𝑑, 𝑇𝑥)⁄          (4.15) 

4.2.2. Approach 2: Lane spatial distribution   

This approach considers the issue from spatial dimension. The first step is to get the 

estimated value from another individual lane 𝑞𝑙(𝑙𝑥, 𝑑𝑥 , 𝑡𝑥), and then these values are 
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weighted according to their spatial characteristics to reach a final estimation. 

 

Formulation  

     �̂�𝑙(𝑙𝑥, 𝑑𝑥 , 𝑡𝑥)~ (
�̅�(𝑙𝑥,𝑑𝑥,𝑡)

�̅�(𝑙,𝑑𝑥,𝑡)
, 𝑡 ∈ 𝑇) ∗ (�̅�(𝑙, 𝑑𝑥 , 𝑡), 𝑡 ∈ 𝑇𝑥)       (4.16) 

�̂�(𝑙𝑥, 𝑑𝑥, 𝑡𝑥)~ ∑ 𝑤𝑐(𝑙) ∗ 𝑤𝑡𝑟(𝑙) ∗ 𝑤𝑝ℎ(𝑙) ∗ �̂�
𝑙
(𝑙𝑥, 𝑑𝑥, 𝑡𝑥)

𝑙𝜖𝐿

 

∑ 𝑤𝑝ℎ(𝑙) = 1

𝑙∈𝐿

∑ 𝑤𝑐(𝑙) = 1

𝑙∈𝐿

, ∑ 𝑤𝑡𝑟(𝑙) = 1

𝑙∈𝐿

 

 

𝑤𝑝𝑙: Weighting factors from the aspect of the lane in a same phase  

𝑤𝑐: Weighting factors from the aspect of the closeness of position of lanes  

𝑤𝑡𝑟: Weighting factors from the aspect of the turning similarity of lanes  

 

Development   

 

The formula is expressed as: 

 

�̂�(𝑙𝑥, 𝑑𝑥, 𝑡𝑥)~{𝑓({𝑞(𝑙, 𝑑𝑥, 𝑡)|𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇}, {𝑠(𝐿𝑥, 𝑑𝑥, 𝑇𝑥)}}           (4.17)     

 

Similar as approach 1, this approach also considers the data in three aspects: 

availability, relevance and reliability.  

 

Differently, on the time dimension, coordinate day  𝑑  has been fixed; lane  𝑙 , from 

spatial dimension, has been a coordinate to retrieve data. The considerations of 

availability and reliability are almost the same. The relevance of other location 

coordinates to the location coordinate with missing value is introduced here: 

 

Firstly, from data analysis, the flows distributed on lanes in a same phase have turned 

out high correlations. Secondly, turnings of the lanes are always a factor in the 

research of intersection. Thirdly, lanes that are close to each other also show 

similarities. Therefore, there are several ways of selection of the sets of 𝐿: 

 

 Lanes in a same timing plan phase, by the phase group (PL) 

 Lanes that have the same turning, by the group of turning within the phase 

group (TL) 

 Lanes that are close to each other, by the closeness of position (CL) 

 

Although inclusion or overlap may exist among these sets, such as: PL, TL, CL ⊆ L 

or TL⊆ PL, CL⊆ PL, CL⊆ TL. 

 

Different from the historical pattern approach, this approach makes the estimation 

from each individual lane and then combines them. Let 𝑞𝑙(𝑙𝑥, 𝑑𝑥 , 𝑡𝑥) stand for the 

estimated value from another individual lane, the weights are supposed to be direct 
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ratio to the rate of flows in a period: 

   �̂�𝑙(𝑙𝑥 , 𝑑𝑥 , 𝑡𝑥)~ (
�̅�(𝑙𝑥, 𝑑𝑥 , 𝑡)

�̅�(𝑙, 𝑑𝑥 , 𝑡)⁄ , 𝑡 ∈ 𝑇) ∗ (�̅�(𝑙, 𝑑𝑥 , 𝑡), 𝑡 ∈ 𝑇𝑥)  (4.18) 

Then these values are weighted according to their spatial characteristics toward a final 

estimation. Weighting factors are introduced and all the coefficients for variables add 

up to 1. If lanes are not in a same phase group PL, the traffic streams on them are not 

in the same control, thus a zero is set. For the lanes in a same phase group PL, they 

are considered as equally importance: 

 

𝑤𝑝ℎ(𝑙) = {
0, 𝑙 ∉ 𝑃𝐿

1
𝑛𝑝𝑙

⁄ , 𝑙 ∈ 𝑃𝐿
       (4.19) 

 

These aspects can be considered individually, too. The weighting factors of 𝑤𝑐 and 𝑤𝑡𝑟 

should be calibrated according to the specific situations. If there is no extra information 

from their side, then they are set as equal for each lane. The timing plan can still group 

the lanes by phase. In this case, the approach can be simplified as: 

 

�̂�(𝑙𝑥, 𝑑𝑥 , 𝑡𝑥)~ ∑ 𝑤𝑝ℎ(𝑙) ∗ �̂�𝑙(𝑙𝑥, 𝑑𝑥, 𝑡𝑥)
𝑙𝜖𝑃𝐿

~�̂�𝑙(𝑙𝑥, 𝑑𝑥 , 𝑡𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑙 ∈ 𝑃𝐿  (4.20) 

4.2.3. Approach 3: FCD - flow data fusion   

The third approach starts from a different aspect, by linking external data source- FCD 

to the flow observations. It is a trial to find the possible contributions from external 

sources. Two areas near the junction are taken into consideration: the inbound area 

and the outbound area. In the inbound area, most of flows are interrupted flows 

influenced by the signal. In the outbound area, the flows are merged by other turning 

directions (straight flows from the opposite road segment, right turning and left 

turning flows from side segments). In each area, two relations are considered 

independently: the relation of FCD speed to loop flow and the relation of FCD count to 

loop flow.    

  

 

 Figure 4-2 Two areas (in rectangles) to carry out data fusion inbound area (left) and outbound area 

(right). Arrows show the flow gathered from the detectors. 
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4.2.3.1. FCD speed-flow relation  

The first way to conduct data fusion between FCD speeds and loop flows. An 

assumption is made that, a relation exists between the speeds and flows of a same 

traffic stream at an urban junction. If the speeds are obtained, and part of the flows 

are observed, then the rest flow values can be computed according to the relations 

found before. Although the speeds of the traffic streams are unknown, the FCD speeds 

act as representatives. The estimated flows in this way are aggregate flows. 

 

Formulation  

 

The steps are: Firstly, calculate FCD speeds to represent the speeds of traffic streams 

on a segment. Secondly, for a certain range, link available flows and the speeds, by 

fitting the two sources into one curve. Thirdly, apply the speed-flow curve to where the 

flows are missing, to get the estimated flow values. Finally, fill in the missing flows, 

update the curve 𝑔 and go back to the second step. The formulations are: 

 

𝑢𝐹𝐶𝐷(𝐿𝑥, 𝑑𝑥 , 𝑇𝑥) ≈ 𝑢(𝐿𝑥, 𝑑𝑥 , 𝑇𝑥)     (4.21) 

 

𝑢𝐹𝐶𝐷(𝐿𝑥, 𝑑𝑥 , 𝑇𝑥)~ 𝑔(𝑞(𝐿𝑥 , 𝑑𝑥 , 𝑇𝑥))       (4.22) 

 

�̂�(𝐿𝑥, 𝑑𝑥 , 𝑇𝑥)~ 𝑔−1(𝑢𝐹𝐶𝐷(𝐿𝑥, 𝑑𝑥 , 𝑇𝑥))     (4.23) 

 

Development  

 

Although the speeds on corresponding segments are unknown, they are supposed to be 

deducted by other ways. In this work, available FCD helps to express the speeds on 

the segment.  

 

A FCD record can be expressed as : 

 

𝐹𝐶𝐷(𝑖𝑑, 𝑥, 𝑑, 𝑡, 𝑢, ℎ)       (4.24) 

 

𝑖𝑑: The vehicle ID 

𝑥: Position,latitude and longitude  

𝑑: Day of recording 

𝑡: Time of day  

𝑢:Instantaneous speed of specific vehicle 𝑖𝑑 at time 𝑡 

ℎ: Heading of specific vehicle 𝑖𝑑at time 𝑡 

 

To conduct the mean speed 𝑢𝑛 , each vehicle in a specific road segment 𝐿𝑥 (which 

may contain multiple lanes) during period 𝑇𝑥 is selected according to the headings. At 

the same time, they must match the road locations. Then, harmonic mean of speed 𝑢𝑠̅̅ ̅ 

acts as the space mean speed. 
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𝑢𝑛(𝑖𝑑, 𝐿𝑥, 𝑑𝑥 , 𝑇𝑥)~𝐹𝐶𝐷(𝑖𝑑, 𝑥, 𝑑𝑥 , 𝑡, 𝑢, ℎ), 𝑥 = 𝐿𝑥, ℎ~𝐿𝑥    (4.25) 

 

𝑢𝐹𝐶𝐷(𝐿𝑥, 𝑑𝑥 , 𝑇𝑥)~𝑢𝑠̅̅ ̅ = 𝑁/ ∑
1

𝑢𝑛

𝑁

𝑛=1
        (4.26) 

4.2.3.2. FCD count-flow relation  

Except for FCD speeds, FCD trajectory counts are used. FCD, as an independently 

measured data source, is part of the total flow. An assumption is made that, there are 

relations between FCD counts and loop flows. Linear curves are made to fit for these 

relations. If the counts are obtained, and part of the flow is observed, then the rest flow 

values can be computed according to the relations found before. Although the 

penetration rate of FCD changes according to different periods, the positive relations 

between FCD counts and the total flows can give some estimation. The estimated flows 

in this way are aggregate flows. And more advanced relations are expected in the 

future research. 

 

Formulation  

 

The steps of the algorithm are: Firstly, calculate FCD counts. Secondly, link available 

flows and FCD counts to a fitting curve. Thirdly, apply the counts-flows curve to where 

the flows are missing to get the estimated flow values. Finally, fill in the missing flows, 

update the curve 𝑔 and go back to the second step. The formulations are: 

 

𝑘𝐹𝐶𝐷(𝐿𝑥, 𝑑𝑥 , 𝑇𝑥)~𝑛(𝑖𝑑, 𝐿𝑥 , 𝑑𝑥 , 𝑇𝑥)        (4.27) 

 

𝑘𝐹𝐶𝐷(𝐿𝑥, 𝑑𝑥 , 𝑇𝑥)~ 𝑔(𝑞(𝐿𝑥, 𝑑𝑥 , 𝑇𝑥))       (4.28) 

 

   �̂�(𝐿𝑥, 𝑑𝑥 , 𝑇𝑥)~ 𝑔−1(𝑘𝐹𝐶𝐷(𝐿𝑥, 𝑑𝑥 , 𝑇𝑥))     (4.29) 

 

Development  

 

The counts of FCD are conducted by applying trajectories and sorting the same vehicle 

ID passing by an area in a certain period. 

 

    𝑘𝐹𝐶𝐷(𝐿𝑥, 𝑑𝑥 , 𝑇𝑥)~𝑛(𝑖𝑑, 𝐿𝑥 , 𝑑𝑥 , 𝑇𝑥)        (4.30) 

 

Other processes are similar to the algorithm using speed-flow relation described 
before. 
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4.2.4. Approach 4: Multiple linear regression (MLR) 

The fourth approach makes the estimation by applying a multiple linear regression. 

In the first step, the potential contributions of observations to each others are assumed, 

the parameters showing these contributions are calibrated. In the second step, all 

these parameters are applied to available values to calculate the missing values. 

 

Formulation  

 

The formula is stated as follows, and the fitting function of the regression should be 

found. The sets of flows 𝑞(𝑙, 𝑑, 𝑡) are expressed as inputs 𝑥.  

 
�̂�(𝑙𝑥, 𝑑𝑥 , 𝑡𝑥)~𝑓𝑟𝑒𝑔𝑟𝑒𝑠𝑠(𝑞(𝑙, 𝑑, 𝑡), 𝛽(𝑙, 𝑑)), 𝑙 ∈ 𝐿, 𝑑 ∈ 𝐷, 𝑡 ∈ 𝑇    (4.31) 
 
𝑓𝑟𝑒𝑔𝑟𝑒𝑠𝑠(𝑞(𝑙, 𝑑, 𝑡), 𝛽(𝑙, 𝑑))= 𝑎(𝑙, 𝑑) ∗ 𝑥( 𝑞(𝑙, 𝑑, 𝑡)) + 𝑏   (4.32) 

 

𝑛𝑜𝑢𝑡𝑝𝑢𝑡: Number of output variables  

𝑛𝑖𝑛𝑝𝑢𝑡: Number of input variables  

 

Parameters 𝑎  is a 𝑛𝑜𝑢𝑡𝑝𝑢𝑡 × 𝑛𝑖𝑛𝑝𝑢𝑡  matrix, and 𝑏  is a vector with  𝑛𝑜𝑢𝑡𝑝𝑢𝑡 . 

Parameter 𝑎 and 𝑏 are represented by 𝛽, so 𝛽 is a vector of 𝑛𝑜𝑢𝑡𝑝𝑢𝑡 × (𝑛𝑖𝑛𝑝𝑢𝑡 + 1). A 

least squares multi-linear regression analysis is used to calibrate the parameters. It is 

done by minimizing the sum of the squared errors/residuals between the estimated 

values and the detected values: 

 

 arg 𝛽 min 𝐸 = ‖�̂�(𝑙, 𝑑, 𝑡) − 𝑞(𝑙, 𝑑, 𝑡)‖2      (4.33) 

 

Implementation  

 

In the implementation of this approach, two important factors are there: the relevance 

of inputs and the analysis interval for parameters. 

 

 The relevance of inputs: Theoretically, all the data from one junction can be 

used. However, specific inputs should reply on the situation. 

 The analysis interval: this factor determines how often the parameters are 

updated. Under an analysis interval of 8h, the weights of inputs keep unchanged 

during 8h.  

 

There is a dilemma when considering these two factors: On the one hand, more 

relevant inputs benefit to the accuracy of the estimation. For example, the flows from 

two nearby lanes have more commonalities. On the other hand, to capture the 

contributions from inputs, shorter analysis intervals are preferred. More frequent 

analysis leads to fewer inputs for each set of parameters of the regression, and the 

regression with more inputs requires more parameters. Thus, the analysis interval has 

to be long enough to ensure the accuracy of the parameters. Therefore, a trade-off must 
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be made between the inputs and the analysis interval. 

 

Take a junction for example, which is with 6 lanes on each approaching stream (4 

streams) observed for a week (7 days). If using all the observations at a junction as the 

inputs, the numbers of parameters are expressed as: A Constance + all the lanes 

multiplied with all the days in a week - 1(the missing flow itself), which is 1+4*6*7-

1=168. More than 168 inputs are required, then the analysis interval has to be the 

whole day (5 min resolution, there are 288 sets of input). If choosing only the 

observations from one approaching stream, the numbers of independent variables have 

become 1+6*7-1=42. To ensure the reliability of parameters, the regression needs at 

least 42 equations. That is to say, the analysis interval should be at least 4 (48 sets of 

inputs) hours. The analysis interval can range from 4 hour to 24 hour. 

 

4.3. Integration of the approaches 

Each approach has specific concerns, advantages and limitations. The possible 

integrations are raised in this part to try to make improvements. Two integrated 

methods are: Combining approach 1 and 2 using iteration and advanced multiple 

linear regression. 

4.3.1. Integrated method 1: Iteration  

In this method, Historical pattern and lane spatial distribution are combined by 

involving the main dimensions from others. For example, when calculating the weights 

between days, not only the flows on this lane are considered, but also the lanes that 

are relevant. When calculating the weights between lanes, not only the flows on this 

day are considered, but all the relevant days. What is more, different from individual 

approaches, each output from one dimension can be the input of another dimension. 

The formulations are given by: 

 

�̂�(𝑙𝑥, 𝑑𝑥, 𝑡𝑥) = 𝑤1 ∗ �̂�
1
(𝑙𝑥, 𝑑𝑥, 𝑡𝑥) + 𝑤2 ∗ �̂�

2
(𝑙𝑥, 𝑑𝑥, 𝑡𝑥)     (4.34) 

 

�̂�
1
(𝑙𝑥, 𝑑𝑥, 𝑡𝑥)~{𝑤𝐷𝑂𝑊 ∗ �̅�(𝑙, 𝑑𝐷𝑂𝑊𝑥

, 𝑡), 𝑤𝑊𝐷 ∗ �̅�(𝑙, 𝑑𝑊𝐷𝑥
, 𝑡), 𝑤𝐷 ∗ �̅�(𝑙, 𝑑𝐴𝐷, 𝑡), 𝑡 ∈ 𝑇𝑥},𝑙 ∈ 𝐿 

�̂�
2
(𝑙𝑥, 𝑑𝑥, 𝑡𝑥)~ ∑ 𝑤𝑐(𝑙) ∗ 𝑤𝑡𝑟(𝑙) ∗ 𝑤𝑝𝑙(𝑙)

1

𝑛𝑝𝑙

(
�̅�(𝑙𝑥, 𝑑, 𝑡)

�̅�(𝑙, 𝑑, 𝑡)
, 𝑡 ∈ 𝑇) ∗ (�̅�(𝑙, 𝑑, 𝑡), 𝑡 ∈ 𝑇𝑥), 𝑑 ∈ 𝐷

𝑙𝜖𝐿

 

  

Where 𝑤1and 𝑤2 are calibrated during the iteration. The Iteration process can be 

expressed by the flow chart and explained by the following steps. 
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Figure 4-3 Schematic flow chart of  the Iteration  

 

Step 0:  For initial condition, the estimated value is �̂�(0) = 0. Set the deviation of 

estimated values between the last step and this step as ∆�̂�(0) = 0; 

 

Step 1:   Get estimation value �̂�1 (𝑖) by historical pattern approach; 

 

Step 2:   Get estimation value �̂�2 (𝑖) by lane spatial distribution approach;  

 

Step 3:   Calculate the reliability weighting factor for two independent estimated 

results: 

𝑤1 = 1 −
|�̂�1 (𝑖)−�̂� (𝑖−1) |

�̂�1 (𝑖)
, 𝑤2 = 1 −

|�̂�2 (𝑖)−�̂� (𝑖−1)  |

�̂�2 (𝑖)
         (4.35) 

     

Step 4:  Calculate estimated value in 𝑖  term, based on weighted average of each 

component: 

 �̂� (𝑖) =
𝑤1

𝑤1+𝑤2
∗ �̂�1 (𝑖) +

𝑤2

𝑤1+𝑤2
∗ �̂�2 (𝑖)        (4.36) 

                                                 

Step 5:   Calculate the deviation of 𝑖 term from last term 𝑖-1:  

                           ∆�̂�(𝑖) = �̂� (𝑖) − �̂� (𝑖 − 1)                    (4.37) 
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Step 6:   Calculate the convergence, if converge, stop; if not, go to step 8.       

 𝐶 = (∆�̂�(𝑖) − ∆�̂�(𝑖 − 1)) (∆�̂�(𝑖) + 0.001)⁄ ≈ 0            (4.38) 

Step 7:   Update the missing flow �̂�(𝑖 − 1) ← �̂�(𝑖) in the observations and go back to 

step 1. 

4.3.2. Integrated method 2: Advanced multiple linear regression  

This method is based on approach 4, using regression tools. The information of 

relevance comes from the considerations in approach 1 and 2. This means, historical 

pattern and lane spatial distribution in a timing plan have given the regression model 

the guidance to selecting its inputs. The formulation is:  

�̂�(𝑙𝑥, 𝑑𝑥, 𝑡𝑥)~𝑓
𝑟𝑒𝑔𝑟𝑒𝑠𝑠

(𝑞(𝑙, 𝑑, 𝑡), 𝛽)        (4.39) 

𝑙 ∈ 𝑃𝐿, 𝑇𝐿, 𝐶𝐿, 𝑑 ∈ 𝐷𝑂𝑊𝑥/𝑊𝐷𝑥𝐴𝐷, 𝑡 ∈ 𝑇 

 

The way to find the function is still the same as approach 4.  

 

𝑓𝑟𝑒𝑔𝑟𝑒𝑠𝑠(𝑞(𝑙, 𝑑, 𝑡), 𝛽)= 𝑎(𝑙, 𝑑) ∗ 𝑥( 𝑞(𝑙, 𝑑, 𝑡)) + 𝑏    (4.40) 

 

arg 𝛽 min 𝐸 = ‖�̂�(𝑙, 𝑑, 𝑡) − 𝑞(𝑙, 𝑑, 𝑡)‖2 

 

4.4. Conclusion for the chapter  

In this chapter, approaches to estimate missing flow are raised from two aspects: direct 

observation and traffic flow theories using data fusion. Based these two aspects, four 

individual approaches and two integrated methods are proposed. The first approach, 

historical pattern, uses the pattern over the time dimension to make an estimation. 

Lane spatial distribution, as the second approach, uses the similarity of flows over the 

space dimension. FCD and loop flow are combined in approach 3. Both speeds-flows 

and counts-flows relations are used to make the estimation. MLR is applied in the 

approach 4. Except for the formulations, the way to consider inputs and analysis 

interval is also introduced. For the first integrated method, an iteration is introduced 

to combine the first and the second approach. In the second integrated methods, the 

MLR is improved by considering its inputs according to information from the first and 

the second approach. The performances of these approaches and methods are 

demonstrated in Chapter 6. 
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5. Data processing and 

implementation of methods 

 

 

 

The data processing is a significant part in the thesis work. The outputs are useful in 

data analysis and the experiments in case studies. Therefore, Chapter 5 introduces 

these processes, which including: the coding of junctions, the indexing of flows, the 

timing plan processing, and the processing of FCD trajectories. Some technical 

improvements are introduced, such as a new coordinate system to form FCD 

trajectories.    
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5.1. Loop flow and timing plan data processing 

SCATS saves its traffic flows and signal timing plan data in files every day. The 

SCATS traffic reporter gives the raw data. The two raw data files are SCATS_VS_Flow 

and SCATS_SM_Timing. The former one provides the flows over every 5 min, and the 

later one provides the timing plan and relative information each cycle. SCATS data 

are available from 2013.4.15 to 2013.4.28. The file on 2013.4.22 Monday has broken. 

To complete the two-week make experiment range, data from the next Monday (on 

2013.4.29) are used. To extract all the values and to form a dataset, there calls for 

geography information, such as the positions of lanes, the turnings. All these have to 

be done by the junction coding. 

 

Coding of junctions  

 

The first step is to check current junction information and revise the errors according 

to the Map from SCATS and the Google map. In previous year table, some of the 

information of junctions is wrong or incomplete. For example, for some junctions, the 

numbering of the junctions doesn't match with the numbering in SCATS. Besides, for 

some junctions, there are no numbering. With the completion of the junctions’ 

information, it has been more convenient to refer to traffic flow observations. Here 

some corrections of the junction’s information are shown in yellow. 

 

Figure 5-1 Example of  junctions (left) and check of  errors in junction information (right)  

  

The next step is to extract flow values and to create a database. By sorting and 

classification, data are organized into groups, labeled with the day and lane 

coordinates, matched with group information and timing plan. After the processes, 

each flow observation is noted with a junction number, a date, and a lane number. 

 

Timing plan process   

 

The raw data of signal timing plan contain information about the groups, the duration 

of phases and the starting time of cycles. The groups of lanes have been introduced in 

last part. For the duration of phase, they are extracted from raw dataset and matched 

with the flow recording interval (5 minutes). An example is presented here from 7:00 

to 7:30 on a day. In this diagram, a rectangle shows a lane on the vertical axis, while 

the horizontal axis shows the time line. Each red square represents one minute. Yellow 
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lines show the starting time of cycles, and yellow numbers show the durations (in 

second). Cyan numbers in cyan rectangles show the greens (in second). 

 

Figure 5-2 Sample of  timing expression; flow values are involved within 30 minutes  

 

There is only a starting time and a duration time for each phase. The yellow lights and 

all-red lights have to be assumed by shifting the rectangles for a synchronization 

during a time range. Afterwards, the timing data for each lane at each day are saved. 

 

The greens are shown on an aggregated 30-minutes level. It shows that the greens in 

each phase keep unchanged during the daytime, but fluctuate during the night. The 

reasons are supposed: (1) SCTAS did not apply an adaptive control according to the 

flows during the daytime. (2) During the daytime, the traffic flows on four approaching 

directions increase or decrease on a same scale, thus their relative ratios keep 

unchanged, which leads to an unchanged share of greens . 

 

  

 

 

Figure 5-3 the green light time distribution, each phase on 15th-20th April 2013(30 minutes interval)) 
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5.2. FCD processing  

FCD, as another data source used in the thesis work, not only plays a role in verifying 

the relations in traffic streams, but also gives a contribution to the consistency check. 

To get information, FCD trajectories should be formed from the raw data. Two kinds 

of trajectories are there. The first type is a trajectory from the overhead view; it uses 

two location coordinates: longitude and latitude. These trajectories give counts of 

vehicles through a road segment. The second type uses distance and time as 

coordinates. These trajectories can be matched with a timing plan in a short period, 

and can be used for the calculation of the average speed. 

 

First type trajectory   

 

The first type of FCD trajectory provides an overhead view of each taxi. The author 

uses these trajectory to check the FCD coverage and to calculate the vehicle counts in 

a certain location. If putting GPS location and SCATS junction location onto the Google 

map, it is obvious that they are not matched. Thus, a map-matching process should be 

conducted. Compared to FCD on freeways, the FCD near junctions holds several 

difficulties: These vehicles are no longer heading only to two directions as on the 

freeway, but are in multiple directions. For a regular junction with four approaching 

directions, there can exist as many as 24 FCD trajectories with different headings. For 

irregular junctions, there can be much more. The ways to select the headings are 

introduced in following parts.  

 

Second type trajectory   

 

The second type uses distance and time as coordinates. The majority of vehicle 

trajectories have shown more reasonable after been implemented PLSB (Piecewise 

linear speed based method). However, some vehicles show strange behaviors such as 

U-turns. Current methods cannot filter out those U-turns completely. Luckily, these 

special cases have not influenced the analysis of traffic state at junction using FCD 

trajectories nor the collection of vehicles counts to a large degree. Near a junction, a 

shockwave can be observed, which helps to check the consistency of trajectories and 

the signal plan. The queues form back forwards when a red signal is on. When the 

signal turns green, the flow reaches its capacity on this road; vehicles pass the junction 

and the queues start to dissolve. Here is an overview of all taxi trajectories:  

 
Figure 5-4 Example of  FCD trajectories near a junction 31616 from west to east from 16:50 to 17:05 

compared with control plan. 
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Short of FCD vehicles  

 

To form both trajectories, the sort of vehicle is the main task. All records from raw data 

are classified by their Taxi ID, followed by the time. Since specific vehicles and trips 

have been determined, the headings are concerned, with their locations. These vehicles 

are then matched with approaching directions at a junction. A sheet of sorted data 

with their trip information is shown as follows (the red circle shows the trips for a 

specific vehicle ID). 

 
Figure 5-5 Example of  FCD data-taxi ID and trips classification   

 

For each user, there could be traces in an area during different periods. A threshold is 

used to sort the trips:  

𝑡ℎ𝑟𝑒𝑠ℎ𝑙𝑜𝑑~ 𝑚𝑎𝑥 𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙                         (5.1) 

 

The threshold is set as 5min: 𝑚𝑎𝑥 𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙=5min. It means that if the interval between 

two consequence records has exceeded 5min, these two records are thought to be 

independent trips.  

 

New coordinate system  

 

Sorted vehicles should be matched to the roads on the map. Due to the lack of link-

match sources, the link-match and the turning determination have to be done 

manually. Since the targets are the roads near junctions, not only two headings are 

there when considering the movements of vehicles. For example, vehicles may make 

turnings at junctions. Moreover, the shapes of the junctions may also influence the 

trajectories. Thus, a new coordinate system is invented by the author to consider these 

issues.    
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To form the new coordinate system, the first step is to check the headings of FCD. 

After tests and checks, the original coordinate system used in the FCD raw data is 

confirmed (as shown in Figure 5-6 (left) figure). Based on the original one, a new 

coordinate system is developed. In the new coordinate system, each record point, with 

their actual longitude and latitude is projected to the uniformed axis at this junction. 

Four boundary points are decided automatically by the median value of the vehicles 

near this boundary, thus the shape of the coordinate system can adjust automatically 

to the shape of the targeted junction.  

 

Figure 5-6 The original coordinate system in FCD (left), newly designed coordinate system (right) 

 

In the new coordinate system, reference lines are set to link four boundary points and 

the junction center (see the blue solid lines in the Figure 5-6 (right)). For the points on 

the west branch of the junction, the reference line is decided by the west boundary 

reference point and the center reference point, represented as 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0. The 

aim of the reference line is to make projections for all origin recorded points. So that it 

will help to calculate and match the points to a certain link. Set the position of a vehicle 

as (𝑥0, 𝑦0). The parameters 𝐴, 𝐵 and 𝐶 are decided by the position of junction center 

and one of the four boundary reference points. Thus, the projections of the origin 

recorded points will be on this line, and they are given by: 

 

𝑥𝑝 = (𝐵 ∗ 𝐵 ∗ 𝑥0 − 𝐴 ∗ 𝐵 ∗ 𝑦0 − 𝐴 ∗ 𝐶)/(𝐴 ∗ 𝐴 + 𝐵 ∗ 𝐵)          (5.2) 

𝑦𝑝 = (−𝐴 ∗ 𝐵 ∗ 𝑥0 + 𝐴 ∗ 𝐴 ∗ 𝑦0 − 𝐵 ∗ 𝐶)/(𝐴 ∗ 𝐴 + 𝐵 ∗ 𝐵) 

𝐴 =
𝑦2 − 𝑥2

𝑦1 − 𝑥1
 , 𝐵 = −1, 𝐶 = 𝑦1 − 𝑥1 ∗ (

𝑦2 − 𝑥2

𝑦1 − 𝑥1
) 

 

Where 𝑥𝑝    and 𝑦𝑝  are the new longitude and latitude to calculate the distance 

between two records. 

 

The blue dotted line in the figures represents the dynamic reference line for a vehicle 

at a different position. The distance from the recorded point to the link is given by: 

 

𝑑 = (𝐴 ∗ 𝑥0 + 𝐵 ∗ 𝑦0 + 𝐶)/√(𝐴 ∗ 𝐴 + 𝐵 ∗ 𝐵)               (5.3) 

 

If the vehicle goes straight, 𝑑1  will be smaller than 𝑑2 all the time; at the same time, 

the heading will not change much. However, if the vehicle turn right at the junction, 

at first 𝑑1  will be smaller than 𝑑2 , then it becomes larger; at the same time, the 
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heading will change obviously. The table Table 5-1 shows this determination. 

 

 

Figure 5-7 the FCD coordinate designed for data processing of  FCD heading. 

 

Table 5-1 Determination of  turning in new coordinate  

 

Heading Distance to reference line 1/ line 2 Determination 

West-west 𝑑1 < 𝑑2 𝑑2 < 𝑑1 From west to east 

West -south 𝑑1 < 𝑑2 𝑑1 > 𝑑2 From west to south  

 

This method is proved to be able to deal with the majority of the trajectories. However, 

it still needs to be improved in the future. 

 

Distance calculation using PLSB 

 

To get the distance between two records of a vehicle, the original longitude and latitude 

information should be transferred. The Euclidian distance between two points is 

widely used, since it is easy to calculate. To calculate the Euclidian distance, a 

reference system is needed. WGS84 (World Geodetic System 1984) is a reference 

system, which is often used as a base to make maps and calculate distances. It 

determines the coordinates of every point on the earth using latitude, longitude and 

height. A schematic diagram is shown in Figure 5-8.  

 

Figure 5-8 WGS84 used in FCD data processing  



55 
 

 

The Euclidean distance between two points: 

 

𝐷 = √(𝑋1 − 𝑋2)2 + (𝑌1 − 𝑌2)2 + (𝑍1 − 𝑍2)2     (5.4) 

 

As long as the angle 𝜃 between the start point and the end point is small enough, 

the Euclidian distance will be close enough to the actual geographical distance. For 

example, for a taxi with a maximum speed of 40 km/h or 60km/h, in an interval of 30 

seconds, the maximum distance of two recorded points will not exceed 500 m.     

 

Having decided the distances between points, the next task is to arrange these 

distances. Since the original data could show vague trajectories of a vehicle; for 

example, some shapes of the trajectories could be very ‘sharp’. To smooth the 

trajectories, the PLSB method is used. It stands for piecewise linear speed based 

method for travel time prediction. In this method, trajectories are constructed based 

on the assumption of piecewise linear (and continuous at section boundaries) vehicle 

speeds. The following figure shows how the PLSB is implemented.  

Figure 5-9 Example of  forming of  PLSB method to a single vehicle  

 

5.3. Conclusion for the chapter  

This chapter demonstrates the complexity of data and how to process raw data. Firstly, 

a digital coding of junction information is made using SCATS documents, together with 

maps. Secondly, timing plan is utilized. Thirdly, attributes from FCD are used to 

generate two kinds of trajectories, providing speeds and counts. In the data processing 

FCD, a new coordinate system is invented. Errors and inconsistencies are concerned, 

too. The data filtered are useful for next step usage.  
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6. Case studies and evaluation 

 

 

This chapter presents the experiment results and corresponding evaluations. Two 

junctions are used, and various methods are applied at the first junction for testing 

and calibration purposes, and two integrated methods implemented with the second 

junction for purpose of validation.    

 

Section 6.1 describes the general setup for each of the cases being considered, including 

the key influencing factors in each of the scenarios, the indicators used in evaluation, 

and the choice of junctions.  

 

In section 6.2, the first approach, which is based on an historical pattern, contains two 

sub-approaches. In sections 6.3 to 6.5, approaches 2, 3, and 4 are implemented and 

evaluated. In sections 6.6 and 6.7, integrated methods using iteration and an advanced 

regression method are conducted and evaluated. Section 6.8 presents the validation 

results by using another junction to show the possibility of using methods extensively; 

that is to say, with robustness. Section 6.9, the conclusion, includes a summary of all 

of the methods.  
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6.1. Setup for case studies  

Figure 6-1 presents a flow chart of the processes described in this chapter. In some 

cases, (identified here as approaches 1.1 and 2), initial calculations following certain 

algorithms belonging to this approach are conducted to indicate the trends in certain 

performances. The updated algorithms are then used.   

 
Section 6.1-Section 6.8 The First junction: Calibration 

Section 6.2

 historical 

pattern 

Case for A1.2

historical flow 

and timing 

Case for A1.1 

historical flow 

pattern  

 Primary 

formula 

Updated 

formula  

6.1 Key influential factors for deciding scenarios: resolution, data missing type, input data type, etc.

Literatures 

Data analysis 

Section 6.3 

Lane spatial 
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Section 6.4 
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MLR+ time-
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Advanced 

MLR 

Speed-flow 

 

 

Figure 6-1 A flow chart of  the discussion in the case study and evaluation chapter  

 

The case studies of the methods are carried out in multiple scenarios, and key 

influencing factors define the setup of these scenarios.  Thus, this section will 

introduce the key factors that were considered in determining the methods to be 

followed and the setup of cases and experiments. 

 

Key influential factors  

 

Based on the current imputation methods and the results from the data analysis, 

certain factors are considered as influencing the performance of the methods. These 

are: 

 

 Missing data: type — long-term or short-term.  

 Input data type: original data (raw data taken directly from detectors) or 

processed data (smoothed data)   

 Resolution: 5, 15, or 30 min. 

 Analysis interval (frequency of capturing the rules and calibrating the 

parameters for approach 4 at: 4h, 8h, 12h, and 24h. 

 

The moving average, a widely used tool, is applied for smoothing the original data. A 

simple moving average (SMA) is the unweight mean of the previous 𝑛  values (6.1). 

When considering the data before and after observations, the formula is (6.2). Setting 

n as 1, a simple way to smooth the raw data is (6.3). 
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𝑞𝑆𝑀𝐴(𝑡) =
𝑞(𝑡)+𝑞(𝑡−1)+𝑞(𝑡−2)+𝑞(𝑡−(𝑛−1))

𝑛
                  (6.1) 

𝑞𝑆𝑀𝐴(𝑡) =
𝑞(𝑡)+[𝑞(𝑡−1)+⋯+𝑞(𝑡−(𝑛−1))]+[𝑞(𝑡+1)+⋯+𝑞(𝑡+(𝑛−1))]

𝑛∗2+1
     (6.2) 

𝑞𝑆𝑀𝐴(𝑡) =
𝑞(𝑡)+𝑞(𝑡−1)+𝑞(𝑡+1)

3
        (6.3) 

 

All of the analyses in the following approaches are based on taking as inputs the 
original data and the processed data. 
 

Setup of cases and experiments  

 

 Error indicators  

 

The evaluation indicators are MAPE (mean absolute percentage error) and RMSE 

(root-mean-square deviation). These are defined in the following formulas. In the 

equation, estimated values are  𝑦�̂�  , while the actual value is 𝑦𝑡. 

  𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |𝑦�̂� −

𝑦𝑡

𝑦𝑡
|𝑛

𝑡=1           (6.4) 

𝑅𝑀𝑆𝐸 = √  ∑ (𝑦�̂� − 𝑦𝑡)2𝑛
𝑡=1 / 𝑛                      (6.5) 

 

 Junctions in use   

 

Some junctions with full flow observations are selected from the system. Selected flows 

are “removed” from their places and reserved as the actual detected data for 

comparison. There will “missing” flows at a particular location (lane 𝑙𝑥) on a particular 

day (day 𝑑𝑥) during a particular time period (time of day 𝑡𝑥 ∈ 𝑇𝑥). 

 

The first junction is that of Road Wanjial and Road Laodong in Changsha, China, and 

is marked as ID 31616 at Changsha 2nd term, in the SCATS system. The second 

junction is that of Road Wangjiali and Road Qutang, with ID 31617. Their layouts are 

shown in Figure 6-2. 

  

Figure 6-2 Layout of  case junctions in SCATS, junction 31616 (left) for calibration and evaluation, and 31617 

(right) for validation.  
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Junction 31616 has four approaching directions. At each approach there are, from left 

to right: two left-turning lanes, three straight lanes, and one right-turning lane, 

respectively. Junction 31617 has four approaching directions, too. In the east and west 

directions, there are four lanes each. In the south and north directions, there are six 

lanes. Since FCD covers these areas, sufficient values can be obtained as a reference.  

 

 Data scope  

 

SCATS data are available from 4/15/13 to 4/28/13. The file from Monday, 4/22/13 broke. 

To complete the two-week experiment range, data from the next Monday (4/29/13) are 

used.   

 

 Cases setup  

 

There are many ways in which permutations of the influential factors can be 

performed. To avoid too many permutation cases, one or two factors are identified for 

convenience. For example, it is recommended to keep all inputs at a 5 min resolution 

and switch the missing data type from long-term to short term, or else to switch the 

input data type from original data to smoothed data.  

 

 Validation setup  

 

To validate the approaches or methods, some rough standards are made. In the way of 

validating, the methods are implemented in other similar lanes in another comparable 

junction to see the errors. As for the acceptable range of the difference of performance, 

for the convenient, it is defined that: the general difference of error are within 20% of 

the total error, the methods are seen as validated.  

6.2. Cases for approach 1 Historical pattern  

This approach involves two sub-approaches: Approach 1.1 uses only historical flow, 

and the earlier algorithms and upgraded ones are both demonstrated. Approach 1.2 

uses the ratio of flow to green as the relevant variable to be identified in the history. 

6.2.1. Historical flow pattern  

In this section, the simple and primary formulas from the early experiment are first 

presented to show general performances. An updated version is then carried out with 

a specific lane to provide detailed results. 
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The primary algorithms: general performances 

 

Primary algorithms use an average of flows from WDs (days in the same week) and 

DOWs (days same as day-of-week). 

 

�̂�(𝑙𝑥, 𝑑𝑥, 𝑡𝑥)~�̅�(𝑙𝑥, 𝑑, 𝑡𝑥), 𝑑 ∈ 𝑊𝐷𝑥                 (6.6) 

 

�̂�(𝑙𝑥, 𝑑𝑥 , 𝑡𝑥)~�̅�(𝑙𝑥, 𝑑, 𝑡𝑥), 𝑑 ∈ 𝐷𝑂𝑊𝑥                 (6.7) 

 

Only the error indicators are presented, to show changes in performance over a 

number of days in three lanes. Here the red line shows WDs, while the yellow line 

shows DOWs. 

 

 MAPE 

 

It can be seen that the percentage errors fluctuate over different streams in various 

directions. However, their trend on each day is similar: on Saturday and Sunday, all 

of them show higher errors, while on Thursday, they all reach an optimum 

performance. This yields the implication that the use of historical flow patterns relies 

on a stable rate of flow over a series of days. 

     

 

 

 

 

 

 

 

 

Figure 6-3. MAPE on the stream level, using an historical flow pattern over a two-week period, based on 

missing flow data on (1) West stream lane 1 (2), West stream lane 3 (3), and South stream lane 7.  

 

From the results of MAPE, It should be noted that the MAPE in this section is 

calculated by comparing aggraded flow to the whole stream; thus the results may seem 

optimistic.  

 

 RMSE 

 

RMSE yields an estimation from an absolute deviation perspective. It fluctuates in the 

same manner as MAPE. As the South stream holds a larger traffic volume, it also 

provides the largest error. It can be concluded that the absolute error of using an 

historical flow pattern increases as the increase in the amount on the stream where 

the missing flow lane is located.   
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Figure 6-4.  RMSE at the stream level over two weeks, based on missing flow date for (1) West stream lane 

1, (2) West stream lane 3, and (3) South stream lane 7. 

 

Considering both indicators, using the average of flows from WDs shows lower error 

indicators than when using flows from DOWs. However, this conclusion should be 

considered tentative, since the former has a larger amount of data input than the later, 

due to the limitation of data scope in the experiment. 

 

The updated algorithm  

 

Having obtained general performances using primary formulas, the algorithms are 

updated by combining the influence from several relevant groups of days. The 

fractional part on the left side shows the DOW ratio, which refers to the general traffic 

demand of DOW over DOWs. The right side shows the average flow level in these cycles 

within a week. 

 𝑞(𝑙𝑥 , 𝑑𝑥 , 𝑡𝑥)~
�̅�(𝑙𝑥,𝑑,𝑡𝑥),𝑑∈𝐷𝑂𝑊𝑥

�̅�(𝑙𝑥,𝑑,𝑡𝑥),𝑑∈𝐴𝐷
∗ (�̅�(𝑙𝑥 , 𝑑, 𝑡), 𝑑 ∈ 𝑊𝐷𝑥, 𝑡 ∈ 𝑇𝑥)      (6.8) 

 

The general performances of the whole junction are presented in Appendix 1. The 

tables in Appendix 1 reveal that the relative errors are stable over different cases 

(missing flow in different lanes on different days). In some cases, the process of 

smoothing largely improves the performances. Compared to left-turning lanes, 

estimations using throughput lanes enjoy higher accuracy. Also, compared to lower 

demand-approaching streams (East-West), higher demand ones (North-South) give 

better performances. 

 

Pick up one case for evaluation, the case involves the South stream in week 2, day 2 

April 23, 2013, in lane 7. (The yellow lines show the estimated values while the blue 

lines show the actual ones).   
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Figure 6-5. Estimation using approach 1.1 on lane 7 junction 31616, April 23, 2013, for original data (left) 

and processed data (right).  

 

This approach successfully captures the general trend. However, the peak captured 

from other days seems to “shift” a little bit when looking at the original data. For the 

processed data case (smoothed flow volume), the error indicators are much lower. 

 

The findings in the results of approach 1.1 (A1.1) show that historical flow patterns 

fluctuate wildly among different cases. The results from primary algorithms are 

around 10% and 40%. The upgraded algorithms show a performance of around 30% 

using original data and around 15% with processed data. The approach relies on a 

stable flow rate for a series of days. It turns out that even for days with stable flows, 

results using this approach may “shift” a little bit in their time dimension from the 

actual values. The absolute errors increase with increases in the flow amounts. Also, 

due to the limitations of data scope in the experiments, there is no evidence as to which 

sets of days, DWs or DOWs, are more reliable.  

6.2.2. Historical timing + flow pattern  

In the implementation of this approach, to avoid fluctuations in a control cycle (which 

have a very short period of between 2 and 3 min.), the relationship between green and 

flow observations is established for a longer period (5 to 60 min.). This experiment is 

conducted on an aggregate level of 30 minute intervals. The formula used in the 

experiment is:  

 

𝑄(𝑙𝑥, 𝑑𝑥 , 𝑡𝑥)~𝑠(𝑙𝑥, 𝑑𝑥 , 𝑇𝑥) ∗
�̅�(𝑙𝑥,𝑑,𝑡𝑥),𝑑∈𝐷𝑂𝑊𝑥

�̅�(𝑙𝑥,𝑑,𝑡𝑥),𝑑∈𝐷
∗ (�̅�(𝑙𝑥, 𝑑, 𝑡𝑥), 𝑑 ∈ 𝑊𝐷𝑥)     (6.9) 

 

The green light/flow ratio  

 

The green/flow ratios in Phase C (where lane 1 is located) over the course of a week 

are put together: it seems that the ratios during the night are quite close to each other. 
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However, the ratios for the daytime fluctuate widely.  

 

Figure 6-6. The green/flow ratio over one week (April 15-21, 2013) at 30-minute intervals. 

 

 

Estimated flows   

 

The green/flow ratios are used to calculate the missing flows. If looking back to the 

respective shapes of signal timing plans and traffic flows, it can be seen that due to the 

unchanged green, the final results are derived mainly from the historical traffic flows.

 

 

Figure 6-7. Estimated results using the green light time/flow ratio approach in lane 1 on April 15, 2013: 

original (left) and processed data (right) with 30-minute interval. 

 

In this case, that approach is not suitable. Thus, the greens are removed, and the 

approach falls back to 1.1, using only the historical flow. The results are:  
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Figure 6-8 estimated results using degenerated approach 1.2 on lane 1 on day 15th April 2013-original data 

(left) and processed data (right) with 30 minute interval 

 

According to the experimental results, the greens in phase C remained almost 

unchanged during the entire day. For this reason, the ratios of green to flow follow the 

same shape as the flows. The final results are almost entirely contributed by the flow 

values. Without the information on historical greens, historical traffic flows can 

produce even better results.  Therefore, the Approach 1.2 (A1.2) of historical timing 

and flow pattern does not show its utility in this thesis, due to the unchanged green in 

the daytime. It can be concluded that this method is not suitable when a system does 

not adapt its controls according to the flows. This approach thus automatically falls 

back to approach 1.1, using only the historical flows.  

6.3. Cases for approach 2 Lane spatial distribution  

As with approach 1, first, early results using the primary algorithms are 

demonstrated. Then a more specific and updated version is implemented in order to 

provide detailed results. 

 

The primary algorithms: general performances 

  

First, the average PL (lanes in the same control group) is used. Secondly, the average 

TL (flow from lanes turning in the same direction): 

 

�̂�(𝑙𝑥, 𝑑𝑥, 𝑡𝑥)~�̅�(𝑙, 𝑑𝑥 , 𝑡𝑥), 𝑙 ∈ 𝑃𝐿𝑥      (6.10) 

 

�̂�(𝑙𝑥, 𝑑𝑥 , 𝑡𝑥)~�̅�(𝑙, 𝑑𝑥 , 𝑡𝑥), 𝑙 ∈ 𝑇𝐿𝑥                   (6.11) 

 

For these earlier experiments, only the error indicators are presented to show their 

performances, changing over fourteen days in three lanes. (The blue line shows the 

results of the experiment using PLs, while the green line shows results using TLs 

(lanes that have the same manner of turning). 
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 MAPE 

 

The results show regular performance for day-of-month. Two sets of lane inputs show 

opposite performance for different streams or turnings: PLs seems to perform better 

in left turning (lane 1) and TLs as straight (lane 3). This may due to the fact that flows 

in left- turning lanes have less similarity than flows in straight lanes. The figures also 

indicate that approach 2 works better in lane 7 in the south stream than lane 1 or lane 

3 in the west stream.  This approach provides a smaller percentage error for a large 

number of streams, which is totally different from the first approach. 

 

Figure 6-9. MAPE for the approach level, using approach 2 over 14 days per month, based on estimating the 

missing flow in  (a) West stream lane 1 , (b) West stream lane 3, and (c) South stream lane 7. 

 

 RSME 

 

The figures here show that the general output of approach 2 is stable, with little 

fluctuation over days. However, lane 7 in the south stream, with a higher volume of 

traffic, still shows a higher absolute error than do the smaller volume lanes.  

 

Figure 6-10. RMSE approach level, using approach 2 over 14 days per month, based on an estimation of   

missing flow on  (a) West stream lane 1 , (b) West stream lane 3. (c) South stream lane 7. 

 

The updated algorithm  

 

Given general performances, using primary formulas, the approach is updated, by 

combining the influence from different sets of lanes. One application involves adding 

general historical flow ratios between lanes as the weights to be used in upgrading the 
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method of calculating the contributions from a given set of lanes. 

 

The general performance of the whole junction is presented in Appendix 2. From the 

tables there, the findings are that the relative errors are stable over different cases 

(missing flow in different lanes, on different days), and in some cases, the smoothing 

process does not improve the performance as much as does approach 1.   

 

The first formula shows the estimation from another lane from applying the general 

flow ratio between them. The second formula shows the average of these estimated 

values for the lanes in the same phase.  

�̂�𝑙(𝑙𝑥, 𝑑𝑥 , 𝑡𝑥)~ (
�̅�(𝑙𝑥,𝑑𝑥,𝑡)

�̅�(𝑙,𝑑𝑥,𝑡)
, 𝑡 ∈ 𝑇) ∗ (�̅�(𝑙, 𝑑𝑥 , 𝑡), 𝑡 ∈ 𝑇𝑥)        (6.12) 

�̂�(𝑙𝑥, 𝑑𝑥, 𝑡𝑥)~ ∑ 𝑤𝑝ℎ(𝑙) ∗ �̂�
𝑙
(𝑙𝑥, 𝑑𝑥, 𝑡𝑥)𝑙𝜖𝑃𝐿 ~�̂�

𝑙
(𝑙𝑥, 𝑑𝑥, 𝑡𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑙 ∈ 𝑃𝐿        

𝑤𝑝ℎ(𝑙) = {
0, 𝑙 ∉ 𝑃𝐿

1

𝑛𝑝𝑙
, 𝑙 ∈ 𝑃𝐿                            

Estimation on the south stream for lane 7, in week 2, on day 2 (April 23, 2013). (The 

green line shows the estimated values, while the blue line shows actual values). 

     

 

Figure 6-11. Estimation using approach 2 on lane 7, junction 31616, on April 23, 2013 for original data (left) 

and processed data (right) 

 

The approach 2 lane spatial distribution in a timing plan performed well in capturing 

even the smallest trend of the traffic flow volume. For the processed data (smoothed 

flow volume), the performance is almost the same as in the first approach. It is better 

than the first approach in the original data (original interrupted values), if only in 

terms of the error indicators. 

 

For approach 2 (A2), lane spatial distribution, the general results fluctuate less than 

approach 1.1, and the results from primary implementation are around 10% and 40%. 

The upgraded implementation shows a performance of around 25% on original data 

and around 15% on processed data in this case. Some of the gains include the fact that 

the flows distributed on lanes with different turning groups are of various regularities. 
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For instance, the flows in left-turning lanes have less similarity than that in straight 

lanes. Also, this approach provides a smaller percentage error for a larger number of 

streams, which is totally different from the historical pattern approach. Comparing 

the difference between performance on original and processed data, this shows less 

difference. It may be concluded that this approach is more suitable than approach 1.1 

under situations in which there are large fluctuations of flows over days-in-a-week.  

6.4. Cases for approach 3 FCD - flow data fusion    

FCD can only be as precise on a road segment level, so this approach acts on a 

stream level rather than an individual lane level. Speeds and counts of FCD on April 

23, 2013 at this junction are calculated. The flows on the segment are the sum of 

flows from lanes in this same approaching direction. The relations are presented in 

Appendix 3.  

6.4.1. FCD Speed-loop flow  

Estimation of the south stream for week 2, day 2 (April 23, 2013). In the curve in Figure 

6-12, the x-axis represents flow and the y-axis speed. In the results, the pink line shows 

the estimated values while the blues line shows actual values.   

 

Figure 6-12. Fitting curve of  outbound speed and flow for south stream on junction 31616 (left), and 

estimation using approach 3.1 on outbound south stream on junction 31616 for original data (right) 

 

Some more fitting results are presented in appendix 3. These figures show that speed-

flow relations do exist; however, the relations are not unified. The flows are 

underestimated using this approach, with a relative error of 55.10%, which is not a 

satisfactory output. The possible reasons are assumed:  

 

1. The flow-speed relations are hard to obtain at junctions, since the traffic 

volumes are composed of several interrupted streams, and are influenced 
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largely by the signal control. Although, in some streams, the fitting curves of 

speed and flow show the same shape as the hypothetical speed-flow curve, 

though this relation is not obvious on some streams.  

2. The speed-flow relations are not sharp or distinguished enough to capture the 

flow values precisely, and thus do not easily provide precise outputs. It is easy 

to understand the placid slopes here: A stop line can lead to many lower speed 

or even static speed records, which decrease the average speed calculated from 

each time interval; this lowers the slope of the whole fitting curve. 

 

However, this approach is theoretically sound, along with the data fusing concept. It 

also captures the major trend of relation between flows and speeds. Therefore, it can 

at least be used to provide reference values, which may be not so accurate temporarily, 

but may be better than none.  

6.4.2. FCD Counts-loop flow  

The estimation using this algorithm is conducted on the south stream in week 2, day 

2 (April 23, 2013). In the fitting curve shown in Figure 6-13, the flows are shown on 

the x-axis, and the counts on the y-axis. In the results, the pink line shows the 

estimated values, while the blues line shows actual values.   

 

 

Figure 6-13. Fitting curve of  count and flow outbound of  south stream on junction 31616 (left), and 

estimation using approach 3.2 outbound of  south stream junction 31616, April 23 2013, for original data 

(right).  

The FCD counts-flow relation shows a trend with an obvious direct ratio. The relations 

in other areas are shown in appendix 3, and these relations are quite similar. In the 

estimation, as in the speed-flow approach, the flows are also underestimated, with a 

relative error of 32.24%. This result is better than that using the speed-flow relation. 

Although the penetration rate changes during the time of day, the FCD counts still 

represent one part of the total traffic flow. Therefore, the increase in FCD counts may 

imply an increase in the total flow, generally speaking. 

 

By way of a short conclusion, Approach 3 (A3) contains two algorithms (sub-

approaches), involving estimations made using the FCD speed-flow relation and the 
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FCD counts-flow relation. The relations between speed and flow vary in different 

approaching directions, even at the same junction; while the relations between count 

and flow are relatively stable, almost with a direct ratio.  

6.5. Cases for approach 4 multiple linear regression 

For Approach 4 (A4), using a multiple linear regression (MLR), as stated above, the 

choices of input range (relevance) and analysis interval are the key factors influencing 

performance. Also, the performance over the course of a day is analyzed, and this 

shows how the performance can changes during a single day for a certain algorithm.  

 

To find out the influence from the factor of input range, the analysis interval is fixed 

as 24h. First, all the available observations at the junction are used as the input 

dataset. Secondly, the range is narrowed, such that only detectors from one 

approaching direction are selected. To test the influence from the factor of analysis 

interval, the input range is fixed, detectors from one approaching direction are 

selected, and four different analysis intervals are tested. To test the performance over 

several periods, all cases are selected, and the evaluation interval is changed from one 

day to one hour. 

 

For these tests, the inputs last a week; for all observations, the parameters are for one 

week and they are applied to another. The results for all of the cases are in Appendix 

4. Some cases are presented here for analysis. 

 

Scenario 1 Influence of inputs range  

 

The estimation results obtained from the regression on all other detectors seems 

rough. Some trends and peaks are totally different, especially during the daytime. 

It is understandable: During the daytime, the change in traffic volumes for each 

lane from each stream are frequent, and contributions from other observations can 

be quite unreliable. 

 

Narrowing down the input range has made the relative errors smaller, from 42.68% 

to 25.67% for original data, and from 26.81% to 19.02% for processed data. The 

absolute errors have also declined. These results give evidence that more inputs 

for MLR do not lead to more reliable results. The observations that are relevant 

play an important role. 
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Figure 6-14. Estimation of  missing flow in lane 1 on April 22, 2013, using the multiple linear regression 

approach: use the original data case (left) and processed data case (right).  (Top: the whole dataset is from 

one approaching stream, down: dataset from the West stream. Analysis interval: 24h). 

 

Table 6-1. Error indicators for approach 4, lane 1 April 22, 2013.  

 Inputs original data processed data 

MAPE 
the whole junction 42.68% 26.81% 

one steam 25.67% 19.02% 

    

RMSE 
the whole junction 4.37 3.38 

one steam 2.01 1.65 

 

Scenario 2 Influence of analysis interval  

 

According to section 4.2.4, the minimum analysis interval to ensure a reliable 

regression can be as short as 4 hours. The analysis intervals of 24 hours, 12 

hours, 8 hours, and 4 hours are tested.  
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Figure 6-15. Estimation of  missing flow in lane 1, on April 22 2013, using the multiple linear regression 

approach: use original data (left) and processed data (right). (The whole dataset is from the West approaching 

stream, and the analysis interval is from top to bottom: 24h, 12h, 8h, 4h). 

 

 

 

 

 

 

 



72 
 

Table 6-2. Error indicators for approach 4, lane 1, on April 22, 2013; validation interval: 1 hour 

 Analysis interval original data processed data 

MAPE 

24 h 25.67% 19.02% 

12 h 30.70% 14.93% 

8h 31.21% 16.20% 

4h 71.55% 43.65% 

RMSE 

24 h 2.01 1.65 

12 h 2.54 1.36 

8h 2.87 1.66 

4h 7.86 5.54 

 

The results, with different analysis intervals, show similar trends. Results with 

analysis interval 24h and 12h do not show much difference in performance. Results 

using 4h provide a larger error (MAPE of more than 70%) than other cases. This 

shows that the suitable analysis interval is among 8, 12h, and 24h.  

Scenario 3 Performance over period 

 

Figure 6-16 gives the MAPE during each period of a single day for several 

applications under different analysis intervals for approach 4; approaches 1 and 

2 are also shown for comparison. Previous approaches seem steady every time. 

MLR approaches show larger errors at midnight and smaller errors during 

daytime.  

 

Figure 6-16. Comparison of  each approach on MAPE, on lane 1, April 21, 2013 ; validation interval: 1 hour; 

using original and processed data.  

 

In conclusion, for the input range, relevant inputs contribute to accurate estimation 

results. For the analysis interval, there are different performances under different 

analysis intervals. No matter for which analysis inputs, the accuracy using this 

approach increases with the increase in the flow amount concerned. It acts better at 

peak hours with less than 10% errors, and worse during the night, with 40% errors or 

more. 
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6.6. Cases for integrated method 1: Iteration   

This method combines approaches 1 and 2, using an iterative process. The iteration 

has been described in section 4.3.1. The specific formulas are as follows: 

 

Initial input from historical flow pattern (Approach 1.1): 

 

�̂�
1
(𝑙𝑥, 𝑑𝑥, 𝑡𝑥)~{𝑤𝐷𝑂𝑊 ∗ �̅�(𝑙, 𝑑𝐷𝑂𝑊𝑥

, 𝑡), 𝑤𝑊𝐷 ∗ �̅�(𝑙, 𝑑𝑊𝐷𝑥
, 𝑡), 𝑤𝐷 ∗ �̅�(𝑙, 𝑑𝐴𝐷, 𝑡), 𝑡 ∈ 𝑇𝑥},𝑙 ∈ 𝐿(6.13) 

 

Initial input from spatial distribution in a timing plan (Approach 2): 

�̂�
2
(𝑙𝑥, 𝑑𝑥, 𝑡𝑥)~ ∑ 𝑤𝑐(𝑙) ∗ 𝑤𝑡𝑟(𝑙) ∗ 𝑤𝑝𝑙(𝑙)

1

𝑛𝑝𝑙
(

�̅�(𝑙𝑥,𝑑,𝑡)

�̅�(𝑙,𝑑,𝑡)
, 𝑡 ∈ 𝑇) ∗ (�̅�(𝑙, 𝑑, 𝑡), 𝑡 ∈ 𝑇𝑥), 𝑑 ∈ 𝐷𝑙𝜖𝐿 (6.14) 

 

Two scenarios are considered, according to missing data type: long-term missing (flow 

is missing for the whole day) and short-term missing (flow is missing for some period). 

Each scenario presents the results of estimation using original or smoothed data and 

corresponding iteration times before convergence. Some representative cases are 

presented: The estimation on Week 1, Day 1 (April 15, 2013) for Lane 7, and on Week 

2, Day 2 (April 23, 2013) for Lane 7. Finally, a comparison of the method for individual 

approaches is made.  

 

Scenario 1: missing for a long term   

 

A convergence has been reached for each data point. For the majority of individual 

values, the iteration time is 7, the highest is 9, and the lowest 5 times.  

 

 

Figure 6-17. Iteration results for long-term missing (up: flow compared with actual detected flow, down: 

iteration times before convergence), lane 7, week 1, day 1 (April 15, 2013), original data (left) and processed 

data (right).  
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Figure 6-18. Iteration results for long-term missing (up: flow compared with actual detected flow, down: 

iteration times before convergence), lane 7, week 2, day 2 (April 23, 2013), original data (left) and processed 

data (right).  

 

Table 6-3. Error indicators for iterative estimation for long-term missing, on lane 7, April 15 and 23, 2013. 

 Day original data processed data 

MAPE 
Week 1 day1 25.16% 14.03% 

Week 2 day2 27.52% 15.84% 

    

RMSE 
Week 1 day1 5.18 3.13 

Week 2 day2 4.93 2.52 

 

 

Scenario 2: missing for a short term  

 

During the peaks in both morning and afternoon, estimated values follow closely the 

actual detected values for original and processed data.  

 

 Morning peak 7:00-10:00 

 

During the peak in the morning, estimated values vary closely with actual detected 

values, as with the processed data case. 
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Figure 6-19. Iterative estimation for short-term missing morning peak, 7:00-10:00, on lane 7, April 15 and 

23, 2013; original data (left) and processed data (right).  

 

 Afternoon peak 16:00-19:00 

 

During the peak in the afternoon, estimated values follow closely the actual detected 

values, with less variance. For processed data case (smoothed), the estimated value 

corresponds with the same trends as the actual detected values. 
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Figure 6-20. Iterative estimation for short-term missing afternoon peak, 16:00-19:00, on lane 7, April 15 and 

23, 2013; original data (left) and processed data (right).  

 

The estimation results for the short-term missing type are better than that for the 

long-term type. For lower resolution, as shown in Appendix 5, such as for the 15-

minute and 30-minute intervals, the performances are more stable and with fewer 

relative errors.  

 

Comparison: Integration 1 compared with approaches 1 and 2 

 

The green color shows the initial results from approach 1, while yellow shows approach 

2, and the red line shows the iterative results. When looking at each time stamp, the 

majority of the iterative estimation values are in-between individual approaches. 

However, not all of the final values are in-between the values from individual 

approaches: this phenomenon can be explained by the fact that results from the 

individual approaches are all ones of “initial” estimation without updating from the 

dimension. During the process of iteration, the missing flow has been updated 

gradually by the stepwise estimations, and these newly updated values will contribute 

to the weights or ratios considered in both approaches. Thus, the estimation from the 

next iteration may be quite different from the initial estimate.  
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Figure 6-21. Iterative estimation and approaches 1 and 2 for the long-term missing, in lane 7, on April 15 

and 23, 2013; with original data (left) and processed data (right).  

 

Table 6-4. Error indicators for iterative estimation, and approaches 1 and 2 for long-term missing, on lane 7, 

April 15 and 23, 2013. 

 

 original data processed data 

Error 

indicator 
A1 A 2 

Iterative 

results 
A1 A2 

Iterative 

results 

MAPE 29.97% 24.83% 25.16% 14.57% 15.96% 14.03% 

RMSE 6.66 4.95 5.18 3.34 3.66 3.13 

MAPE 34.70% 27.12% 27.52% 17.80% 18.40% 15.84% 

RMSE 6.90 5.03 4.93 2.75 3.61 2.52 

 

When one of the approaches does not perform well, the iterative tend to be closer to 

the better-performing one. When the results from two approaches are close, results 

from integration using iteration can provide a better estimation than any one of them. 

Since there is no idea when an approach will perform better than another one, using 

an iterative one is a reliable and safe solution. 

 

6.7. Cases for integrated method 2: Advanced MLR  

This method is based on approach 4 MLR, considering the relevant information from 

approach 1 and 2, used to support the selection of the inputs. The formula is from 

section 4.3.2, and two sets of relevant inputs are selected:   𝑞(𝑙, 𝑑, 𝑡) , 𝑙 ∈ 𝑃𝐿 , 

and 𝑞(𝑙, 𝑑, 𝑡), 𝑑 ∈ 𝐷𝑂𝑊𝑥. The formula used here is: 
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: 

�̂�(𝑙𝑥, 𝑑𝑥, 𝑡𝑥)~𝑓
𝑟𝑒𝑔𝑟𝑒𝑠𝑠

(𝑞(𝑙, 𝑑, 𝑡), 𝛽), 𝑙 ∈ 𝑃𝐿, 𝑑 ∈ 𝐷𝑂𝑊𝑥, 𝑡 ∈ 𝑇      (6.15) 

Two scenarios are set: missing flow for the long- and short-term. For each scenario, the 

cases are still on the south stream for lane 7, on April 15 and 23, 2013. The regression 

analysis interval is 24h, and the dataset is the approaching stream wherein the lane 

lay. (The dashed red line shows the estimated values, while the blue line shows actual 

values). 

 

Scenario 1: missing over a long term  

 

The results of advance MLR are slightly better than using the iteration. The relative 

error is around 25% for original data and 15% for processed data.   

 

  

Figure 6-22. Estimation using integration 2 for original data (left) and processed data (right) on lane 7, 

junction 31616, on April 15 and 23, 2013. 

 

Table 6-5. Error indicators using integration 2 on lane 7, junction 31616, on April 15 and 23, 2013. 

 Day original data processed data 

MAPE 
Week 1 day1 24.90% 16.16% 

Week 2 day2 21.68% 13.16% 

    

RMSE 
Week 1 day1 3.30 2.62 

Week 2 day2 3.53 2.20 

 

 

Scenario 2: missing over a short term  

 

The relative errors in short term missing flow estimation are around 10% of original 
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data and 5% for processing data, which is lower than the long-term, so it is for RMSE. 

The advanced MLR shows better performance for missing on short -term than long-

term. 

 Morning peak 7:00-10:00 

 

 

Figure 6-23. Estimation using integration 2 for original data (left) and processed data (right) on lane 7, 

junction 31616, on April 15 and 23, 2013, during morning peak, 7:00-10:00. 

 

 Afternoon peak 16:00-19:00 

Figure 6-24. Estimation using integration 2 for original data (left) and processed data (right) on lane 7, 

junction 31616, on April 15 and 23, 2013, during afternoon peak, 16:00-19:00. 

 

In conclusion, an advanced MLR shows a low error in both long-term and short-term 
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MLR, and performs better in the short-term. It captures the trend of the actual data 

well, which shows the advantage of considering similar or nearby lanes. Thus, this 

method has certain advantages since it selects inputs by considering both approaches 

1 and 2; that is to say, it uses the observations from the most relevant days and lanes.  

6.8. Cases for validation  

From sections 6.2 to 6.5, test results are provided, along with the calibration of four 

individual approaches. In sections 6.6 and 6.7, two integrated methods are tested. 

Individual approaches 1, 2, and 4 are widely applied to cases on different lanes and 

days (see Appendices 1, 2, and 4). Therefore, these results can be seen as a kind of 

validation. In approach 3, the relations are irregular in a different stream (see 

Appendix 3), so there is no suitable means of validation. 

 

In this part, the main task is to apply two integrated methods (Iteration and advanced 

MLR) to another junction (junction 31617) by reproducing the similar experiments in 

sections 6.6 and 6.7.  

 

From the experiment setup in Figure 6-2 , the layout of junction 31617 is similar to 

31616. Lane 5 at junction 31617 expresses a similar position to lane 7 at junction 31616 

(on the south-approaching stream, first left-turning lane). This section thus applies 

two methods to lane 5 to see if they still work. Other experimental set-ups are the same 

as the test cases in sections 6.6 and 6.7. Two scenarios including the long-term and 

short-term missing. Each scenario uses original and processed (smoothed) data. Two 

sets of missing flow are used for evaluation: April 15, 2013 (week 1, day 1) and April 

23, 2013 (week 2, day 2) for lane 5. 

6.8.1. Validation of iteration method 

Scenario 1: missing over a long term  

 

Inspecting the results for long-term missing flow, the relative errors are around 30% 

for original data and 25% for processed data, which is larger than the errors in section 

6.6. However, the absolute errors are smaller: around 2 for original raw data and 

around 1.5 for processed data. The explanation is that the total traffic volume in this 

new lane at this new junction is much smaller than in the lane at the junction in 

previous cases.  
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Figure 6-25. Iterative estimation for long-term missing, on lane 5, April 15 and 23, 2013; original data (left) 

and processed data (right).  

 

Scenario 2: missing over a short term  

 

For short-term cases during the morning and afternoon peaks, the relative errors are 

around 20% to 30% for original raw data, and 15% for processed data. Similarly to the 

long-term case, compared to the test cases in section 6.6, the relative errors are larger 

and the absolute errors are smaller. 
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 Morning peak 7:00-10:00 

 

 

 

Figure 6-26. Iterative estimation for short-term missing morning peak, 7:00-10:00, in lane 5, April 15 and 23, 

2013; original data (left) and processed data (right).  

 

 Afternoon peak 16:00-19:00 

 

 

 

Figure 6-27. Iterative estimation for short-term missing afternoon peak, 16:00-19:00, in lane 5, April 15 and 

23, 2013; original data (left) and processed data (right).  



83 
 

In conclusion, when applying the method in a lane at another junction, the results 

(differences between the new case and the previous cases) are within an acceptable 

range according to the setup of validation. Due to lower traffic volume, the new 

application turns out larger relative errors and smaller absolute errors. Considering 

these two error indicators together, the difference in performance between the test and 

validation cases is reasonable and acceptable. Thus, the integrated method using 

iteration is validated.  

6.8.2. Validation of advanced MLR  

If the results for missing flow over the long term are inspected, the relative error is 

around 35% for original raw data and 30% for processed data, which is larger than 

errors in section 6.6. However, the absolute error is still smaller—around 2.5 for 

original raw data and 1.5 for processed data. Both indicators are worse than iteration.  

 

Scenario 1: missing over a long term  

 

 

 
Figure 6-28. Iterative estimation for long-term missing, on lane 5, April 15 and 23, 2013; original data (left) 

and processed data (right).  

 

Scenario 2: missing for a short term  

 

Over the short-term on morning peak and afternoon peak, the relative errors are 

around 25% to 40% for original raw data and 20% for processed data. Compared to 

results in long-term cases, they are fewer. Compared to the test cases in section 6.6, 

the relative errors are larger and the absolute errors smaller. The results are still less 

promising than the results of iteration cases.  
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 Morning peak 7:00-10:00 

  

  

 
Figure 6-29. Iterative estimation for long-term missing, in lane 5, on April 15 and 23, 2013; original data (left) 

and processed data (right).  

 Afternoon peak 16:00-19:00 

 

 

 

Figure 6-30. Iterative estimation for long-term missing, in lane 5, on April 15 and 23, 2013; original data (left) 

and processed data(right).  

 



85 
 

The selected comparison lane at the new junction has a lower quantity of traffic flow. 

For both methods, the MAPE is larger than that of calibration cases, but these 

indicators are still around 20% to 30%, which is acceptable. Since the new lane at the 

new junction has smaller traffic volume, these poorer results have also verified the 

conclusion that, for MLR, a larger amount of the value provides higher accuracy.  

 

In conclusion, and taking both MAPE and RMSE into consideration, the difference in 

error indicators in the validation cases (similar lanes from a new junction on the same 

days) is within the acceptable range. Advanced MLR, together with Iteration, is 

validated, and they can be applied to other lanes or other junctions to make the 

estimation.  

6.9. Conclusion for the chapter   

The approaches and methods are tested and evaluated in this chapter from many 

angles in multiple scenarios.  

 

Some of the results are validated, Approaches 1.1, 2, and 4. As shown in appendices 1, 

2 and 4, their performance fluctuates over different days on different lanes. A grand 

average is calculated for each approach in Table 6-6 (for an approach to 4 MLR, the 

analysis interval is 24 h). In this table, the historical pattern (A1) is best for processed 

data, while MLR (A4) performs best with original data. Lane spatial distribution (A2) 

has the smallest error when considering both situations.  

 

Some approaches or sub-approaches still remain to be improved. They are Approaches 

1.2 and 3. Approach 1.2, which uses an historical timing-flow pattern, does not work 

when the timing is unchanged. Approach 3.1 using the speed/flow relation, which 

provides irregular relations over different streams (see appendix 3). For Approach 3.2, 

though it gives an obvious direct ratio between FCD counts and total flow, and the 

results in the case are better than with Approach 3.1, it does not have theoretical 

support, and the penetration rate changes over time (shown in section 3.4.2) constitute 

an underlying problem.  

 

Table 6-6. Error indicators for three individual approaches, grand average of  MAPE 

 

 Sub approach original data processed data 

Historical pattern (A1) Historical flow pattern 41.25% 24.63% 

Lane spatial distribution(A2) / 38.01% 27.48% 

MLR(A4) 
All observations 55.03% 45.44% 

One stream  37.80% 27.93% 

 

As for two integrated methods, they both are promising of results, and their 

performance is close to each other.  
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Integrated method 1 (I1) iteration show errors in the estimation at around 25% (for 

original data) and 15% (for processed data) and is better than any single application 

of approaches 1 or 2. On the one hand, whenever one of the individual approaches fails 

to perform properly, the iteration process can revise the result gradually and reliably 

to a certain degree. On the other hand, the iteration provides better results when the 

rules on both sides are normal. Therefore, using the iterative methods is a reliable, 

safe solution. The only drawback is the high computation costs. 

 

After calibration, it is suggested that I2 uses the specific approaching stream as inputs 

and 24h as analysis interval. This method in fact shows the fusion of relevant 

information to a regression model, which involves better performance than just 

applying single MLR by using excessively wide inputs. It performs slightly better than 

I1, with error rates of nearly 20% (for original data) and 10% (for processed data) errors 

when total traffic volume is relatively large (as seen in the test cases in section 6.7). 

However, it performs worse than I1, with error rates of more than 30% (for original 

data) and 25% (for processed data) when dealing with smaller traffic volumes (as seen 

in the validation cases presented in section 6.8).  

 

Table 6-7. Error indicators for I1 and I2 in lane 7 at junction 31616, on April 23, 2013.  

 

Error indicator MAPE RMSE 

 original data processed data original data processed data 

Iteration (I1) 27.52% 15.84% 4.93 2.52 

Advanced MLR(I2) 21.68% 13.16% 3.53 2.20 
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7. Conclusions 

 

In this chapter, comments are made on each approach and method, and a comparison 

is made among them. The best methods for estimating missing flow at the urban 

junction are determined according to the specific situations. The methods are 

recommended for practical use in estimating flows at urban junctions under stable 

traffic conditions according to the situations referring to the criteria mentioned in this 

thesis.  
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Comments on methods 

 

A comparison is made of all of the individual approaches as well as integrated methods. 

All of the major criteria observed from tests, calibrations, and validations in each case 

are considered together, and the evaluation presented in Table 7-1 . These include: 

data needed, required amount of direct observations, suitable resolution, accuracy 

(under different missing types and input data types), analysis interval, computation 

costs, and validation status. Their definitions and descriptions are as follows:  

 

Data needed: The data source is the first thing to consider. This criterion considers the 

types of sources needed for input. A circle (O) shows that the specific source is required 

by an approach or a method, and an x (×) means that it is not necessary.  

 

Required amount of direct observations: In addition to the types of sources, the 

quantity is also a problem. Integration 2 needs a large amount of data to perform 

slightly more accurately than Integration 1, while it performs worse when there is less 

data. This goes to the discussion of the criterion for required direct observations: in the 

majority of the methods, they all need at least some direct observations to make 

estimations directly (such as Approaches 1 and 2), to form relationships (such as 

approach 3), and to calibrate the parameters (such as in Approach 4). As regression 

tools require much larger data than others, Approach 4 MLR and Integrated Method 

2 for advanced MLR both call for larger direct flow observations. 

 

Suitable resolution: The different methods involve different degrees of sensitivity and 

abilities to deal with data with different resolutions. Some approaches can only deal 

with the problem with lower resolution. For example, this thesis applies Approach 3 

at 30 mins resolution due to the characteristics of FCD records. 

 

Accuracy: In the previous analysis, the methods were mainly judged by error 

indicators. Standards are set here: The performance showing accuracy is defined by 

relative error MAPE (excellent: MAPE<=10%, good: 10 %< MAPE<=25%, Fair: 25 %< 

MAPE<=35%, Poor: MAPE> 35%). The accuracy is expressed under two concerns: 

Missing types and input data types. 

 

 Missing types: This criterion shows whether the flows are missing during a 

long or short period, and during daytime or night. Some methods have 

distinguished performances in relation to this concern. For example, A4 MLR 

performs much better during the daytime than at night, and A1.2 can only be 

used during the night when the adaptive control has been turned on. 

 

 Input data types: The original data inputs represent the original observations, 

and the processed data inputs represent the observations that have been 

smoothed. The difference in methods is revealed by this factor, according to 

underlying mechanisms: Approach 1 relies on the stability of flows in the time 
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dimension, while using the processed data after smoothing decreases the 

number of errors in the time dimension. This is not the case for approach 2. 

Hence, the accuracy of approach 1 is greatly improved after applying processed 

data.  

 

Parameter analysis interval: The methods define their rules within a certain time 

range. For instance, the historical pattern can make an imputation for each single 

value with the same rules for each missing data point, but MLR trains its parameters 

every 4 h or 8 h, and applies these rules to make estimations. An iteration applies to 

each missing data point various rules, with different weights from observations of time 

and spatial dimensions. Thus, theoretically, the interval can range from 5 min. (the 

minimum observation interval) to 24h (a whole day).     

 

Computation cost: Since a good method should be efficient, the computation cost is 

another significant criterion. For instance, although integrated method 1 shows good 

performance, performing the iteration takes a lot of time. The author measures the 

computation cost by the duration of calculation using a set of missing flows (from 0:00 

to 24:00, one day, in one lane, with all experiments carried out using Matlab version 

R2014B). The standards are set as: Low: less than 1 second; medium: more than 1 

second and less than 20 seconds; high: more than 20 seconds.  

 

Validation status: Individual approaches 1, 2, and 4 are widely applied to cases on 

different lanes and days (see Appendices 1, 2, and 4). They can be seen as being 

validated. Besides, the two integrated methods, Iteration and Advanced MLR are 

validated in section 6.8.   
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Table 7-1. Comments on all of  the approaches and integrated methods.  

Approach/method Sub event  
Approach 1(1.1+1.2) 

Historical pattern 

Approach 2 

Lane distribution in 

timing plan 

Approach 3 

Fusing with 

FCD  

Approach 4 

Multiple linear 

regression  

Integrated method 

1- Iteration 

Integrated method 2 

–advanced 

regression 

Data needed 

Direction flow 

observation  
O O O O O O 

Timing plan  X(1.1) O(1.2) O X X O O 

FCD X X O X X X 

Required amount of 

direct observations 
 Low  Low  low  Large low Large   

Suitable resolution  
5/15/30minute 

interval 

5/15/30minute 

interval 

30minute 

interval 

5/15/30minute 

interval 

5/15/30minute 

interval 

5/15/30minute 

interval 

Missing types 

Long-term  

 
Good(1.1) Good / Fair Good Good  

Short-term 

 

Fair(1.1) 

Poor(1.2)  
Good / 

Good(day time) 

Poor(night) 
Excellent  

Excellent(day time) 

Poor(night) 

Input data types  

Original data (raw 

data) 
Fair Fair  

Poor(3.1)  

Fair(3.2) 
Fair  Good Good 

Processed 

data(smoothed data) 
Good Good / Good Excellent  Excellent 

Parameter analysis 

interval 
 / / <24 hours  

> 4 hours 

< 24 hours 

5 minute to 24 

hours 

> 4 hours 

< 24 hours 

Computation costs   Low Low Medium  Low  High Low  

Validation status  Validated Validated / Validated Validated  Validated  
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Overall conclusion  

 

This thesis starts from observations of traffic flow data from SCATS, and finds that 

the flows are widely missing from the system. This problem becomes the research 

question, “What are the best ways to estimate the traffic flow values missing at a 

junction?” In answering this question, many individual approaches are tried, from 

multiple angles, by applying available data sources: directly observed flows, timing 

plan, and FCD. The primary algorithms for the approaches are tested; they are then 

combined with other current algorithms, according to the results of analysis of the flow 

data, to develop new approaches. At the same time, the data fusion concept is used. 

Other sources, the timing plan, and FCD are linked with flows to determine pertinent 

relationships. After the processing of data and experiments from multiple scenarios 

involving certain key influential factors, historical (A1.1) and spatial (A2) 

relationships are shown to satisfy the assumptions. These are utilized in the 

estimation of missing flows. MLR (A4) has also been analysed; some recommendations 

are made according to its input and analysis interval. The approach A1.2 of using the 

green/flow ratio cannot be proven due to the limitations of the data sources. The 

approach of fusing FCD (A3.1) using speed-flow relations holds large errors, which still 

need to be improved. Inferences are then drawn in conclusion about reasons for failure, 

and recommendations are made for further research. The relationships of FCD counts-

flow (A3.2) seem to be positive (they give better results, but still with large errors). 

Two integrations are demonstrated to show the possible combinations of individual 

approaches. These methods have better performances than the individual ones. They 

are also validated at another junction, and are thus confirmed as the best choices for 

the flow estimation at an urban junction. Finally, a grand comparison among all of the 

methods is conducted, showing the details of implementation of each approach or 

integrated method. 

 

Recommendations for the application in practice  

 

The series of methods presented in this thesis are suitable in multiple situations for 

all of the urban areas. When traffic flows are missing from a system, a specific choice 

of approaches should be considered, with the major concerns being: 

 

 Sources available: availability, and whether the data are direct observations or 

are drawn from other sources. 

 Input/output requirements: Missing type (are data missing for a long- or short-

term?); resolution (5/15/30 minutes); original or processed data. 

 Other factors: analytical tools; computation costs, etc. 

 

For urban traffic systems like SCATS, considering the missing flows on a large scale, 

the calculation of the missing values has to be fast and efficient. In these cases, the 

approaches and methods presented in this thesis are highly recommended. The specific 

steps are as follows: 
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 First, look at the available sources, including both direct flow observations and 

other data sources. 

 Secondly, test the scales and types of missing data: To what extent for the 

missing flows are there missing values in the short or long-term, and do they 

appear during the daytime or at nights.  

 Thirdly, positioning the target for the estimation: What are the concerned inputs 

(such as resolution/smoothed or original)? What are the required outputs (such 

as resolution)? How fast does it need to be (according to the scale and type of 

missing values)?  

 Finally, make an initial choice of methods according to Table 7-1. Implement 

them to obtain primary results and comparisons, using integrated methods 

where possible. (If time is unlimited, the iteration method is recommended as 

providing more reliable results. If the inputs are enough, an advanced multiple 

linear regression is recommended.)  

 

Suggestions for future research  

 

In this thesis, a series of methods are proposed for the estimation of missing flows at 

the urban junctions. However, it leaves some areas still to be investigated.  

 

First, regarding MLR, two important factors are discussed in this thesis: The analysis 

interval for calibration and the relevant inputs. There is a question of choice between 

these two factors: a large analysis interval requires many inputs, wide data inputs will 

cause a lack of relevance, and with fewer inputs there are no reliable parameters. 

Hence, the increase of one will cause a negative impact from another. Therefore, there 

is a need for a proper analysis interval with a proper set of inputs. This will be done in 

further research. 

 

Secondly, the case studies focus on one signal-controlled junction. However, the 

methods may also suitable for multiple adjacent junctions. For example, in approach 

3, with data fusion using FCD and loop flow, the trajectories of FCD between two 

junctions can link two junctions together.  

 

Besides, considering FCD speed and loop flow, when the flows are higher, the speeds 

become lower. This approach does not show much accuracy in the final estimation 

results, and a more precise means of expressing speed and flow will probably lead to 

more reliable results. The FCD counts and the total flow show a direct ratio, and the 

estimated result for missing values is around 30% on the stream level. This approach 

can be improved upon by looking into the dynamic penetration rate.  

 

Finally, the methods in this thesis work are mainly tested for static traffic patterns. 

Whether they work for dynamic traffic patterns remains to be verified. 
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Appendix 

Appendix 1 Historical pattern 

Table 0-1 Estimation results using historical flow pattern for the second week on all lanes at junction 31616. 

Indicator MAPE, duration: the whole day (24 h), resolution 5 min. data input: original (raw) data   

 

Lane# Stream Turning MON TUE WED THU FRI SAT SUN 

AVG  

Weekday 

AVG  

Weekends 

AVG  

all days 

lane 1 

West 

stream 

Left 33.36% 35.54% 37.38% 34.90% 41.17% 31.24% 38.56% 36.47% 34.90% 36.02% 

lane 2 Left 35.35% 46.09% 38.30% 37.90% 36.25% 31.39% 34.59% 38.78% 32.99% 37.12% 

lane 3 Throughput 55.38% 43.28% 41.54% 36.80% 36.06% 32.35% 36.54% 42.61% 34.45% 40.28% 

lane 4 Throughput 43.52% 39.15% 41.14% 36.28% 31.42% 31.43% 33.98% 38.30% 32.71% 36.70% 

lane 5 Throughput 37.43% 34.58% 35.85% 38.06% 35.09% 31.35% 36.22% 36.20% 33.79% 35.51% 

lane 6 Right 82.65% 57.93% 77.41% 79.16% 68.87% 58.60% 67.45% 73.20% 63.03% 70.30% 

lane 7 

South 

stream 

Left 29.91% 33.69% 43.85% 30.51% 27.13% 25.00% 29.70% 33.02% 27.35% 31.40% 

lane 8 Left 29.85% 38.15% 31.03% 31.62% 36.22% 23.79% 28.60% 33.37% 26.20% 31.32% 

lane 9 Throughput 32.07% 45.97% 41.35% 38.06% 27.88% 26.95% 35.19% 37.07% 31.07% 35.35% 

lane 10 Throughput 24.20% 31.17% 24.14% 27.75% 22.98% 20.54% 25.27% 26.05% 22.91% 25.15% 

lane 11 Throughput 27.10% 24.49% 24.56% 26.25% 36.65% 19.27% 25.25% 27.81% 22.26% 26.22% 

lane 12 Right 52.84% 45.42% 46.20% 48.46% 50.46% 37.99% 37.02% 48.68% 37.51% 45.48% 

lane 13 

East 

stream 

Left 58.91% 40.94% 44.27% 41.03% 48.76% 44.15% 40.71% 46.78% 42.43% 45.54% 

lane 14 Left 58.25% 43.38% 40.50% 37.64% 44.64% 38.41% 39.33% 44.88% 38.87% 43.16% 

lane 15 Throughput 51.75% 35.54% 38.05% 34.60% 49.62% 37.75% 43.81% 41.91% 40.78% 41.59% 

lane 16 Throughput 46.57% 39.96% 42.93% 47.02% 45.52% 41.31% 44.53% 44.40% 42.92% 43.98% 

lane 17 Throughput 34.04% 33.85% 34.69% 30.58% 34.74% 30.03% 41.69% 33.58% 35.86% 34.23% 

lane 18 Right 75.01% 58.74% 58.79% 53.61% 59.62% 51.93% 41.92% 61.15% 46.93% 57.09% 

lane 19 

North 

stream 

Left 48.73% 41.26% 42.01% 38.36% 51.88% 43.24% 51.50% 44.45% 47.37% 45.28% 

lane 20 Left 44.58% 55.26% 69.19% 59.51% 44.25% 40.59% 37.13% 54.56% 38.86% 50.07% 

lane 21 Throughput 250.29% 34.77% 34.33% 25.11% 28.52% 26.21% 53.84% 74.60% 40.03% 64.72% 

lane 22 Throughput 41.94% 45.24% 54.89% 44.72% 42.25% 47.09% 56.38% 45.81% 51.74% 47.50% 

lane 23 Throughput 36.70% 26.65% 27.96% 26.09% 51.75% 37.92% 53.40% 33.83% 45.66% 37.21% 

lane 24 Right 26.93% 33.96% 32.06% 22.09% 31.26% 28.73% 26.43% 29.26% 27.58% 28.78% 

AVG Left 42.37% 41.79% 43.32% 38.93% 41.29% 34.73% 37.52% 41.54% 36.12% 39.99% 

AVG Throughput 56.75% 36.22% 36.79% 34.28% 36.87% 31.85% 40.51% 40.18% 36.18% 39.04% 

AVG Right 59.36% 49.01% 53.62% 50.83% 52.55% 44.31% 43.21% 53.07% 43.76% 50.41% 

AVG West 47.95% 42.76% 45.27% 43.85% 41.48% 36.06% 41.22% 44.26% 38.64% 42.66% 

AVG South 32.66% 36.48% 35.19% 33.78% 33.55% 25.59% 30.17% 34.33% 27.88% 32.49% 

AVG East 54.09% 42.07% 43.21% 40.75% 47.15% 40.60% 42.00% 45.45% 41.30% 44.26% 

AVG North 74.86% 39.52% 43.41% 35.98% 41.65% 37.30% 46.45% 47.08% 41.87% 45.60% 

AVG Total lanes 52.39% 40.21% 41.77% 38.59% 40.96% 34.89% 39.96% 42.78% 37.42% 41.25% 
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Table 0-2 Estimation results using historical flow pattern for the second week on all lanes at junction 31616. 

Indicator MAPE, duration: the whole day (24 h), resolution 5 min. data input: processed (smoothed) data   

 

Lane# Stream Turning MON TUE WED THU FRI SAT SUN 

AVG  AVG  AVG  

Weekday Weekends all days 

lane 1 

West 

stream 

Left 16.32% 15.85% 19.13% 14.78% 19.22% 12.84% 18.57% 17.06% 15.71% 16.67% 

lane 2 Left 21.96% 22.77% 22.05% 16.50% 20.58% 16.28% 16.00% 20.77% 16.14% 19.45% 

lane 3 Throughput 40.19% 21.87% 23.47% 21.75% 21.70% 19.80% 22.77% 25.80% 21.29% 24.51% 

lane 4 Throughput 28.93% 21.34% 23.28% 18.92% 16.64% 15.36% 17.45% 21.82% 16.41% 20.27% 

lane 5 Throughput 22.27% 16.68% 16.96% 20.33% 17.74% 15.86% 18.60% 18.80% 17.23% 18.35% 

lane 6 Right 52.13% 46.15% 54.40% 45.41% 40.67% 34.65% 37.82% 47.75% 36.24% 44.46% 

lane 7 

South 

stream 

Left 18.70% 16.99% 17.13% 12.85% 10.86% 13.20% 16.03% 15.31% 14.62% 15.11% 

lane 8 Left 18.50% 19.86% 15.87% 14.77% 21.62% 11.12% 14.75% 18.12% 12.94% 16.64% 

lane 9 Throughput 22.95% 31.75% 29.50% 23.30% 16.29% 11.87% 15.82% 24.76% 13.85% 21.64% 

lane 10 Throughput 15.35% 13.78% 13.23% 13.19% 10.48% 9.78% 11.38% 13.21% 10.58% 12.46% 

lane 11 Throughput 13.81% 12.06% 11.72% 10.20% 23.78% 9.91% 11.82% 14.31% 10.87% 13.33% 

lane 12 Right 35.08% 30.15% 28.11% 24.49% 30.31% 24.94% 25.06% 29.63% 25.00% 28.31% 

lane 13 

East 

stream 

Left 41.05% 28.11% 26.17% 24.80% 30.54% 24.64% 27.54% 30.13% 26.09% 28.98% 

lane 14 Left 43.46% 29.00% 23.03% 22.95% 27.41% 22.16% 24.21% 29.17% 23.19% 27.46% 

lane 15 Throughput 39.71% 28.24% 27.60% 23.16% 46.85% 26.98% 28.02% 33.11% 27.50% 31.51% 

lane 16 Throughput 27.16% 24.04% 25.74% 24.64% 25.46% 23.23% 22.87% 25.41% 23.05% 24.73% 

lane 17 Throughput 17.57% 18.33% 18.43% 16.76% 16.03% 18.50% 21.22% 17.42% 19.86% 18.12% 

lane 18 Right 53.60% 37.71% 40.92% 33.16% 38.54% 33.04% 31.87% 40.79% 32.46% 38.41% 

lane 19 

North 

stream 

Left 36.59% 22.87% 26.79% 25.76% 34.93% 34.40% 35.51% 29.39% 34.96% 30.98% 

lane 20 Left 28.97% 37.78% 35.91% 32.87% 28.34% 22.46% 23.75% 32.77% 23.11% 30.01% 

lane 21 Throughput 229.00% 21.26% 19.55% 13.83% 16.16% 20.91% 23.83% 59.96% 22.37% 49.22% 

lane 22 Throughput 20.11% 27.03% 26.32% 22.16% 17.09% 24.02% 33.15% 22.54% 28.59% 24.27% 

lane 23 Throughput 22.13% 12.75% 15.04% 13.61% 36.62% 16.69% 21.97% 20.03% 19.33% 19.83% 

lane 24 Right 18.54% 19.72% 17.38% 12.47% 15.53% 16.65% 14.09% 16.73% 15.37% 16.34% 

AVG Left 28.19% 24.15% 23.26% 20.66% 24.19% 19.64% 22.05% 24.09% 20.84% 23.16% 

AVG Throughput 41.60% 20.76% 20.90% 18.49% 22.07% 17.74% 20.74% 24.76% 19.24% 23.19% 

AVG Right 39.84% 33.43% 35.20% 28.88% 31.26% 27.32% 27.21% 33.72% 27.27% 31.88% 

AVG West 30.30% 24.11% 26.55% 22.95% 22.76% 19.13% 21.87% 25.33% 20.50% 23.95% 

AVG South 20.73% 20.77% 19.26% 16.47% 18.89% 13.47% 15.81% 19.22% 14.64% 17.91% 

AVG East 37.09% 27.57% 26.98% 24.25% 30.81% 24.76% 25.96% 29.34% 25.36% 28.20% 

AVG North 59.22% 23.57% 23.50% 20.12% 24.78% 22.52% 25.38% 30.24% 23.95% 28.44% 

AVG Total lanes 36.84% 24.00% 24.07% 20.94% 24.31% 19.97% 22.25% 26.03% 21.11% 24.63% 
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Appendix 2 Lane spatial distribution  

Table 0-3 Estimation results using lane spatial distribution for the second week on all lanes at junction 31616. 

Indicator MAPE, duration: the whole day (24 h), resolution 5 min. data input: original (raw) data   

 

Lane# Stream Turning MON TUE WED THU FRI SAT SUN 

AVG  AVG  AVG  

Weekday Weekends all days 

lane 1 

West 

stream 

Left 24.96% 35.39% 24.57% 27.39% 33.79% 28.42% 27.72% 29.22% 28.07% 28.89% 

lane 2 Left 31.00% 42.18% 28.17% 31.54% 31.87% 28.79% 29.95% 32.95% 29.37% 31.93% 

lane 3 Throughput 44.23% 48.90% 36.62% 41.55% 40.63% 36.54% 39.65% 42.39% 38.10% 41.16% 

lane 4 Throughput 31.22% 37.32% 30.02% 27.80% 27.82% 27.85% 25.72% 30.84% 26.79% 29.68% 

lane 5 Throughput 27.10% 32.35% 28.62% 30.89% 28.62% 28.38% 33.56% 29.52% 30.97% 29.93% 

lane 6 Right 62.12% 57.82% 66.18% 63.92% 61.29% 53.97% 63.87% 62.27% 58.92% 61.31% 

lane 7 

South 

stream 

Left 22.64% 24.54% 34.57% 23.80% 22.45% 24.21% 23.94% 25.60% 24.08% 25.16% 

lane 8 Left 29.55% 30.73% 26.94% 30.08% 36.15% 27.44% 25.25% 30.69% 26.35% 29.45% 

lane 9 Throughput 24.02% 38.06% 37.40% 33.53% 27.10% 33.04% 31.70% 32.02% 32.37% 32.12% 

lane 10 Throughput 18.10% 19.50% 19.23% 18.14% 17.01% 18.09% 17.67% 18.40% 17.88% 18.25% 

lane 11 Throughput 20.00% 21.48% 22.12% 21.53% 21.57% 19.34% 17.03% 21.34% 18.19% 20.44% 

lane 12 Right 46.33% 48.97% 49.99% 45.22% 43.61% 42.64% 39.36% 46.82% 41.00% 45.16% 

lane 13 

East 

stream 

Left 44.39% 41.24% 41.49% 39.84% 38.05% 38.19% 34.98% 41.00% 36.59% 39.74% 

lane 14 Left 40.07% 41.30% 35.91% 39.25% 37.61% 34.78% 33.03% 38.83% 33.91% 37.42% 

lane 15 Throughput 35.35% 36.57% 34.95% 30.54% 40.65% 33.78% 33.45% 35.61% 33.62% 35.04% 

lane 16 Throughput 42.95% 40.09% 41.27% 48.71% 38.94% 43.30% 41.04% 42.39% 42.17% 42.33% 

lane 17 Throughput 33.05% 36.95% 34.10% 37.00% 36.32% 38.72% 45.23% 35.48% 41.98% 37.34% 

lane 18 Right 61.62% 60.88% 59.23% 58.37% 64.69% 55.65% 53.65% 60.96% 54.65% 59.16% 

lane 19 

North 

stream 

Left 43.99% 34.95% 38.31% 34.63% 56.19% 47.38% 50.03% 41.61% 48.71% 43.64% 

lane 20 Left 57.28% 67.01% 75.11% 75.01% 52.89% 45.53% 45.82% 65.46% 45.68% 59.81% 

lane 21 Throughput 259.87% 20.12% 23.05% 21.65% 24.90% 26.38% 62.31% 69.92% 44.35% 62.61% 

lane 22 Throughput 40.60% 35.41% 43.24% 38.58% 37.00% 43.25% 51.34% 38.97% 47.30% 41.35% 

lane 23 Throughput 31.76% 20.41% 19.59% 21.00% 41.20% 35.62% 55.02% 26.79% 45.32% 32.09% 

lane 24 Right 22.88% 33.75% 30.44% 23.25% 30.47% 30.39% 27.18% 28.16% 28.79% 28.34% 

AVG Left 36.74% 39.67% 38.13% 37.69% 38.63% 34.34% 33.84% 38.17% 34.09% 37.01% 

AVG Throughput 50.69% 32.26% 30.85% 30.91% 31.81% 32.02% 37.81% 35.31% 34.92% 35.19% 

AVG Right 48.24% 50.36% 51.46% 47.69% 50.02% 45.66% 46.02% 49.55% 45.84% 48.49% 

AVG West 36.77% 42.33% 35.70% 37.18% 37.34% 33.99% 36.75% 37.86% 35.37% 37.15% 

AVG South 26.77% 30.55% 31.71% 28.72% 27.98% 27.46% 25.83% 29.15% 26.64% 28.43% 

AVG East 42.91% 42.84% 41.16% 42.29% 42.71% 40.74% 40.23% 42.38% 40.48% 41.84% 

AVG North 76.06% 35.28% 38.29% 35.69% 40.44% 38.09% 48.62% 45.15% 43.35% 44.64% 

AVG Total lanes 45.63% 37.75% 36.71% 35.97% 37.12% 35.07% 37.85% 38.63% 36.46% 38.01% 
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Table 0-4 Estimation results using lane spatial distribution for the second week on all lanes at junction 31616. 

Indicator MAPE, duration: the whole day (24 h), resolution 5 min. data input: processed (smoothed) data   

Lane# Stream Turning MON TUE WED THU FRI SAT SUN 

AVG AVG AVG 

Weekday Weekends all days 

lane 1 

West 

stream 

Left 15.21% 26.16% 15.48% 16.70% 21.57% 17.65% 17.41% 19.02% 17.53% 18.60% 

lane 2 Left 21.73% 28.07% 18.71% 20.53% 25.08% 19.64% 19.19% 22.82% 19.42% 21.85% 

lane 3 Throughput 37.87% 35.19% 28.28% 34.54% 37.19% 34.06% 35.38% 34.61% 34.72% 34.64% 

lane 4 Throughput 20.37% 24.97% 20.38% 17.41% 19.08% 18.92% 18.15% 20.44% 18.54% 19.90% 

lane 5 Throughput 20.25% 22.77% 17.43% 20.26% 21.10% 21.53% 23.38% 20.36% 22.46% 20.96% 

lane 6 Right 39.43% 39.86% 40.86% 39.94% 36.60% 33.22% 41.77% 39.34% 37.50% 38.81% 

lane 7 

South 

stream 

Left 13.68% 17.18% 14.62% 12.24% 12.48% 14.62% 15.84% 14.04% 15.23% 14.38% 

lane 8 Left 16.92% 20.19% 16.37% 17.46% 27.95% 14.59% 15.03% 19.78% 14.81% 18.36% 

lane 9 Throughput 17.55% 32.72% 31.14% 26.02% 20.47% 19.80% 17.09% 25.58% 18.45% 23.54% 

lane 10 Throughput 13.65% 12.89% 14.89% 13.18% 13.22% 13.81% 13.43% 13.57% 13.62% 13.58% 

lane 11 Throughput 12.67% 19.50% 16.42% 14.18% 13.01% 14.81% 13.51% 15.16% 14.16% 14.87% 

lane 12 Right 29.51% 32.67% 31.53% 23.06% 26.21% 29.84% 25.63% 28.60% 27.74% 28.35% 

lane 13 

East 

stream 

Left 28.53% 29.96% 27.65% 26.17% 24.94% 26.88% 26.23% 27.45% 26.56% 27.19% 

lane 14 Left 29.06% 31.19% 26.30% 28.05% 28.24% 25.63% 24.09% 28.57% 24.86% 27.51% 

lane 15 Throughput 27.70% 30.61% 29.27% 25.25% 43.34% 28.71% 26.07% 31.23% 27.39% 30.14% 

lane 16 Throughput 29.94% 28.87% 32.05% 35.17% 28.94% 32.81% 29.78% 30.99% 31.30% 31.08% 

lane 17 Throughput 27.87% 30.36% 28.27% 28.58% 28.76% 30.59% 35.96% 28.77% 33.28% 30.06% 

lane 18 Right 46.26% 42.91% 43.87% 42.10% 45.70% 43.42% 38.88% 44.17% 41.15% 43.31% 

lane 19 

North 

stream 

Left 38.50% 24.62% 28.83% 29.93% 46.32% 42.25% 39.94% 33.64% 41.10% 35.77% 

lane 20 Left 44.52% 58.86% 54.21% 53.18% 46.49% 33.46% 35.79% 51.45% 34.63% 46.64% 

lane 21 Throughput 264.75% 14.21% 17.28% 17.30% 18.90% 23.73% 36.30% 66.49% 30.02% 56.07% 

lane 22 Throughput 24.10% 25.27% 22.68% 22.24% 22.98% 27.34% 35.96% 23.45% 31.65% 25.80% 

lane 23 Throughput 21.68% 13.94% 14.49% 14.02% 36.31% 16.96% 29.95% 20.09% 23.46% 21.05% 

lane 24 Right 14.08% 18.90% 19.27% 15.90% 15.51% 18.73% 17.52% 16.73% 18.13% 17.13% 

AVG Left 26.02% 29.53% 25.27% 25.53% 29.13% 24.34% 24.19% 27.10% 24.27% 26.29% 

AVG Throughput 43.20% 24.28% 22.72% 22.35% 25.28% 23.59% 26.25% 27.56% 24.92% 26.81% 

AVG Right 32.32% 33.59% 33.88% 30.25% 31.01% 31.30% 30.95% 32.21% 31.13% 31.90% 

AVG West 25.81% 29.50% 23.52% 24.90% 26.77% 24.17% 25.88% 26.10% 25.03% 25.79% 

AVG South 17.33% 22.53% 20.83% 17.69% 18.89% 17.91% 16.76% 19.45% 17.33% 18.85% 

AVG East 31.56% 32.32% 31.24% 30.89% 33.32% 31.34% 30.17% 31.86% 30.75% 31.55% 

AVG North 67.94% 25.97% 26.13% 25.43% 31.09% 27.08% 32.58% 35.31% 29.83% 33.74% 

AVG Total lanes 35.66% 27.58% 25.43% 24.73% 27.52% 25.13% 26.35% 28.18% 25.74% 27.48% 
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Appendix 3 FCD-loop flow relation  

Speed-flow relation in approach 3 (FCD-flow data fusion) 

 

 Inbound area  

Figure 0-1 The FCD speed- loop flow relation formed from inbound from streams (Top-down – East, South, 

West, North) 

 

Table 0-5 fitting parameters from inbound, junction 31616, 23rd April 2013 

 
East  South  West  North  

Data  Original  Smoothed   Original  Smoothed   Original  Smoothed   Original  Smoothed   

Fitting f(x) = p1*x^2 + p2*x + p3 f(x) = p1*x+ p2 f(x) = p1*x^2 + p2*x + p3 

p1 3.34e-05 9.91e-05 2.01e-05 1.46e-05 -0.05 -0.06 3.34e-05   9.91e-05   

p2 -0.03 -0.05 -0.06 -0.05 43.32 44.99 -0.03 -0.05 

p3 24.31 25.37 52.96 52.18   47.20 47.84 

Goodness of fit 

R-square 0.14 0.15 0.91 0.91 0.70 0.75 0.84 0.84 

RMSE 6.75 6.70 4.43 4.36 8.13 7.44 6.00 5.86 
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 Outbound area 

Figure 0-2 The FCD speed- loop flow relation formed from outbound from streams (Top-down – East, 

South, West, North) 

 

Table 0-6 fitting parameters from outbound, junction 31616, 23rd April 2013 

 
East  South  West  North  

 
Original 

data 

Smoothed  

data 

Original 

data 

Smoothed 

data 

Original 

data 

Smoothed 

data 

Original 

data 

Smoothed 

data 

Fitting 

curve 

f(x) = p1*x^2 + p2*x + p3 

p1 1.22e-05 1.54e-05 4.33e-06 4.76e-06 -4.63e-05 -4.10e-05 4.63e-05 4.02e-05 

p2 -0.02 -0.02 -0.02 -0.02 0.05 0.04 -0.07 -0.06 

p3 42.32 42.55 47.27 47.51 17.05 17.55 54.48 53.67 

Goodness of fit 

R-square 0.12 0.12 0.51 0.51 0.12 0.10 0.45 0.43 

RMSE 10 10.02 4.22 4.21 10.18 10.27 7.84 7.97 
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Count-flow relation in approach 3 (FCD-flow data fusion) 

 

 Inbound area  

 

 

 

 

Figure 0-3 The FCD count- loop flow relation formed from inbound from streams (Top-down – East, South, 

West, North) 

 

Table 0-7 fitting parameters from inbound, junction 31616, 23rd April 2013 

 
East  South  West  North  

 
Original 

data 

Smoothed  

data 

Original 

data 

Smoothed 

data 

Original 

data 

Smoothed 

data 

Original 

data 

Smoothed 

data 

Fitting 

curve 

f(x) = p1*x+ p2 

p1 0.32 0.34 0.09 0.09 0.16 0.17 0.08 0.09 

p2 13.46 10.85   8.55 7.08 19.12 14.56 10.30 9.14 

Goodness of fit 

R-square 0.86 0.87 0.85 0.85 0.70 0.74 0.77 0.78 

RMSE 15.05 14.15 15.51 15.54 22.35 20.44 18.96 18.92 
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 Outbound area 

 

 

 

 

Figure 0-4 The FCD count- loop flow relation formed from outbound from direction streams (Top-down – 

East, South, West, North) 

 

Table 0-8 fitting parameters from outbound, junction 31616, 23rd April 2013 

 
East  South  West  North  

 
Original 

data 

Smoothed  

data 

Original 

data 

Smoothed 

data 

Original 

data 

Smoothed 

data 

Original 

data 

Smoothed 

data 

Fitting 

curve 

f(x) = p1*x+ p2 

p1 0.19 0.19 0.11 0.12 0.11 0.12 0.11 0.12 

p2 13.16 11.16 13.37 11.39 9.71 8.09 6.39 5.01 

Goodness of fit 

R-square 0.82 0.83 0.76 0.78 0.81 0.82 0.86 0.86 

RMSE 17.26 16.69 19.52 19.03 17.71 17.37 14.89 15.09 
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Appendix 4 MLR  

Scenario 1: input range: lanes from the whole junction, 24h analysis interval  

 

Table 0-9 Estimation results using MLR for the second week on all lanes at junction 31616. Indicator MAPE, 

duration: the whole day (24 h), resolution 5 min. analysis interval: 24 h, inputs category: all the lanes at a 

junction and a whole week, data input: original (raw) data 

 

Lane# Stream Turning MON TUE WED THU FRI SAT SUN 

AVG   

Weekday 

AVG   

Weekends 

AVG 

 all days 

lane 1 

West 

stream 

Left 42.68% 35.65% 40.50% 32.39% 46.14% 33.27% 35.87% 39.47% 34.57% 38.07% 

lane 2 Left 45.79% 40.28% 39.98% 39.62% 34.74% 36.81% 38.33% 40.08% 37.57% 39.36% 

lane 3 Throughput 56.90% 46.24% 47.60% 48.71% 48.09% 46.27% 47.87% 49.51% 47.07% 48.81% 

lane 4 Throughput 38.46% 44.39% 45.61% 41.25% 43.52% 41.92% 36.12% 42.65% 39.02% 41.61% 

lane 5 Throughput 43.61% 44.84% 49.94% 52.04% 44.52% 42.85% 42.48% 46.99% 42.66% 45.75% 

lane 6 Right 114.36% 108.86% 107.68% 104.96% 109.95% 87.80% 79.84% 109.16% 83.82% 101.92% 

lane 7 

South 

stream 

Left 27.22% 39.90% 43.35% 34.24% 29.18% 43.38% 31.63% 34.78% 37.50% 35.56% 

lane 8 Left 38.80% 37.66% 45.30% 33.33% 32.04% 41.09% 29.84% 37.42% 35.46% 36.86% 

lane 9 Throughput 32.44% 45.28% 41.77% 38.39% 36.01% 32.69% 32.14% 38.78% 32.42% 36.96% 

lane 10 Throughput 21.61% 27.74% 26.35% 28.84% 23.60% 22.27% 22.15% 25.63% 22.21% 24.65% 

lane 11 Throughput 27.78% 25.59% 28.16% 26.52% 33.05% 19.63% 20.86% 28.22% 20.24% 25.94% 

lane 12 Right 94.86% 84.98% 95.30% 72.66% 75.32% 79.63% 62.90% 84.62% 71.26% 80.81% 

lane 13 

East 

stream 

Left 63.48% 67.01% 76.32% 63.17% 67.96% 61.10% 55.39% 67.59% 58.25% 64.92% 

lane 14 Left 63.20% 65.81% 59.24% 53.66% 55.00% 58.76% 62.64% 59.38% 60.70% 59.76% 

lane 15 Throughput 73.61% 61.98% 65.37% 42.46% 64.60% 72.48% 56.27% 61.60% 64.38% 62.40% 

lane 16 Throughput 56.24% 63.08% 72.10% 56.30% 67.83% 62.07% 48.78% 63.11% 55.42% 60.91% 

lane 17 Throughput 37.83% 45.05% 44.27% 43.22% 50.93% 46.55% 46.63% 44.26% 46.59% 44.93% 

lane 18 Right 90.39% 102.58% 90.27% 92.58% 99.50% 81.96% 89.83% 95.06% 85.90% 92.45% 

lane 19 

North 

stream 

Left 87.78% 95.06% 71.52% 76.03% 74.29% 70.18% 66.83% 80.94% 68.51% 77.39% 

lane 20 Left 73.63% 96.81% 115.05% 89.04% 80.67% 72.41% 77.30% 91.04% 74.85% 86.41% 

lane 21 Throughput 240.30% 46.53% 31.16% 44.23% 26.69% 30.43% 51.96% 77.78% 41.20% 67.33% 

lane 22 Throughput 55.97% 59.85% 59.55% 64.53% 64.33% 59.75% 60.94% 60.85% 60.35% 60.70% 

lane 23 Throughput 60.05% 47.77% 45.80% 33.29% 47.42% 37.75% 56.51% 46.87% 47.13% 46.94% 

lane 24 Right 47.48% 44.42% 39.93% 36.79% 42.77% 37.92% 33.22% 42.28% 35.57% 40.36% 

AVG Left 55.32% 59.77% 61.41% 52.68% 52.50% 52.12% 49.73% 56.34% 50.93% 54.79% 

AVG Throughput 62.07% 46.53% 46.47% 43.31% 45.88% 42.89% 43.56% 48.85% 43.22% 47.24% 

AVG Right 86.77% 85.21% 83.29% 76.75% 81.88% 71.83% 66.45% 82.78% 69.14% 78.88% 

AVG West 56.97% 53.38% 55.22% 53.16% 54.49% 48.15% 46.75% 54.64% 47.45% 52.59% 

AVG South 40.45% 43.53% 46.70% 39.00% 38.20% 39.78% 33.25% 41.58% 36.52% 40.13% 

AVG East 64.12% 67.59% 67.93% 58.57% 67.63% 63.82% 59.92% 65.17% 61.87% 64.23% 

AVG North 94.20% 65.07% 60.50% 57.32% 56.03% 51.41% 57.79% 66.62% 54.60% 63.19% 

AVG Total lanes 63.94% 57.39% 57.59% 52.01% 54.09% 50.79% 49.43% 57.00% 50.11% 55.03% 

 



107 
 

Table 0-10 Estimation results using MLR for the second week on all lanes at junction 31616. Indicator MAPE, 

duration: the whole day (24 h), resolution 5 min. analysis interval: 24 h, inputs category: all the lanes at a 

junction and a whole week, data input: processed (smoothed) data   

 

Lane# Stream Turning MON TUE WED THU FRI SAT SUN 

AVG   

Weekday 

AVG   

Weekends 

AVG  

all days 

lane 1 

West 

stream 

Left 30.00% 47.32% 25.25% 20.06% 41.66% 22.13% 28.61% 32.86% 25.37% 30.72% 

lane 2 Left 39.07% 45.17% 32.76% 30.16% 44.17% 23.90% 28.38% 38.27% 26.14% 34.80% 

lane 3 Throughput 50.42% 45.33% 34.11% 39.07% 35.80% 33.55% 37.35% 40.95% 35.45% 39.38% 

lane 4 Throughput 36.64% 34.34% 47.47% 33.47% 34.30% 35.48% 35.11% 37.24% 35.29% 36.69% 

lane 5 Throughput 31.15% 41.13% 34.38% 61.95% 41.34% 42.36% 39.27% 41.99% 40.81% 41.65% 

lane 6 Right 63.22% 102.65% 72.74% 70.34% 72.75% 67.90% 53.98% 76.34% 60.94% 71.94% 

lane 7 

South 

stream 

Left 23.96% 25.54% 23.09% 27.77% 21.11% 42.57% 22.78% 24.29% 32.67% 26.69% 

lane 8 Left 26.49% 25.86% 27.49% 38.05% 42.26% 30.52% 27.37% 32.03% 28.94% 31.15% 

lane 9 Throughput 29.00% 35.62% 27.43% 32.12% 35.32% 22.14% 19.88% 31.90% 21.01% 28.79% 

lane 10 Throughput 16.03% 17.95% 17.85% 19.20% 19.63% 14.44% 15.10% 18.13% 14.77% 17.17% 

lane 11 Throughput 20.37% 20.93% 20.49% 17.59% 25.40% 15.07% 14.20% 20.96% 14.63% 19.15% 

lane 12 Right 85.68% 71.14% 86.06% 64.81% 72.35% 52.52% 50.07% 76.01% 51.29% 68.95% 

lane 13 

East 

stream 

Left 67.95% 62.86% 59.36% 53.13% 52.48% 39.73% 61.20% 59.16% 50.46% 56.67% 

lane 14 Left 58.50% 56.37% 49.61% 52.00% 58.31% 42.43% 57.23% 54.96% 49.83% 53.49% 

lane 15 Throughput 91.74% 65.76% 56.41% 39.55% 70.61% 59.92% 52.48% 64.81% 56.20% 62.35% 

lane 16 Throughput 46.60% 41.79% 63.87% 49.73% 50.59% 49.09% 69.91% 50.52% 59.50% 53.08% 

lane 17 Throughput 37.81% 40.40% 39.05% 43.14% 41.75% 38.58% 37.59% 40.43% 38.08% 39.76% 

lane 18 Right 67.44% 88.28% 70.51% 78.50% 72.37% 72.74% 80.69% 75.42% 76.71% 75.79% 

lane 19 

North 

stream 

Left 88.90% 68.21% 59.28% 80.29% 67.75% 48.23% 48.67% 72.89% 48.45% 65.90% 

lane 20 Left 64.88% 78.49% 73.84% 54.95% 69.45% 61.30% 69.46% 68.32% 65.38% 67.48% 

lane 21 Throughput 251.91% 41.36% 41.27% 37.63% 17.62% 22.89% 29.38% 77.96% 26.13% 63.15% 

lane 22 Throughput 35.20% 47.28% 40.45% 42.29% 37.58% 37.52% 51.37% 40.56% 44.44% 41.67% 

lane 23 Throughput 48.78% 49.62% 32.89% 23.22% 43.35% 19.85% 30.67% 39.57% 25.26% 35.48% 

lane 24 Right 34.61% 26.37% 32.08% 26.23% 29.76% 25.96% 25.01% 29.81% 25.49% 28.57% 

AVG Left 49.97% 51.23% 43.83% 44.55% 49.65% 38.85% 42.96% 47.85% 40.91% 45.86% 

AVG Throughput 57.97% 40.13% 37.97% 36.58% 37.77% 32.57% 36.03% 42.08% 34.30% 39.86% 

AVG Right 62.74% 72.11% 65.35% 59.97% 61.81% 54.78% 52.44% 64.39% 53.61% 61.31% 

AVG West 41.75% 52.66% 41.12% 42.51% 45.01% 37.55% 37.12% 44.61% 37.34% 42.53% 

AVG South 33.59% 32.84% 33.73% 33.26% 36.01% 29.54% 24.90% 33.89% 27.22% 31.98% 

AVG East 61.67% 59.24% 56.47% 52.67% 57.68% 50.41% 59.85% 57.55% 55.13% 56.86% 

AVG North 87.38% 51.89% 46.63% 44.10% 44.25% 35.96% 42.42% 54.85% 39.19% 50.38% 

AVG Total lanes 56.10% 49.16% 44.49% 43.13% 45.74% 38.37% 41.07% 47.72% 39.72% 45.44% 
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Scenario 2: input range: lanes from a stream, 24h/12h/8h/4h analysis interval  

 

Table 0-11 Estimation results using MLR for the second week on all lanes at junction 31616. Indicator 

MAPE, duration: the whole day (24 h), resolution 5 min. analysis interval: 24 h, inputs category: lanes from 

a stream and a whole week, data input: original (raw) data 

Lane# Stream Turning MON TUE WED THU FRI SAT SUN 

AVG AVG AVG 

Weekday Weekends all days 

lane 1 

West 

stream 

Left 25.67% 24.48% 24.11% 24.20% 30.39% 22.73% 28.56% 25.77% 25.65% 25.73% 

lane 2 Left 25.63% 34.17% 28.71% 28.63% 24.67% 23.70% 27.63% 28.36% 25.67% 27.59% 

lane 3 Throughput 40.69% 37.29% 36.62% 32.06% 30.87% 27.83% 32.00% 35.51% 29.92% 33.91% 

lane 4 Throughput 31.74% 31.39% 29.48% 28.94% 24.06% 25.33% 23.87% 29.12% 24.60% 27.83% 

lane 5 Throughput 27.59% 28.19% 29.17% 31.13% 28.49% 27.32% 31.02% 28.91% 29.17% 28.99% 

lane 6 Right 86.94% 67.81% 69.96% 61.54% 66.12% 58.30% 58.08% 70.47% 58.19% 66.96% 

lane 7 

South 

stream 

Left 19.13% 29.28% 32.72% 22.97% 21.62% 24.93% 21.91% 25.14% 23.42% 24.65% 

lane 8 Left 24.48% 23.41% 29.83% 24.62% 26.57% 24.39% 19.52% 25.78% 21.96% 24.69% 

lane 9 Throughput 22.93% 29.93% 25.76% 25.27% 28.96% 25.44% 25.89% 26.57% 25.67% 26.31% 

lane 10 Throughput 15.10% 19.83% 17.60% 21.25% 15.34% 15.92% 14.13% 17.82% 15.03% 17.02% 

lane 11 Throughput 20.72% 16.58% 19.69% 19.98% 35.10% 15.71% 14.51% 22.41% 15.11% 20.33% 

lane 12 Right 56.78% 52.38% 58.38% 49.46% 62.45% 45.46% 40.02% 55.89% 42.74% 52.13% 

lane 13 

East 

stream 

Left 44.82% 40.09% 47.11% 44.58% 35.35% 40.37% 37.48% 42.39% 38.93% 41.40% 

lane 14 Left 40.52% 42.52% 39.79% 42.22% 34.72% 39.56% 34.73% 39.95% 37.15% 39.15% 

lane 15 Throughput 54.23% 42.77% 39.60% 33.04% 44.09% 39.90% 36.00% 42.75% 37.95% 41.38% 

lane 16 Throughput 41.20% 41.42% 45.29% 44.87% 43.18% 40.79% 32.80% 43.19% 36.80% 41.36% 

lane 17 Throughput 28.48% 29.28% 31.02% 25.55% 32.69% 30.10% 31.26% 29.40% 30.68% 29.77% 

lane 18 Right 66.71% 64.79% 56.94% 60.01% 64.75% 58.29% 50.88% 62.64% 54.59% 60.34% 

lane 19 

North 

stream 

Left 49.15% 53.07% 49.81% 41.89% 58.98% 46.73% 49.60% 50.58% 48.17% 49.89% 

lane 20 Left 52.43% 66.43% 79.78% 61.31% 49.65% 51.76% 42.72% 61.92% 47.24% 57.73% 

lane 21 Throughput 259.76% 31.64% 27.18% 25.54% 23.55% 21.03% 51.84% 73.53% 36.44% 62.93% 

lane 22 Throughput 41.40% 36.94% 44.80% 47.07% 42.13% 49.01% 44.84% 42.47% 46.93% 43.74% 

lane 23 Throughput 35.66% 27.63% 20.61% 25.24% 43.15% 33.00% 49.24% 30.46% 41.12% 33.50% 

lane 24 Right 24.69% 35.11% 31.34% 27.18% 34.69% 28.58% 27.22% 30.60% 27.90% 29.83% 

AVG Left 35.23% 39.18% 41.48% 36.30% 35.24% 34.27% 32.77% 37.49% 33.52% 36.35% 

AVG Throughput 51.63% 31.07% 30.57% 30.00% 32.63% 29.28% 32.28% 35.18% 30.78% 33.92% 

AVG Right 58.78% 55.02% 54.16% 49.55% 57.00% 47.66% 44.05% 54.90% 45.85% 52.32% 

AVG West 39.71% 37.22% 36.34% 34.42% 34.10% 30.87% 33.53% 36.36% 32.20% 35.17% 

AVG South 26.52% 28.57% 30.66% 27.26% 31.67% 25.31% 22.66% 28.94% 23.99% 27.52% 

AVG East 45.99% 43.48% 43.29% 41.71% 42.46% 41.50% 37.19% 43.39% 39.35% 42.23% 

AVG North 77.18% 41.80% 42.25% 38.04% 42.03% 38.35% 44.24% 48.26% 41.30% 46.27% 

AVG Total lanes 47.35% 37.77% 38.14% 35.36% 37.57% 34.01% 34.41% 39.24% 34.21% 37.80% 
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Table 0-12 Estimation results using MLR for the second week on all lanes at junction 31616. Indicator MAPE, 

duration: the whole day (24 h), resolution 5 min. analysis interval: 24 h, inputs category: lanes from a stream 

and a whole week, processed (smoothed) data   

Lane# Stream Turning MON TUE WED THU FRI SAT SUN 

AVG AVG AVG 

Weekday Weekends all days 

lane 1 

West 

stream 

Left 19.02% 16.66% 19.98% 13.45% 22.06% 14.43% 20.77% 18.23% 17.60% 18.05% 

lane 2 Left 18.76% 23.19% 21.44% 19.86% 19.02% 16.11% 18.70% 20.45% 17.41% 19.58% 

lane 3 Throughput 27.06% 30.21% 27.80% 20.82% 25.64% 20.64% 22.29% 26.31% 21.47% 24.92% 

lane 4 Throughput 25.09% 23.93% 19.98% 18.58% 18.32% 14.12% 17.58% 21.18% 15.85% 19.66% 

lane 5 Throughput 16.98% 20.51% 18.11% 21.43% 24.11% 22.16% 26.02% 20.23% 24.09% 21.33% 

lane 6 Right 55.12% 63.91% 64.40% 50.33% 41.80% 41.44% 35.35% 55.11% 38.40% 50.34% 

lane 7 

South 

stream 

Left 12.95% 20.19% 15.66% 16.05% 9.87% 26.23% 13.30% 14.94% 19.77% 16.32% 

lane 8 Left 13.21% 18.54% 15.21% 21.26% 18.11% 17.59% 11.93% 17.27% 14.76% 16.55% 

lane 9 Throughput 15.46% 19.64% 16.36% 17.09% 25.54% 15.71% 14.94% 18.82% 15.33% 17.82% 

lane 10 Throughput 11.72% 11.84% 11.61% 13.54% 10.18% 9.49% 8.63% 11.78% 9.06% 11.00% 

lane 11 Throughput 13.73% 11.54% 12.60% 11.47% 28.69% 9.03% 11.35% 15.61% 10.19% 14.06% 

lane 12 Right 35.52% 50.22% 43.07% 35.38% 43.23% 35.85% 29.66% 41.48% 32.76% 38.99% 

lane 13 

East 

stream 

Left 27.12% 28.71% 27.25% 29.88% 29.36% 28.53% 24.67% 28.46% 26.60% 27.93% 

lane 14 Left 31.55% 30.48% 28.01% 30.40% 28.82% 27.58% 24.24% 29.85% 25.91% 28.73% 

lane 15 Throughput 47.79% 38.36% 33.79% 29.05% 46.39% 36.47% 33.99% 39.08% 35.23% 37.98% 

lane 16 Throughput 29.55% 24.16% 29.19% 25.51% 31.20% 25.45% 22.99% 27.92% 24.22% 26.86% 

lane 17 Throughput 18.01% 20.25% 23.51% 22.42% 25.74% 21.81% 21.36% 21.99% 21.59% 21.87% 

lane 18 Right 44.55% 40.95% 41.97% 44.83% 48.95% 45.69% 38.46% 44.25% 42.08% 43.63% 

lane 19 

North 

stream 

Left 55.70% 45.12% 37.66% 45.63% 47.64% 41.12% 39.53% 46.35% 40.33% 44.63% 

lane 20 Left 39.82% 41.69% 46.59% 39.58% 38.56% 38.90% 35.11% 41.25% 37.01% 40.04% 

lane 21 Throughput 267.59% 32.66% 19.53% 24.17% 16.67% 18.54% 26.21% 72.12% 22.38% 57.91% 

lane 22 Throughput 29.66% 29.05% 23.16% 31.09% 27.10% 28.59% 30.46% 28.01% 29.53% 28.44% 

lane 23 Throughput 28.81% 23.92% 16.24% 17.66% 37.50% 18.23% 26.48% 24.83% 22.36% 24.12% 

lane 24 Right 19.09% 23.52% 18.77% 15.42% 21.90% 18.44% 20.37% 19.74% 19.41% 19.64% 

AVG Left 27.27% 28.07% 26.48% 27.01% 26.68% 26.31% 23.53% 27.10% 24.92% 26.48% 

AVG Throughput 44.29% 23.84% 20.99% 21.07% 26.42% 20.02% 21.86% 27.32% 20.94% 25.50% 

AVG Right 38.57% 44.65% 42.05% 36.49% 38.97% 35.36% 30.96% 40.15% 33.16% 38.15% 

AVG West 27.01% 29.74% 28.62% 24.08% 25.16% 21.48% 23.45% 26.92% 22.47% 25.65% 

AVG South 17.10% 22.00% 19.09% 19.13% 22.60% 18.98% 14.97% 19.98% 16.98% 19.12% 

AVG East 33.10% 30.49% 30.62% 30.35% 35.08% 30.92% 27.62% 31.93% 29.27% 31.17% 

AVG North 73.45% 32.66% 26.99% 28.93% 31.56% 27.30% 29.69% 38.72% 28.50% 35.80% 

AVG Total lanes 37.66% 28.72% 26.33% 25.62% 28.60% 24.67% 23.93% 29.39% 24.30% 27.93% 
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Table 0-13 Estimation results using MLR for the second week on all lanes at junction 31616. Indicator MAPE, 

duration: the whole day (24 h), resolution 5 min. analysis interval: 12h, inputs category: lanes from a stream 

and a whole week, data input: original (raw) data 

 

Lane# Stream Turning MON TUE WED THU FRI SAT SUN 

AVG AVG AVG 

Weekday Weekends all days 

lane 1 

West 

stream 

Left 30.70% 26.93% 24.65% 24.39% 31.87% 22.95% 29.42% 27.71% 26.19% 27.27% 

lane 2 Left 32.00% 39.41% 30.08% 34.14% 30.99% 25.18% 28.86% 33.32% 27.02% 31.52% 

lane 3 Throughput 47.25% 40.33% 37.30% 37.25% 37.25% 30.08% 33.78% 39.88% 31.93% 37.61% 

lane 4 Throughput 37.13% 34.95% 31.99% 31.61% 25.94% 26.07% 26.69% 32.32% 26.38% 30.63% 

lane 5 Throughput 30.18% 32.78% 32.43% 34.44% 32.15% 29.29% 33.66% 32.40% 31.48% 32.13% 

lane 6 Right 88.81% 73.03% 80.78% 77.50% 76.31% 66.97% 67.06% 79.29% 67.02% 75.78% 

lane 7 

South 

stream 

Left 19.95% 28.77% 35.00% 26.11% 23.05% 28.43% 23.83% 26.58% 26.13% 26.45% 

lane 8 Left 28.54% 28.41% 28.48% 27.49% 30.06% 29.71% 20.53% 28.60% 25.12% 27.60% 

lane 9 Throughput 28.86% 36.82% 30.46% 26.40% 29.16% 26.63% 29.67% 30.34% 28.15% 29.71% 

lane 10 Throughput 16.33% 21.73% 21.62% 20.23% 17.39% 16.61% 16.47% 19.46% 16.54% 18.63% 

lane 11 Throughput 21.22% 18.09% 21.73% 21.30% 32.68% 15.87% 16.73% 23.00% 16.30% 21.09% 

lane 12 Right 74.08% 66.80% 64.73% 57.77% 61.52% 51.16% 55.40% 64.98% 53.28% 61.64% 

lane 13 

East 

stream 

Left 46.76% 44.21% 50.46% 46.13% 40.27% 44.41% 40.17% 45.57% 42.29% 44.63% 

lane 14 Left 45.17% 46.07% 40.56% 44.48% 37.71% 43.89% 39.00% 42.80% 41.45% 42.41% 

lane 15 Throughput 59.30% 50.75% 41.73% 37.66% 46.07% 45.68% 47.64% 47.10% 46.66% 46.98% 

lane 16 Throughput 51.79% 43.52% 49.50% 50.92% 49.38% 46.41% 38.99% 49.02% 42.70% 47.22% 

lane 17 Throughput 33.56% 34.30% 34.07% 28.78% 37.14% 33.17% 33.51% 33.57% 33.34% 33.50% 

lane 18 Right 74.66% 67.07% 65.54% 65.72% 66.68% 64.10% 49.77% 67.93% 56.94% 64.79% 

lane 19 

North 

stream 

Left 49.77% 61.30% 50.35% 48.63% 64.99% 46.73% 54.06% 55.01% 50.40% 53.69% 

lane 20 Left 58.47% 78.62% 82.45% 75.19% 52.68% 52.39% 48.73% 69.48% 50.56% 64.08% 

lane 21 Throughput 268.11% 36.25% 28.89% 33.83% 25.20% 22.39% 49.75% 78.46% 36.07% 66.35% 

lane 22 Throughput 42.32% 43.30% 51.77% 52.31% 43.62% 43.00% 47.61% 46.66% 45.31% 46.28% 

lane 23 Throughput 40.92% 29.84% 27.29% 28.43% 42.25% 34.89% 52.35% 33.75% 43.62% 36.57% 

lane 24 Right 27.89% 35.98% 32.98% 31.09% 35.41% 30.21% 27.94% 32.67% 29.08% 31.64% 

AVG Left 38.92% 44.22% 42.75% 40.82% 38.95% 36.71% 35.58% 41.13% 36.14% 39.71% 

AVG Throughput 56.41% 35.22% 34.07% 33.60% 34.85% 30.84% 35.57% 38.83% 33.21% 37.22% 

AVG Right 66.36% 60.72% 61.01% 58.02% 59.98% 53.11% 50.04% 61.22% 51.58% 58.46% 

AVG West 44.35% 41.24% 39.54% 39.89% 39.09% 33.42% 36.58% 40.82% 35.00% 39.16% 

AVG South 31.50% 33.44% 33.67% 29.88% 32.31% 28.07% 27.11% 32.16% 27.59% 30.85% 

AVG East 51.87% 47.65% 46.98% 45.62% 46.21% 46.28% 41.51% 47.67% 43.90% 46.59% 

AVG North 81.25% 47.55% 45.62% 44.91% 44.03% 38.27% 46.74% 52.67% 42.50% 49.77% 

AVG Total lanes 52.24% 42.47% 41.45% 40.08% 40.41% 36.51% 37.98% 43.33% 37.25% 41.59% 
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Table 0-14 Estimation results using MLR for the second week on all lanes at junction 31616. Indicator MAPE, 

duration: the whole day (24 h), resolution 5 min. analysis interval: 12 h, inputs category: lanes from a stream 

and a whole week, processed (smoothed) data   

 

Lane# Stream Turning MON TUE WED THU FRI SAT SUN 

AVG AVG AVG 

Weekday Weekends all days 

lane 1 

West 

stream 

Left 14.93% 15.73% 14.85% 13.69% 17.96% 14.39% 19.44% 15.43% 16.92% 15.86% 

lane 2 Left 20.04% 24.23% 20.36% 20.75% 20.72% 17.20% 18.18% 21.22% 17.69% 20.21% 

lane 3 Throughput 29.69% 27.34% 25.69% 23.53% 25.80% 20.62% 23.61% 26.41% 22.12% 25.18% 

lane 4 Throughput 23.09% 22.43% 20.91% 17.87% 19.14% 15.20% 14.84% 20.69% 15.02% 19.07% 

lane 5 Throughput 18.77% 19.50% 18.92% 20.90% 20.68% 21.93% 21.76% 19.75% 21.85% 20.35% 

lane 6 Right 52.14% 61.04% 55.66% 45.61% 41.67% 41.14% 40.56% 51.22% 40.85% 48.26% 

lane 7 

South 

stream 

Left 12.22% 20.33% 15.20% 15.06% 12.51% 16.07% 14.86% 15.06% 15.47% 15.18% 

lane 8 Left 16.18% 15.48% 17.51% 14.87% 20.53% 14.89% 13.64% 16.91% 14.27% 16.16% 

lane 9 Throughput 18.83% 23.26% 20.09% 17.42% 20.68% 14.07% 14.49% 20.06% 14.28% 18.41% 

lane 10 Throughput 11.49% 11.28% 13.13% 11.58% 10.44% 8.93% 9.55% 11.58% 9.24% 10.91% 

lane 11 Throughput 12.84% 11.83% 14.46% 9.93% 24.44% 9.10% 11.22% 14.70% 10.16% 13.40% 

lane 12 Right 47.96% 48.43% 39.14% 36.11% 42.63% 34.53% 35.50% 42.85% 35.02% 40.61% 

lane 13 

East 

stream 

Left 30.85% 31.21% 31.48% 29.32% 30.79% 29.58% 28.96% 30.73% 29.27% 30.31% 

lane 14 Left 29.54% 33.10% 28.96% 30.07% 28.41% 29.93% 26.19% 30.02% 28.06% 29.46% 

lane 15 Throughput 47.58% 42.94% 33.67% 32.21% 45.22% 36.93% 35.06% 40.32% 36.00% 39.09% 

lane 16 Throughput 30.79% 26.56% 33.25% 31.04% 31.46% 27.96% 23.12% 30.62% 25.54% 29.17% 

lane 17 Throughput 17.55% 24.12% 23.06% 24.07% 23.44% 22.81% 21.25% 22.45% 22.03% 22.33% 

lane 18 Right 52.11% 45.77% 44.01% 50.55% 44.62% 41.97% 38.44% 47.41% 40.21% 45.35% 

lane 19 

North 

stream 

Left 39.88% 47.30% 32.00% 35.67% 50.79% 39.33% 37.57% 41.13% 38.45% 40.36% 

lane 20 Left 44.17% 62.85% 48.56% 41.97% 35.48% 35.65% 30.22% 46.61% 32.94% 42.70% 

lane 21 Throughput 265.66% 22.40% 19.63% 24.46% 15.38% 17.36% 25.64% 69.51% 21.50% 55.79% 

lane 22 Throughput 31.54% 31.30% 29.63% 27.96% 25.41% 25.34% 30.00% 29.17% 27.67% 28.74% 

lane 23 Throughput 29.54% 17.15% 18.35% 16.63% 37.09% 17.50% 26.73% 23.75% 22.12% 23.28% 

lane 24 Right 16.48% 22.47% 20.22% 20.03% 19.86% 17.01% 19.04% 19.81% 18.03% 19.30% 

AVG Left 25.98% 31.28% 26.12% 25.18% 27.15% 24.63% 23.63% 27.14% 24.13% 26.28% 

AVG Throughput 44.78% 23.34% 22.57% 21.47% 24.93% 19.81% 21.44% 27.42% 20.63% 25.48% 

AVG Right 42.17% 44.43% 39.76% 38.08% 37.20% 33.66% 33.39% 40.33% 33.52% 38.38% 

AVG West 26.44% 28.38% 26.07% 23.73% 24.33% 21.75% 23.07% 25.79% 22.41% 24.82% 

AVG South 19.92% 21.77% 19.92% 17.50% 21.87% 16.27% 16.54% 20.20% 16.40% 19.11% 

AVG East 34.74% 33.95% 32.41% 32.88% 33.99% 31.53% 28.84% 33.59% 30.18% 32.62% 

AVG North 71.21% 33.91% 28.07% 27.79% 30.67% 25.37% 28.20% 38.33% 26.78% 35.03% 

AVG Total lanes 38.08% 29.50% 26.61% 25.47% 27.71% 23.73% 24.16% 29.48% 23.94% 27.90% 
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Table 0-15 Estimation results using MLR for the second week on all lanes at junction 31616. Indicator MAPE, 

duration: the whole day (24 h), resolution 5 min. analysis interval: 8h, inputs category: lanes from a stream 

and a whole week, data input: original (raw) data 

 

Lane# Stream Turning MON TUE WED THU FRI SAT SUN 

AVG AVG AVG 

Weekday Weekends all days 

lane 1 

West 

stream 

Left 31.21% 32.92% 31.63% 29.07% 36.80% 30.25% 34.92% 32.33% 32.59% 32.40% 

lane 2 Left 40.51% 50.42% 34.47% 39.08% 36.21% 35.54% 35.39% 40.14% 35.47% 38.80% 

lane 3 Throughput 54.55% 47.85% 55.10% 48.93% 45.58% 38.22% 36.44% 50.40% 37.33% 46.67% 

lane 4 Throughput 43.12% 47.48% 41.87% 39.82% 30.47% 37.42% 35.75% 40.55% 36.59% 39.42% 

lane 5 Throughput 32.97% 40.59% 44.79% 40.64% 43.35% 38.03% 36.75% 40.47% 37.39% 39.59% 

lane 6 Right 97.87% 81.73% 93.62% 90.69% 86.30% 71.43% 72.46% 90.04% 71.95% 84.87% 

lane 7 

South 

stream 

Left 24.75% 37.09% 33.94% 30.16% 28.40% 28.31% 27.39% 30.87% 27.85% 30.01% 

lane 8 Left 34.36% 34.33% 31.18% 33.43% 39.34% 31.89% 28.07% 34.53% 29.98% 33.23% 

lane 9 Throughput 29.68% 45.92% 35.39% 35.50% 29.63% 30.97% 26.73% 35.22% 28.85% 33.40% 

lane 10 Throughput 18.55% 25.59% 23.00% 22.93% 23.53% 20.59% 18.42% 22.72% 19.51% 21.80% 

lane 11 Throughput 24.47% 21.37% 23.80% 24.34% 29.75% 21.95% 17.07% 24.75% 19.51% 23.25% 

lane 12 Right 71.16% 61.24% 70.19% 66.32% 65.25% 60.39% 48.89% 66.83% 54.64% 63.35% 

lane 13 

East 

stream 

Left 53.41% 47.20% 54.97% 45.82% 45.28% 47.36% 47.96% 49.34% 47.66% 48.86% 

lane 14 Left 48.50% 45.78% 46.17% 46.76% 46.21% 48.46% 44.03% 46.68% 46.25% 46.56% 

lane 15 Throughput 66.94% 50.49% 46.67% 41.49% 47.60% 49.88% 48.00% 50.64% 48.94% 50.15% 

lane 16 Throughput 52.05% 43.15% 48.85% 58.96% 50.55% 49.40% 44.27% 50.71% 46.84% 49.60% 

lane 17 Throughput 36.86% 43.12% 38.13% 35.08% 42.42% 34.97% 37.49% 39.12% 36.23% 38.30% 

lane 18 Right 77.57% 80.06% 66.41% 85.19% 71.43% 69.70% 59.54% 76.13% 64.62% 72.84% 

lane 19 

North 

stream 

Left 64.52% 65.03% 57.35% 61.83% 64.92% 55.29% 62.64% 62.73% 58.97% 61.65% 

lane 20 Left 59.39% 80.46% 88.78% 88.76% 59.81% 61.05% 58.23% 75.44% 59.64% 70.93% 

lane 21 Throughput 277.47% 44.56% 30.51% 33.96% 28.27% 24.83% 55.73% 82.95% 40.28% 70.76% 

lane 22 Throughput 57.05% 41.41% 53.84% 54.70% 48.46% 56.59% 47.76% 51.09% 52.18% 51.40% 

lane 23 Throughput 57.11% 30.18% 32.43% 27.10% 46.81% 38.99% 54.06% 38.73% 46.53% 40.95% 

lane 24 Right 33.65% 36.19% 37.97% 33.72% 37.92% 36.79% 32.50% 35.89% 34.65% 35.53% 

AVG Left 44.58% 49.15% 47.31% 46.86% 44.62% 42.27% 42.33% 46.51% 42.30% 45.30% 

AVG Throughput 62.57% 40.14% 39.53% 38.62% 38.87% 36.82% 38.21% 43.95% 37.51% 42.11% 

AVG Right 70.06% 64.81% 67.05% 68.98% 65.23% 59.58% 53.35% 67.22% 56.46% 64.15% 

AVG West 50.04% 50.17% 50.25% 48.04% 46.45% 41.82% 41.95% 48.99% 41.88% 46.96% 

AVG South 33.83% 37.59% 36.25% 35.45% 35.98% 32.35% 27.76% 35.82% 30.06% 34.17% 

AVG East 55.89% 51.63% 50.20% 52.22% 50.58% 49.96% 46.88% 52.10% 48.42% 51.05% 

AVG North 91.53% 49.64% 50.15% 50.01% 47.70% 45.59% 51.82% 57.81% 48.71% 55.21% 

AVG Total lanes 57.82% 47.26% 46.71% 46.43% 45.18% 42.43% 42.10% 48.68% 42.27% 46.85% 
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Table 0-16 Estimation results using MLR for the second week on all lanes at junction 31616. Indicator MAPE, 

duration: the whole day (24 h), resolution 5 min. analysis interval: 8h, inputs category: lanes from a stream 

and a whole week, data input: processed (smoothed) data   

 

Lane# Stream Turning MON TUE WED THU FRI SAT SUN 

AVG AVG AVG 

Weekday Weekends all days 

lane 1 

West 

stream 

Left 16.20% 19.60% 20.11% 17.80% 21.77% 17.73% 21.74% 19.10% 19.74% 19.28% 

lane 2 Left 23.09% 31.40% 23.75% 21.56% 22.59% 21.45% 21.43% 24.48% 21.44% 23.61% 

lane 3 Throughput 41.74% 28.39% 38.98% 30.62% 27.23% 24.23% 24.76% 33.39% 24.50% 30.85% 

lane 4 Throughput 27.07% 31.49% 29.10% 23.79% 20.83% 24.49% 21.35% 26.46% 22.92% 25.45% 

lane 5 Throughput 20.62% 29.10% 25.41% 23.42% 26.12% 23.30% 25.51% 24.93% 24.41% 24.78% 

lane 6 Right 60.04% 58.09% 60.11% 51.93% 47.64% 40.93% 46.95% 55.56% 43.94% 52.24% 

lane 7 

South 

stream 

Left 16.28% 25.60% 16.67% 18.14% 15.51% 14.32% 17.75% 18.44% 16.04% 17.75% 

lane 8 Left 20.73% 20.38% 18.19% 18.69% 26.98% 18.17% 15.03% 20.99% 16.60% 19.74% 

lane 9 Throughput 21.22% 34.62% 25.94% 26.07% 22.10% 16.58% 14.48% 25.99% 15.53% 23.00% 

lane 10 Throughput 11.46% 14.22% 14.31% 13.58% 14.25% 11.43% 11.12% 13.56% 11.28% 12.91% 

lane 11 Throughput 16.14% 15.85% 15.22% 13.47% 20.52% 12.98% 10.72% 16.24% 11.85% 14.99% 

lane 12 Right 50.22% 43.53% 40.82% 39.85% 43.76% 38.86% 38.10% 43.64% 38.48% 42.16% 

lane 13 

East 

stream 

Left 38.04% 33.32% 35.21% 29.38% 33.16% 32.04% 32.84% 33.82% 32.44% 33.43% 

lane 14 Left 36.21% 34.79% 31.02% 30.01% 33.75% 36.51% 29.12% 33.16% 32.82% 33.06% 

lane 15 Throughput 52.89% 41.04% 35.66% 31.43% 40.69% 35.03% 36.45% 40.34% 35.74% 39.03% 

lane 16 Throughput 33.25% 27.28% 32.18% 37.93% 36.48% 29.99% 27.29% 33.42% 28.64% 32.06% 

lane 17 Throughput 21.33% 28.40% 24.28% 25.02% 26.49% 23.42% 26.13% 25.10% 24.78% 25.01% 

lane 18 Right 50.15% 51.66% 43.45% 58.77% 46.67% 49.59% 44.03% 50.14% 46.81% 49.19% 

lane 19 

North 

stream 

Left 54.48% 50.43% 35.83% 47.28% 47.27% 45.64% 41.58% 47.06% 43.61% 46.07% 

lane 20 Left 44.86% 58.09% 49.19% 50.86% 41.59% 42.22% 38.95% 48.92% 40.59% 46.54% 

lane 21 Throughput 278.65% 29.45% 19.60% 23.78% 17.98% 19.18% 30.11% 73.89% 24.65% 59.82% 

lane 22 Throughput 35.28% 27.97% 31.14% 30.74% 26.14% 33.85% 32.62% 30.25% 33.24% 31.11% 

lane 23 Throughput 33.99% 17.04% 23.00% 15.12% 39.03% 18.95% 29.99% 25.64% 24.47% 25.30% 

lane 24 Right 21.89% 21.79% 22.75% 22.37% 23.67% 24.31% 21.91% 22.49% 23.11% 22.67% 

AVG Left 31.24% 34.20% 28.75% 29.22% 30.33% 28.51% 27.31% 30.75% 27.91% 29.93% 

AVG Throughput 49.47% 27.07% 26.24% 24.58% 26.49% 22.79% 24.21% 30.77% 23.50% 28.69% 

AVG Right 45.58% 43.77% 41.78% 43.23% 40.44% 38.42% 37.75% 42.96% 38.09% 41.57% 

AVG West 31.46% 33.01% 32.91% 28.19% 27.70% 25.36% 26.96% 30.65% 26.16% 29.37% 

AVG South 22.68% 25.70% 21.86% 21.63% 23.85% 18.72% 17.87% 23.14% 18.30% 21.76% 

AVG East 38.65% 36.08% 33.63% 35.42% 36.21% 34.43% 32.64% 36.00% 33.54% 35.29% 

AVG North 78.19% 34.13% 30.25% 31.69% 32.61% 30.69% 32.53% 41.38% 31.61% 38.59% 

AVG Total lanes 42.74% 32.23% 29.66% 29.23% 30.09% 27.30% 27.50% 32.79% 27.40% 31.25% 
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Table 0-17 Estimation results using MLR for the second week on all lanes at junction 31616. Indicator MAPE, 

duration: the whole day (24 h), resolution 5 min. analysis interval: 4h, inputs category: lanes from a stream 

and a whole week, data input: original (raw) data 

Lane# Stream Turning MON TUE WED THU FRI SAT SUN 

AVG AVG AVG 

Weekday Weekends all days 

lane 1 

West 

stream 

Left 71.55% 69.34% 89.77% 63.56% 83.38% 66.07% 72.19% 75.52% 69.13% 73.69% 

lane 2 Left 74.88% 98.42% 72.93% 97.69% 86.54% 88.23% 88.13% 86.09% 88.18% 86.69% 

lane 3 Throughput 103.48% 101.56% 90.21% 99.42% 97.06% 89.03% 98.17% 98.35% 93.60% 96.99% 

lane 4 Throughput 73.94% 82.41% 82.31% 89.76% 85.29% 93.74% 67.59% 82.74% 80.67% 82.15% 

lane 5 Throughput 104.38% 90.38% 105.15% 74.26% 86.68% 84.41% 82.25% 92.17% 83.33% 89.64% 

lane 6 Right 200.38% 227.03% 202.22% 187.82% 233.26% 149.88% 167.89% 210.14% 158.89% 195.50% 

lane 7 

South 

stream 

Left 63.71% 65.92% 91.85% 60.07% 58.94% 65.26% 56.86% 68.10% 61.06% 66.09% 

lane 8 Left 71.75% 82.59% 53.48% 78.80% 83.60% 66.93% 54.37% 74.04% 60.65% 70.22% 

lane 9 Throughput 53.24% 97.53% 70.53% 91.17% 52.68% 69.06% 49.59% 73.03% 59.33% 69.11% 

lane 10 Throughput 40.82% 54.45% 45.76% 62.72% 44.07% 37.64% 44.02% 49.56% 40.83% 47.07% 

lane 11 Throughput 48.55% 54.42% 48.97% 44.78% 53.53% 48.62% 37.01% 50.05% 42.82% 47.98% 

lane 12 Right 181.25% 142.10% 173.58% 121.99% 134.49% 135.24% 100.87% 150.68% 118.06% 141.36% 

lane 13 

East 

stream 

Left 124.37% 95.47% 121.53% 102.67% 108.91% 91.66% 89.50% 110.59% 90.58% 104.87% 

lane 14 Left 105.97% 95.25% 102.35% 89.80% 108.50% 81.46% 92.44% 100.37% 86.95% 96.54% 

lane 15 Throughput 134.09% 111.73% 122.68% 87.14% 99.75% 94.60% 74.87% 111.08% 84.74% 103.55% 

lane 16 Throughput 122.34% 104.35% 119.82% 111.73% 127.32% 98.79% 93.25% 117.11% 96.02% 111.09% 

lane 17 Throughput 73.56% 75.01% 78.63% 89.30% 89.40% 84.65% 89.40% 81.18% 87.03% 82.85% 

lane 18 Right 168.46% 144.35% 152.50% 160.34% 146.13% 138.22% 142.15% 154.36% 140.19% 150.31% 

lane 19 

North 

stream 

Left 172.91% 193.43% 154.93% 171.39% 145.17% 106.20% 131.10% 167.57% 118.65% 153.59% 

lane 20 Left 133.44% 197.15% 193.19% 191.88% 132.42% 176.26% 120.29% 169.62% 148.28% 163.52% 

lane 21 Throughput 337.85% 104.56% 94.41% 99.86% 70.39% 64.44% 92.59% 141.41% 78.52% 123.44% 

lane 22 Throughput 103.31% 92.92% 146.65% 118.82% 103.46% 110.31% 102.11% 113.03% 106.21% 111.08% 

lane 23 Throughput 110.16% 102.63% 99.41% 57.17% 94.84% 83.09% 79.17% 92.84% 81.13% 89.50% 

lane 24 Right 98.10% 84.01% 81.70% 98.23% 68.45% 81.06% 76.87% 86.10% 78.97% 84.06% 

AVG Left 102.32% 112.20% 110.00% 106.98% 100.93% 92.76% 88.11% 106.49% 90.43% 101.90% 

AVG Throughput 108.81% 89.33% 92.04% 85.51% 83.71% 79.87% 75.84% 91.88% 77.85% 87.87% 

AVG Right 162.05% 149.37% 152.50% 142.10% 145.58% 126.10% 121.95% 150.32% 124.02% 142.81% 

AVG West 104.77% 111.52% 107.10% 102.09% 112.04% 95.23% 96.04% 107.50% 95.63% 104.11% 

AVG South 76.55% 82.84% 80.70% 76.59% 71.22% 70.46% 57.12% 77.58% 63.79% 73.64% 

AVG East 121.47% 104.36% 116.25% 106.83% 113.34% 98.23% 96.94% 112.45% 97.58% 108.20% 

AVG North 159.30% 129.12% 128.38% 122.89% 102.46% 103.56% 100.36% 128.43% 101.96% 120.87% 

AVG Total lanes 115.52% 106.96% 108.11% 102.10% 99.76% 91.87% 87.61% 106.49% 89.74% 101.70% 
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Table 0-18 Estimation results using MLR for the second week on all lanes at junction 31616. Indicator MAPE, 

duration: the whole day (24 h), resolution 5 min. analysis interval: 4h, inputs category: lanes from a stream 

and a whole week, data input: processed (smoothed) data   

 

Lane# Stream Turning MON TUE WED THU FRI SAT SUN 

AVG AVG AVG 

Weekday Weekends all days 

lane 1 

West 

stream 

Left 43.65% 45.14% 59.11% 39.32% 58.03% 42.13% 46.82% 49.05% 44.48% 47.74% 

lane 2 Left 49.41% 63.52% 53.30% 59.97% 57.79% 62.69% 58.07% 56.80% 60.38% 57.82% 

lane 3 Throughput 78.64% 66.53% 64.70% 72.13% 65.07% 64.59% 67.12% 69.41% 65.86% 68.40% 

lane 4 Throughput 45.93% 56.73% 52.13% 59.86% 59.19% 65.84% 44.68% 54.77% 55.26% 54.91% 

lane 5 Throughput 70.50% 65.50% 74.53% 48.88% 57.52% 56.78% 57.85% 63.39% 57.32% 61.65% 

lane 6 Right 111.53% 142.70% 141.89% 110.25% 133.53% 88.06% 101.95% 127.98% 95.01% 118.56% 

lane 7 

South 

stream 

Left 42.52% 38.10% 55.90% 36.07% 35.07% 46.65% 38.12% 41.53% 42.39% 41.78% 

lane 8 Left 44.14% 55.23% 33.43% 50.44% 61.89% 40.43% 35.13% 49.03% 37.78% 45.81% 

lane 9 Throughput 32.31% 65.90% 53.34% 64.66% 31.37% 40.70% 27.32% 49.52% 34.01% 45.09% 

lane 10 Throughput 28.50% 33.15% 27.90% 44.84% 23.81% 27.26% 32.21% 31.64% 29.74% 31.10% 

lane 11 Throughput 29.09% 33.98% 34.78% 25.27% 34.80% 29.61% 24.37% 31.58% 26.99% 30.27% 

lane 12 Right 140.04% 99.02% 104.30% 79.84% 87.94% 95.24% 70.66% 102.23% 82.95% 96.72% 

lane 13 

East 

stream 

Left 79.54% 69.81% 81.42% 68.91% 62.29% 52.81% 61.42% 72.39% 57.12% 68.03% 

lane 14 Left 69.34% 59.28% 62.76% 61.58% 83.38% 53.62% 58.56% 67.27% 56.09% 64.07% 

lane 15 Throughput 97.17% 83.53% 79.72% 61.74% 72.62% 65.44% 55.77% 78.96% 60.61% 73.71% 

lane 16 Throughput 90.51% 69.15% 82.77% 71.05% 83.76% 62.56% 55.49% 79.45% 59.03% 73.61% 

lane 17 Throughput 47.15% 51.87% 53.73% 61.65% 57.22% 54.34% 66.47% 54.32% 60.41% 56.06% 

lane 18 Right 104.60% 95.47% 113.93% 110.93% 90.63% 95.06% 100.22% 103.11% 97.64% 101.55% 

lane 19 

North 

stream 

Left 120.49% 128.70% 119.89% 131.11% 118.02% 76.65% 100.54% 123.64% 88.60% 113.63% 

lane 20 Left 83.12% 127.65% 116.90% 116.21% 94.85% 113.27% 78.31% 107.75% 95.79% 104.33% 

lane 21 Throughput 302.09% 65.40% 59.59% 79.06% 50.39% 47.24% 52.19% 111.31% 49.72% 93.71% 

lane 22 Throughput 64.75% 64.91% 86.81% 73.69% 61.91% 66.78% 69.24% 70.41% 68.01% 69.73% 

lane 23 Throughput 65.88% 66.63% 67.62% 37.27% 66.49% 45.33% 41.27% 60.78% 43.30% 55.78% 

lane 24 Right 63.88% 52.08% 51.52% 69.25% 42.54% 53.71% 45.51% 55.85% 49.61% 54.07% 

AVG Left 66.53% 73.43% 72.84% 70.45% 71.42% 61.03% 59.62% 70.93% 60.33% 67.90% 

AVG Throughput 79.38% 60.27% 61.47% 58.34% 55.35% 52.21% 49.50% 62.96% 50.85% 59.50% 

AVG Right 105.01% 97.32% 102.91% 92.57% 88.66% 83.02% 79.59% 97.29% 81.30% 92.72% 

AVG West 66.61% 73.35% 74.28% 65.07% 71.86% 63.35% 62.75% 70.23% 63.05% 68.18% 

AVG South 52.77% 54.23% 51.61% 50.19% 45.81% 46.65% 37.97% 50.92% 42.31% 48.46% 

AVG East 81.39% 71.52% 79.06% 72.64% 74.98% 63.97% 66.32% 75.92% 65.15% 72.84% 

AVG North 116.70% 84.23% 83.72% 84.43% 72.37% 67.16% 64.51% 88.29% 65.84% 81.87% 

AVG Total lanes 79.37% 70.83% 72.17% 68.08% 66.25% 60.28% 57.89% 71.34% 59.09% 67.84% 
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Appendix 5 Iteration  

Resolution of 15/30 minutes in long term/short term  

 

 Long-term  

 

 

 

 

Figure 0-5 iterative estimation for long-term missing, on lane 7, day 15th and 23rd April 2013 ,15 minutes 

resolution (left)and 30 minutes resolution (right)  

 

Table 0-19 error indicators for long-term missing, on lane 7, day 15th and 23rd April 2013, 5 15 30minutes 

resolution,  

 

 5 min 15 min 30 min 

Error 

indicator 

A1 A 2 

Iterative 

results 

A1 A2 

Iterative 

results 

A1 A 2 

Iterative 

results 

MAPE 29.97% 24.83% 25.16% 11.38% 13.53% 11.34% 10.94% 12.61% 10.15% 

RMSE 6.66 4.95 5.18 9.65 10.53 9.17 30.43 19.55 16.89 

MAPE 34.70% 27.12% 27.52% 16.03% 15.70% 14.37% 14.83% 13.28% 12.36% 

RMSE 6.90 5.03 4.93 7.06 8.45 6.95 20.12 14.62 12.07 
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 Short-term  

 

Morning peak 7:00-10:00 

 

 

 
Figure 0-6 iterative estimation for short-term missing morning peak 7:00-10:00, on lane 7, day 15th and 23rd 

April 2013 ,15 minutes resolution (left)and 30 minutes resolution (right)  

 

Afternoon peak 16:00-19:00 

 

 

 

Figure 0-7 iterative estimation for short-term missing afternoon peak 16:00-19:00, on lane 7, day 15th and 

23rd April 2013 ,15 minutes resolution (left)and 30 minutes resolution (right)  
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Appendix 6 Correlation coefficient map of traffic flow  

Traffic flow over time  

 

 

Figure 0-8 Correlation coefficient map for lane 1 and lane 2 at junction 20209 

 

 

 

 

 

 



119 
 

 

 

 

 

 

Traffic flow over spatial  

 

 

 

 

Figure 0-9 Correlation coefficient map for junction 20209 and 31617 

 




